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Novel Light Weight Compressed Data Aggregation

Using Sparse Measurements for IoT Networks
Amarlingam M, Pradeep Kumar Mishra, P Rajalakshmi, Sumohana S. Channappayya, and C. S. Sastry

Abstract—Optimal data aggregation aimed at maximizing IoT
network lifetime by minimizing constrained on-board resource
utilization continues to be a challenging task. The existing data
aggregation methods have proven that compressed sensing is
promising for data aggregation. However, they compromise either
on energy efficiency or recovery fidelity and require complex
on-node computations. In this paper, we propose a novel Light
Weight Compressed Data Aggregation (LWCDA) algorithm that
randomly divides the entire network into non-overlapping clus-
ters for data aggregation. The random non-overlapping clustering
offers two important advantages: 1) energy efficiency, as each
node has to send its measurement only to its cluster head, 2)
highly sparse measurement matrix, which leads to a practically
implementable framework with low complexity. We analyze the
properties of our measurement matrix using restricted isometry
property, the associated coherence and phase transition. Through
extensive simulations on practical data, we show that the mea-
surement matrix can reconstruct data with high fidelity. Further,
we demonstrate that the LWCDA algorithm reduces transmission
cost significantly against baseline approaches, implying thereby
the enhancement of the network lifetime.

Index Terms—Compressed sensing, data aggregation, Internet
of Things, network lifetime.

I. INTRODUCTION

The sensor nodes used in Internet Of Things (IoT) appli-

cation deployments such as remote sensing and monitoring

are typically inexpensive, untethered and are powered through

batteries [1]. However, relaying on battery power limits the

lifetime of the nodes. Further, regular recharging or replace-

ment of batteries leads to additional cost and is a laborious task

[2]. Thus, the network lifetime is a critical concern for data

aggregation in IoT networks. Wireless transmission consumes

significant amount of energy during the data aggregation [3].

Indeed, reducing the number of packet transmissions and

minimizing routing path for data aggregation in the network

can improve the network lifetime. Several approaches have

been proposed to address this problem [4].

Compressed Sensing (CS) [5] is a signal processing tech-

nique that has proven to be very promising for data aggregation

[6]. CS provides a new perspective for data aggregation

in IoT networks enabling the compression and route mini-

mization jointly for energy efficiency over the network [7]-

[10]. Most of the CS aided data aggregation techniques use
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either dense [7]-[10] or sparse random measurements [11]-

[14]. These methods have proposed the encoding by utilizing

the structural properties of the measurement matrix. In dense

random measurements based data aggregation techniques, it

is assumed that the individual columns of the measurement

matrix are generated at the respective nodes and compute

the corresponding measurement [7]-[10]. The sparse random

measurements based data aggregation techniques computes

the measurements by collecting the data from the interested

nodes for each measurement, while assuming that the sparse

measurement matrix is stored at each node [11]-[14]. These

approaches [7]-[14] aggregate the measurements from all the

nodes by minimizing the routing path to reduce the energy

consumption in data aggregation.

Most of the existing CS aided data aggregation approaches

do not consider the feasibility of hardware implementation [7]-

[14]. The bottleneck for hardware implementation of the CS

aided data aggregation techniques is in the encoding process

at IoT nodes that are severely resource constrained. The size

of the measurement matrix depends on sparsity of the sensing

data and the number of nodes deployed in the network [6]. As

IoT nodes are resource constrained devices, for sparse random

measurements based data aggregation techniques, storage is-

sues can crop up in large-scale network applications. In case

of dense random measurements, the dependency of column

size on sensing data sparsity poses multiple constraints in

real-time implementation for the applications where data to

be sensed has low sparsity [15]. In contrast, the measurement

matrix content can be combined enroute to the sink instead

of generating individual columns or storing the matrix while

aggregating the data from the nodes using CS. This class of

methods called as routing measurements based data aggre-

gation approaches. Some existing methods in the literature

[16]-[18] have investigated data aggregation using routing

measurements. However, these methods compromise either

on recovery fidelity (due to low coherence) [17] or energy

efficiency (due to higher number of transmissions) [16] [18].

Designing a low complexity CS based data aggregation

technique that minimizes total energy consumption as well as

guarantees the reconstruction is still a challenging problem.

To address this problem, in this article, we propose a data ag-

gregation method called “Light Weight Compressed Data Ag-

gregation (LWCDA)", which is light-weight (low complexity),

energy efficient and provides good recovery fidelity. In contrast

to some existing approaches [16]-[18], we utilize clustering for

data aggregation which is proven to be promising for energy

efficient routing [14] [19]. In addition, the aggregated data

from cluster heads is collected using a minimum spanning tree
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to minimize energy consumption. In the proposed algorithm,

each node measures a data sample followed by generating

a random value from a Bernoulli distribution for computing

the measurement. The cluster heads receive the measurements

from their descendants, process them to compute the final

measurement before transporting it to the sink. We find that the

measurement matrix constructed from our algorithm is highly

sparse and possesses properties to guarantee the recovery of

data such as high incoherence, good recovery region and

satisfy the Restricted Isometry Property (RIP) when combined

with some popular bases.

The contributions of this article are summarized as follows:

1) Low complexity CS aided data aggregation technique

that constructs a sparse measurement matrix from the

network.

2) Performance evaluation of the measurement matrix with

respect to RIP, coherence and phase transition.

3) Comparative analysis of the algorithm in terms of re-

construction error and transmission cost using real data

sets.

4) A practical implementation using IITH Motes [20]

to demonstrate hardware feasibility of the proposed

LWCDA algorithm.

The paper is organized as follows: Section II explains the

basics of compressed sensing in IoT networks. Section III

describes the proposed LWCDA data aggregation method.

Section IV evaluates the RIP and coherence of the proposed

measurement matrix and presents the phase transition analysis.

Simulation results of LWCDA method are described in Section

V and Section VI describes the hardware implementation

performed. Section VII concludes the paper.

II. COMPRESSED SENSING FOR IOT NETWORKS

A. Compressed Sensing: A review

For a given N dimensional signal (hereafter data and signal

are used interchangeably) that can be sparsely represented

using a basis, CS promises to deliver a full recovery of the

signal with high probability from far fewer samples [21].

Let X = [x1, x2, x3, . . . , xN ]T ∈ R
N be sparsely repre-

sented in a basis (e.g., Discrete Cosine Transform (DCT),

Discrete Fourier Transform (DFT), Discrete Wavelets Trans-

form (DWT), etc.) Ψ = [ψ1, ψ2, . . . , ψN ] ∈ R
N×N with k

large coefficients (k-sparse), where k ≪ N , i.e., X = Ψθ,

θ = [ψT
1 X,ψ

T
2 X, . . . , ψ

T
NX] ∈ R

N and ‖θ‖0 ≤ k. The CS

theory computes the compressed M -dimensional vector,

Y = ΦX, (1)

where Y ∈ R
M is the measurement vector and M is the

number of measurements and M < N which influences re-

construction of the signal. It has been shown that the number of

random measurements required for successful reconstruction

of a k-sparse signal is M = O(k log N) [22]. The matrix

Φ = [ϕT
1 , ϕ

T
2 , . . . , ϕ

T
M ]T ∈ R

M×N is called the measurement

matrix. The problem here is to reconstruct X from Y , which is

under-determined and can have infinitely many solutions. CS

theory shows that the problem of recovering X from its linear

measurements can be posed as a l0-minimization problem as

shown in (2) and it is computationally intractable. A family

of greedy algorithms have been proposed in [23] and [24] to

solve the l0-minimization problem.

min
θ

‖θ‖0 subject to ΦΨθ = Y. (2)

The most prevalent decoding technique to solve the problem

in (2) is l1-minimization, which is a convex optimization

problem [25] and hence, computationally tractable [26],

min
θ

‖θ‖1 subject to ΦΨθ = Y. (3)

From the solution θ obtained using l0 or l1-minimization,

X can be reconstructed as,

X̂ = Ψθ. (4)

The CS matrix A = ΦΨ plays a crucial role in the recovery

of the N dimensional original signal X . In [27], it is shown

that the CS matrix A should satisfy the property known as

RIP for successful recovery of X using l1 minimization. A

matrix A ∈ R
M×N is said to satisfy the RIP of order k with

constant δk ∈ (0, 1) if

(1− δk) ‖u‖
2
2 ≤ ‖Au‖

2
2 ≤ (1 + δk) ‖u‖

2
2 , ∀u ∈ Σk, (5)

where u is a k-sparse vector and Σk is set of all k-sparse

vectors.

On the other hand, if X can be sparsely represented in Ψ
domain, then to achieve successful recovery, the theory of CS

requires low mutual coherence between the columns of the CS

matrix A = ΦΨ. The mutual coherence of the CS matrix can

be defined as

µ(A) = max
1≤p 6=q≤N

|〈ap, aq〉| , (6)

where ap and aq are normalized columns of A.

B. Related Works

In this section we discuss the contributions of the relevant

literature. Most of the CS aided data aggregation techniques

can be classified into three classes, dense random measure-

ments [7]-[10], sparse random measurements [11]-[14] and

routing measurements [16]-[18] based data aggregation meth-

ods.

Dense random measurements based methods [7]-[10]

achieve CS aided data aggregation by considering individual

column generation of the measurement matrix at node level

using pseudo-random sequences. These methods aggregate the

measurements from all the nodes by minimizing routing path

to achieve energy efficiency. The size of the measurement

matrix depends on the number of nodes and sparsity of the

data. IoT nodes are constrained devices possessing minimal

on-board resources (in terms of physical memory, processing

capability, internal memory, energy). Therefore, generating

individual columns of the measurement matrix at a node in

case of a large-scale network application where sensing data

sparsity is low is computationally intensive and poses multiple

constraints in real-time implementation.

Wang et al. [11] showed that sparse random measurements

(projections) reduce communication cost per sensor node for
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data aggregation. In [12]-[14], data aggregation techniques

have been proposed to achieve energy efficiency for IoT

networks by using the sparse random measurements [11].

These algorithms find the optimal route to collect data from

the interested nodes for each measurement, while assuming

that the sparse measurement matrix is stored at each node.

Since the measurement matrix depends on the network size,

storage issues can crop-up for large-scale networks. In other

words, commercially available nodes that have minimal on-

board resources may not be able to support the storage large

measurement matrices.

In contrast to dense and sparse random measurements,

the routing measurements based data aggregation methods

aggregate the measured data from the nodes by computing

measurements on the fly enroute to the sink [16]-[18]. In

[16], the routing paths are iteratively built through a greedy

choice to minimize the coherence of the CS matrix and energy

required for data aggregation. However, building of routing

paths in an iterative manner is computationally intensive and

requires more transmissions rendering the process highly en-

ergy inefficient. In [17], the algorithm picks up a portion of the

nodes randomly from the network to generate measurements

by utilizing shortest path routing. However, such an approach

does not achieve good performance with respect to coherence.

In [18], the authors showed that data aggregation from fixed

length random walks starting at randomly located nodes can

reconstruct the data using CS. However, recovery performance

of the method depends on the length of the random walks. An

increase in the length of the walk increases the number of

transmissions which in turns data aggregation to be energy

inefficient.

C. Problem Statement

As discussed above, CS based data aggregation algorithms

proposed in the literature do not address the aspects of

low complexity and energy efficiency jointly. The approaches

proposed based on dense random measurements [7]-[10] as

well as sparse random measurements [11]-[14] are energy

efficient but not real-time implementable. On the other hand,

the approaches proposed in [16]-[17] are light weight, however

they are either energy inefficient or do not achieve good

performance in terms of coherence and recovery. These lim-

itations provide the motivation for this work. Specifically,

the problem is to design a low complexity (real-time) CS

aided data aggregation method that is energy efficient and can

guarantee a successful recovery of the data for IoT networks.

III. PROPOSED DATA AGGREGATION PROTOCOL

In this section we first present the network model that will

be used in our analysis and next describe the proposed data ag-

gregation protocol which forms the light weight measurement

matrix.

A. Network Model

Consider an IoT network with N nodes deployed in a rect-

angular area (an example network with grid-wise deployment

of N = 100 nodes is shown in Fig. 1). The network can be

represented by a graph G(V,E), where V is the set of vertices

or nodes and E represents the set of edges or links between

the nodes. The sink node S is the node that collects data from

all the other nodes in the network. We assume that all the

nodes are loosely time synchronized and have homogeneous

transmission coverage. Unit disc coverage model is considered

for all the nodes. We consider the communication range of

the nodes to be D =
√

5
N

∗ a [17]. Here, a is the length

of the maximum side of the considered area and N is the

number of nodes. Data aggregation proceeds in cycles (rounds)

and each node generates one sample per cycle. For example,

the ith node acquires data sample xi in each cycle and N
samples X = [x1, x2, x3, . . . , xN ]T ∈ R

N will be acquired

from all the nodes per cycle. We also assume that there is no

packet loss in data aggregation. We consider both grid [29]

[30] and random deployment [31] scenarios for analysis in

further sections as these network deployments have their own

significance in different application scenarios.

B. Proposed Data Aggregation Protocol

As described above, X ∈ R
N is a signal of length N that

contains measurements from N nodes in the network. To ag-

gregate data from all the nodes, M nodes are randomly picked

such that each node is a Cluster Head (CH) with a probability

PCH = M
N

. The remaining (N − M ) leaf nodes connect

to their respective nearest CH through the shortest path.

Accordingly, the whole network gets divided into M non-

overlapping clusters to aggregate sensors data. The M clus-

ters {c1, c2, . . . , cM} can contain distinct {n1, n2, . . . , nM}
number of nodes. Every node in the cluster measures its data

sample xi (e.g., temperature, humidity, light intensity, etc.)

and multiplies it with a random value αi generated from a

Bernoulli distribution with a success probability of 0.5. In

other words, the ith node performs αixi, where αi is randomly

drawn from the set {−1, 1} with a Bernoulli distribution and

i ∈ [1, N ]. Each leaf node sends the measurement αixi to its

CH. The CH adds the received measurements from the leaf

nodes including its own measurement. The final measurement

at jth CH, yj =
∑

i∈cj
αixi is the linear combination of αi

and xi, where the nodes belonging to the cluster take non-

zero values i.e., {αi 6= 0, xi 6= 0} ∈ cj and the nodes that

do not belong to the cluster can be assumed to be zeros i.e.,

{αi = 0, xi = 0} /∈ cj . The CHs deliver the computed mea-

surements to the sink node through the Minimum Spanning

Tree (MST). Dijkstra’s and Kruskal algorithms can be used to

create MST of CHs along with the sink node. The CHs follow

the pack and forward method [8] that provides the feasibility to

encapsulate the current measurement of a CH with the relaying

packet from descendant CHs along the MST towards the sink.

From the CS formalism in Section II, each cluster can be

considered as a row of the measurement matrix Φ and each

node in the network corresponds to a column of Φ. In other

words, M randomly formed clusters and the nodes in each

cluster correspond to rows and respective columns of Φ. The

jth cluster cj forms the jth row of Φ, i.e., ϕj . The support

vector of ϕj is ∆j = {i : i ∈ [1, N ], i ∈ cj}, ϕj∆j
= {αi :
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i ∈ ∆j} and ϕj∆c
j

= 0. In other words, the jth row of Φ at

respective columns of nodes that are connected as a cluster

i ∈ cj will be assigned values from the set {−1,+1} with a

Bernoulli distribution. The remaining entries in the row will

be zeros.

More concretely, Φ ∈ R
M×N , Φ = [ϕT

1 , ϕ
T
2 , . . . , ϕ

T
M ]T

contains elements in each row

ϕji =

{
−1 or + 1 if i ∈ cj

0 otherwise .

Packets received at the sink node from the MST contain

elements of the measurement vector Y = [y1, y2, . . . , yM ]T ∈
R

M which are linear combinations of the measured data and

the random values of nodes, i.e.,

Y =




y1
y2
...

yM


 =




ϕ1

ϕ2

...

ϕM




(
X
)
= ΦX, (7)

where X = [x1, x2, . . . , xN ]T , X ∈ R
N , ϕm ∈ R

N , ym ∈
R where m ∈ [1,M ].

To gain insight into the described LWCDA, we consider a

network of grid-wise deployed 100 nodes with a sink node (S

= 101), which is placed at the center of the network as shown

in Fig. 1. Fig. 1 shows the measurement matrix formation

from the network and the sink node. Consider the example

node of 98 from Fig. 1, which is a CH and has two descendant

nodes 88, 97. The measurement matrix Φ contains a row which

represents the cluster with the nodes 98, 88, 97 and contains

non-zero values from the set {−1,+1} that are drawn from

a Bernoulli distribution with a success probability of 0.5 at

respective columns, as shown in Fig. 1.

To recover the original signal X ∈ R
N from the mea-

surement vector Y ∈ R
M , the sink node needs to have

the knowledge of Φ. The information of Φ can be shared

with the sink by maintaining synchronized seeds and pseudo-

random number generators between the nodes and the sink [7].

Practically, to share pseudo-random number seeds, each node

has to send its seed to the sink [18] and this requires a large

number of transmissions for large-scale networks. Another

approach is to transmit information of Φ to the sink along

with the measured data if the message overhead is negligible

[17]. In our data aggregation algorithm, each node needs to

send or share the information of α = −1 or +1 with the sink,

which can take a maximum of one octet of packet payload.

We consider the case that every jth CH sends individual α
values of the nodes that belong to that cluster cj and their

indices ∆j along with the measurement
∑

i∈cj
αixi to the

sink in the first cycle of data collection. The system of linear

equations in (7) (M < N ) is under-determined and will give

infinitely many solutions while recovering X from Y . The

sink node reconstructs full dimension X̂ ∈ R
N from the

received measurement vector Y ∈ R
M by solving either of

the optimization problems discussed in Section II.

1) Node-level Complexity for Encoding: The node-level

complexity of measuring the data is computed in terms of

generating or storing the number of random values. The

proposed data aggregation algorithm constructs Φ on the fly

while data is being aggregated from the nodes. Note that each

node is required to generate only a random value −1 or +1
from a Bernoulli distribution as discussed above. The node

level complexity of our method in terms of generating or

storing number of random values is Θ(1) which is independent

of sensing data sparsity and network size. The Θ( ) refers

the formal notation for stating the exact bound on growth

of resource needs (computation and storage) of an algorithm.

Baseline data aggregation approaches [7]-[10] which utilize

dense random measurements require the generation of the

respective columns at each node which is the size of Θ(M)
units. In case of sparse random measurements based data

aggregation methods [12]-[14], every node in the network

stores the complete Φ. The size of the required storage is

Θ(MN). Some of the methods which use sparse random

measurements such as [11] generate the respective row of Φ at

every node and the row size is Θ(N) units. The values of M
and N are proportionally related and depend on sensing data

sparsity and the network size. This dependency poses multiple

constraints on the real-time implementation of the large-scale

network applications where the data to be sensed has low

sparsity. The proposed approach is lightweight as it completely

eliminates the burden of generating a specific column or

storing the entire Φ at the node to perform data aggregation

in the network. Consequently, the proposed method can be

implemented in commercially available low end IoT nodes.

The measurement matrix Φ should satisfy certain properties

as discussed in Section II for it to allow data recovery. In

the following section we evaluate the properties of the Φ and

demonstrate how it can guarantee the reconstruction.

IV. MEASUREMENT MATRIX ANALYSIS

To analyze the proposed measurement matrix Φ, we rely

on RIP, coherence and Phase Transition (PT) [28] analyses.

We considered both grid and random deployments scenarios

as both deployments have their own significance for different

application scenario [29]-[31]. We considered DCT, DFT,

DWT, Laplacian and Diffusion Wavelet (DiWT) bases (Ψ) for

the analyses. The DCT, DFT and DWT bases (Ψ) can sparsify

data from regular (grid-wise) IoT deployments [7], [18]. In

case of randomly deployed networks, the Laplacian [18] and

Diffusion wavelet (DiWT) [32] can accommodate irregularity

and provide a sparse representation of the data.

A. Numerical Experiments: RIP Analysis

As discussed in Section II, RIP is a standard tool to

analyze near-orthonormal performance of a CS matrix while

operating with sparse input vectors. This property measures

the performance of a compressed sensing matrix in terms of

the Restricted Isometry Constant (RIC) δk. As a result, δk can

be used to evaluate the ability to recover a sparse signal from

the measurement vector. From the definition of RIP of a matrix
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Fig. 1: The procedure of measurement matrix designing from a network with N = 100 nodes and M = 40. The sink S = 101 is represented by a star,
square boxes represent the CHs and remaining nodes are leaf nodes.

A ∈ R
M×N , for k-sparse vectors with a constant δk, (5) can

be rewritten as,

δk = max
T⊂[N ],|T |≤k

‖A∗
TAT − Id‖2→2 , (8)

where Id ∈ R
|T |×|T | is an identity matrix and T is the support

set of k-sparse vector [21].

For any matrix A that satisfies RIP with a RIC of δk, the

following condition holds:

(1− δk) ≤ λmin(A
∗
TAT ) ≤ λmax(A

∗
TAT ) ≤ (1 + δk), (9)

where λmin and λmax are the minimum and maximum

eigenvalues of the symmetric matrix A∗
TAT respectively.

1) Numerical verification of δk, λmin and λmax: The DFT,

DCT, DWT, Laplacian and DiWT matrices are separately

considered as bases ΨN×N for the empirical evaluation of

δk. To verify with DWT, we evaluated the performance of

the CS matrix A across several popular wavelets such as

Daubechies, Symlets, Coiflets and chose the Daubechies-4

wavelet for all our analysis as it gives a better range for k
compared to other wavelets. The compressed sensing matrix

AM×N = ΦM×NΨN×N with N = 1024, at different com-

pression rates with M = 103, 308, 717, 922 are considered for

evaluation. For a compressed sensing matrix A ∈ R
M×N , the

compression rate Γ% can be written as, Γ% =
(
1−

M

N

)
×100.

The procedure followed for empirical evaluation of δk, λmin

and λmax is described below:

1) Generate the measurement matrix Φ and the basis Ψ for

fixed N = 1024 and for each M .

2) For a combination (N,M), k is varied across [1 :M ].
3) Consider a k-sparse vector u ∈ R

N . The vector u
contains non-zero values at k randomly chosen locations

and the values themselves are chosen from a normal

distribution.

4) Find the support set for u, i.e., T .

5) Repeat steps 2 and 3 for 10000 iterations for each

combination (N,M, k) and calculate δk from (8).

6) Compute λmin(A
∗
TAT ), λmax(A

∗
TAT ), where T is the

support set corresponding to δk from step 5.

TABLE I: Sparsity value k where RIC δk ∈ (0, 1) ∀ u ∈ Σk for different
Γ.

Sparsity value k

Regular deployment Random deployment

Compression rate Γ DFT DCT DWT Laplacian DiWT

90% 7 6 1 2 1

70% 15 14 3 4 3

30% 36 35 9 13 9

10% 67 66 11 19 13

The calculated RIC δk values, λmax, λmin with respect to

sparsity value k at different compression rates Γ, are plotted

in Fig. 2. In Fig. 2, δkf , δkc, δkw, δkl, δkd refer to RICs of

CS matrix A where Ψ is DFT, DCT, DWT, Laplacian and

DiWT respectively. λmin, λmax refer to the minimum and the

maximum eigenvalues of CS matrix A respectively when Ψ
is DFT. Similar behavior of eigenvalues is also observed with

DCT, DWT, Laplacian and DiWT bases.

Sparsity values k obtained while δk ∈ (0, 1) for the

proposed CS matrix A with different bases are tabulated in

Table I (the same can be observed from Fig. 2 as well). The

interesting observation made from Table I is that the CS matrix

A gives better range for k with DFT compared to that of DCT

and DWT bases. In the random deployment case, CS matrix

A gives slightly better range for k with Laplacian then DiWT

basis.

B. Coherence Analysis

As discussed in Section II, if X can be sparsely represented

in an arbitrary basis Ψ, then for successful recovery, CS theory

requires low mutual coherence between columns of the matrix

A = ΦΨ. The mutual coherence µ of the matrix A with

different bases at various compression rates Γ is calculated

using (6), i.e., the CS matrix AM×N = ΦM×NΨN×N where

N = 1000 and M is chosen to vary from 100 to 900 in steps

of 100 (M = 100 : 100 : 900) for calculating µ.

The resultant mutual coherence with different bases are

shown in Fig. 3. The CS matrix A provides better incoherence

for the DCT and DFT bases compared to the DWT basis where

Φ is constructed from grid deployment. In case of random
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Fig. 2: RIC δk and eigenvalue bounds (λmin, λmax) for the proposed CS matrix A = ΦΨ. Here, Φ is the measurement matrix constructed using LWCDA
algorithm and analyzed for different Ψ (DCT, DFT, DWT, Laplacian and DiWT) matrices. (a) - (d) show values of δk , λmax and λmin for matrix A
at different compression rates Γ. CS matrix A gives a better range of k with DFT and DCT compared to DWT basis in grid deployment. In the random
deployment case, CS matrix A gives slightly better range of k with Laplacian compared DiWT.
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Fig. 3: Comparison of mutual coherence µ of the CS matrix A = ΦΨ with
different bases where matrix Φ is constructed from LWCDA. Columns of the
matrix A are highly incoherent with DFT basis among all.

deployment, the coherence of the matrix A with Laplacian is

fairly better compared to DiWT basis across all compression

rates. It is observed from Fig. 3 that among all the bases, DFT

provides high incoherence for all compression rates.

C. Phase Transition Analysis

For a given CS matrix, the phase diagram can be generated

as a numerical representation of successful recovery probabil-

ity Ps over the space (k/M, 1 − (M/N)) ∈ [0, 1]2, as in

[28]. This space is discretized and we performed multiple

compression and decompression experiments at each grid

point. The phase diagram is finally approximated by using

successful recovery probability Ps = Pr{e ≤ eTH}, where

the reconstruction error e =
∥∥∥X − X̂

∥∥∥
2
/ ‖X‖2, with an

appropriately selected threshold eTH . We considered error

threshold eTH = 10−8 in our analysis. For PT analysis,

AM×N = ΦM×NΨN×N is considered with N = 1000 and

evaluated for different compression rates (Γ) with M = 100 :
100 : 900. Fig. 4 shows the phase diagram of CS matrix

A = ΦΨ, where Φ is the measurement matrix and Ψ is the

basis. Fig. 4 also illustrates that the proposed measurement ma-

trix Φ with DCT and DFT bases provides promising recovery

region compared to DWT where Φ is constructed from grid

deployment. In case of random deployment, Laplacian basis

provides slightly better recovery region compared to DiWT

basis.

This evaluation has shown that the proposed measurement
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Fig. 4: Phase transition analysis of CS matrix A = ΦΨ for different bases, where Φ is the proposed measurement matrix and Ψ is the basis matrix. The
color bar indicates successful recovery probability Ps. CS matrix A with DCT and DFT basis yields promising recovery region.

matrix Φ gives better performance with DCT and DFT bases

compared to the DWT basis in terms of RIC, coherence and

PT analysis where Φ is designed from grid-wise deployed

network. Further, in random deployment scenario, Laplacian

and DiWT bases give comparable performance. The proposed

matrix Φ with DCT and DFT bases (Ψ) has the ability to

recover the signals successfully even though they have fairly

low sparsity. Whereas in case of DWT, Laplacian and DiWT,

the matrix Φ can recover the signals on the condition that they

are highly sparse.

To extend the proposed LWCDA method to fairly low

sparse data cases especially in random deployment scenario,

we propose a technique called spatial logical node mapping,

which is described in the following subsection.

D. Spatial Logical Node Mapping

Before invoking the LWCDA algorithm, we first model the

network as a logical chain based on the Euclidean distance

between the nodes. The algorithm starts from any random node

and gives sequential node IDs along the chain. The method

used to form the logical chain is similar to that in [33]. We

consider that in the initial phase, each node sends the distance

information of the nodes that are in its coverage area to the

sink. The sink maps the new node IDs from old node IDs and

sends it back to the nodes to change. Fig. 5 provides more

insight into the Spatial Logical Node Mapping (SLNM) with

an example network of N = 30 nodes. This preprocessing will

introduce spatial correlation in the data since adjacent nodes

in the chain tend to be the nodes which are geographically

close to each other [33] [34]. The spatial correlation among the

samples generated from the nodes which are geographically

close to each other can make the signal sparse in the regular

DFT and DCT bases. SLNM adds the advantage to LWCDA to

guarantee the recovery of the measured data from the random

deployment as it introduces sparsity for the data in DFT and

DCT bases.

In the following section, we evaluate the performance of the

proposed data aggregation method in an application scenario.

V. RESULTS AND EVALUATION

In this section, the performance of the proposed data aggre-

gation method is analyzed using the following metrics:

1. Reconstruction error.

2. Transmission cost.
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Fig. 5: Logical node mapping.
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Fig. 7: Measured data from random (top) and grid-wise (bottom) deployed
1024-node network.

A. Reconstruction Error Analysis

We extend the application of the proposed algorithm for

compressible signals by using a real data set for evaluation.

Real temperature data which is obtained by capturing ther-

mal images from the top view of an area 100m × 100m
is considered for analysis. Fig. 6 visualizes the considered

temperature data for recovery performance of the proposed
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method. Fig. 7 shows the measured data from random and

grid-wise deployed 1024 sensor nodes on the field. We used

MATLAB R2015b software for performing all our simulations.

Ideally the sparsity value k of X in a basis Ψ is measured

using the l0 norm, k = ‖θ‖0, where θ = ΨX . For real-time

data which is approximately sparse, only few large coefficients

contribute a large proportion of the total energy. We use

numerical sparsity [32] as the measure of sparsity which

represents the number of effective large coefficients. If a vector

X can be represented using a sparsifying basis Ψ as X = Ψθ,

then the numerical sparsity of X can be calculated as

s =
‖θ‖1

2

‖θ‖2
2 . (10)

Numerical sparsity of the considered temperature data with

different bases (Ψ) (DFT, DCT, DiWT and Laplacian) are

tabulated in Table II.
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Fig. 8: Average reconstruction error against different compression rates.
Here, 1024 temperature data points are considered. Figures (a) and (b)
depicts recovery of grid-wise and Randomly deployed nodes measured data
respectively. DFT basis provides low recovery error compared to all bases in
both grid and random deployment scenario.

Table II shows considered data is more sparse in DCT

and DFT bases compared to the others in both grid-wise and

random deployment scenarios. To evaluate recovery perfor-

mance of the measured data from grid-wise deployed nodes

the basic LWCDA is used to construct the measurement

matrix Φ. In case of random deployment, Φ is constructed

from LWCDA and SLNM. The OMP algorithm [24] is used

for the recovery of the compressed data. We evaluated the

performance of the proposed data aggregation method in

terms of the reconstruction error e against the compression

rate Γ. Fig. 8 compares average reconstruction error of our

method with different bases. In our analysis, e is averaged over

100 iterations for each Γ. From Fig. 8a, it can be observed

that DFT and DCT can recover the data which is measured

from grid-wise deployed nodes with a low error compared to

DWT for all compression rates. Fig. 8b illustrates the data

recovery performance of the proposed method where the data

is measured from randomly deployed sensor nodes. From

Fig. 8b, it can be observed that DCT and DFT can recover the

data with a low error across all compression rates compared

to other bases. However, DiWT and Laplacian result in high

recovery error as they require the signal to be highly sparse.

This evaluation has shown that the proposed LWCDA method

provides high recovery fidelity using the DFT basis for the

TABLE II: Sparsity measure of the temperature data

Numerical sparsity value s

Regular deployment Random deployment

SLNM

DFT DCT DWT Laplacian DiWT DFT DCT

2.2205 2.5251 7.6707 15.925 53.0402 2.6219 2.7569
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Fig. 9: Comparison of the transmission cost required for data aggregation
from 625 nodes deployed in an area 256m × 256m using the proposed
LWCDA and SPRM, Hybrid CS, CWCDA and Non-CS methods against the
compression rate Γ. Transmission cost of the LWCDA is significantly low
compared to all methods almost for all compression rates (Γ ≤ 80%).

data measured from both the random and grid-wise deployed

nodes.

In the following section, we perform a comparative analysis

of the transmission cost of our algorithm with traditional CS

based data gathering methods. To demonstrate the efficiency

of our algorithm, we compare with SPRM for the grid-

wise deployment scenario, CWCDA, Hybrid CS and Non-CS

methods for the random deployment scenario.

B. Transmission Cost Analysis

Transmission cost of the network G(V,E) is defined as [7],

Tcst =
∑

(i,j)∈E

tijcij , (11)

where tij represents the traffic on the link (i, j) ∈ E and cij is

the cost of the link. We considered one packet as one unit of

traffic on the link and cost of the link cij is considered as the

Euclidean distance between the nodes i and j. ZigBee protocol

is considered for simulations as the ZigBee stack is one of the

most commonly used protocols among commercially available

off-the-shelf IoT solutions. The size of PHY layer data field

of the packet of ZigBee is 128 bytes, of which 87 bytes can

be used for application payload as the remaining octets are

reserved for packet header information of higher layers. The

number of bits required to represent the data sample and the

address field (short address mode) is considered to be 2 octets.

For transmission cost comparison, a network deployment of

625 nodes in an area of 256m×256m is considered. The com-

parison of the transmission cost for data aggregation using the

proposed method (LWCDA), SPRM, Hybrid CS, CWCDA and

a Non-CS method with respect to the change in compression
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Fig. 10: Comparison of the percentage of disbursed transmission cost of the
proposed LWCDA with respect to SPRM, Hybrid CS, CWCDA and Non-CS
methods against the compression rate Γ. Here, data aggregation is considered
from 625 nodes deployed in an area 256m×256m. Percentage of disbursed
transmission cost of the LWCDA with respect to SPRM, Hybrid CS, CWCDA
and Non-CS methods is low for almost all compression rates (Γ ≤ 80%).

rate (Γ) is shown in Fig. 9. In particular, we considered the

conventional shortest path algorithm [35] for data gathering as

the Non-CS approach, where each node in the network sends

its data to the sink through the shortest path. From Fig. 9,

it can be observed that our LWCDA (labeled as LWCDA-

Random for random deployment) method requires very low

transmission cost for data aggregation compared to Non-CS,

Hybrid CS and CWCDA for all compression rates where nodes

are randomly deployed. In case of grid deployment, compared

to SPRM the proposed LWCDA (labeled as LWCDA-Grid for

grid deployment) method outperforms until Γ = 80% for data

aggregation. In the proposed LWCDA method, an increase

in compression rate Γ decreases the number of required

clusters for data aggregation. A decrease in number of clusters

increases the required transmission cost for data aggregation

as the leaf nodes need to send their measurements to CHs

from farther distance. Further, as Γ increases, the required

transmission cost to collect measurements from CHs (using

MST) also decreases. This results in an increase of total

transmission cost Tcst at higher compression rates (Γ > 80%)

as shown in Fig. 9. Fig. 10 illustrates the percentage of

disbursed transmission cost DTcst
of the proposed LWCDA

with respect to that of Hybrid CS, LWCDA, SPRM and Non-

CS methods. Percentage of disbursed transmission cost DTcst

of a given method P with respect to the method Q is defined

as,

DTcst
% =

Tcst of method P

Tcst of method Q
× 100. (12)

The SPRM method at high compression rates (Γ > 80%)

results in lesser transmission cost as compared to that of the

proposed LWCDA method. This in turn results in the per-

centage of disbursed transmission cost of LWCDA (LWCDA-

Grid) to go beyond 100% as shown in Fig. 10 for higher

compression rates. This is because, in the SPRM method,

very few randomly selected nodes are required to send data

through the shortest path to the sink at high compression rates.

Although, SPRM offers higher compression rates with lower

transmission costs, it does not achieve good performance with
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Fig. 11: Transmission cost comparison of the proposed LWCDA method
against node density with SPRM, Hybrid CS, CWCDA and Non-CS methods
at Γ = 50%. Here, an area of 256m× 256m is considered for the network
deployment and number of nodes deployed (N ) are varied. Transmission cost
of the LWCDA is significantly low compared to SPRM, Hybrid CS, CWCDA
and Non-CS methods for all considered node densities.
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Fig. 12: Comparison of the percentage of saved transmission cost of the
proposed LWCDA with respect to SPRM, Hybrid CS, CWCDA and Non-CS
methods against node density at Γ = 50%. Here, an area of 256m× 256m
is considered for the network deployment and number of nodes (N ) deployed
are varied. The proposed LWCDA method offers savings in the transmission
cost consistently with respect to the baseline approaches for all the considered
node densities.

respect to coherence leading to higher reconstruction errors at

higher compression rates, thereby not guaranteeing a success-

ful reconstruction (as discussed in [17]). For all compression

rates in both grid-wise (Γ ≤ 80%) and random deployment

scenario, the proposed LWCDA method can deliver the data to

the sink with a lower transmission cost as illustrated in Fig. 9

and with a lower percentage of disbursed transmission cost as

shown in Fig. 10, thereby enhancing the network lifetime as

compared to the considered baseline approaches.

To evaluate the effect of changing the node density on

the required transmission cost for data aggregation of the

proposed LWCDA, we performed an experiment where the

number of nodes deployed is varied in the considered area

of 256m × 256m. The transmission cost of data aggregation

with respect to the changing in node density with Γ = 50%
compression rate is shown in Fig. 11. From Fig. 11, it is

observed that the transmission cost increases with an increase

in the node density. The interesting observation made from

Fig. 11 is that the transmission cost for LWCDA is signifi-
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Fig. 13: Comparison of the transmission cost required for data aggregation
from 625 nodes deployed in an area of 256m × 256m using the proposed
LWCDA and SPRM, Hybrid CS, CWCDA and Non-CS methods against
the sink location. The sink node location (X , Y ) varies according to the
line X = Y where X , Y ∈ [0, 256]. Transmission cost of the proposed
LWCDA method is robust and lower compared to all baseline approaches for
all considered sink locations.

cantly low as compared to that of the traditional methods for

all considered density levels in both deployment scenarios.

Fig. 12 shows the percentage of savings in the transmission

cost with respect to Non-CS, Hybrid CS, CWCDA and SPRM

methods. Percentage of saved transmission cost STcst
of a

given method P with respect to the method Q is defined as,

STcst
% =

(
1−

Tcst of method P

Tcst of method Q

)
× 100. (13)

From Fig. 12, one can observe that the proposed method

consistently offers savings in transmission cost under the

considered varying node densities. We can infer that for

large-scale dense networks, LWCDA algorithm can achieve

significant improvements in the network lifetime compared to

traditional approaches.

The location of the sink node affects the required transmis-

sion cost for data aggregation [36]. To analyze the dependence

of the transmission cost on the sink location for data aggre-

gation, we considered a 625-node network deployed (grid and

random deployment) in an area of 256m×256m with varying

sink locations. Fig. 13 compares the transmission cost of the

proposed LWCDA algorithm with that of SPRM (for grid-wise

deployment) and Non-CS, Hybrid CS and CWCDA (for ran-

dom deployment) with respect to various sink locations. Note

that the variables X , Y ∈ [0, 256] represent the geographic

coordinates of the sink node on the considered area. The sink

location (X , Y ) varies on the line X = Y . The observation

that can be made from Fig. 13 is that the transmission cost of

baseline approaches except CWCDA strongly depends on the

sink location. Transmission cost required for data aggregation

with CWCDA is robust to sink location, but it requires more

transmission cost compared to the proposed method across all

sink locations. The considered traditional approaches (SPRM,

Hybrid CS and NoN-CS) yield lower transmission cost when

the sink is at the center of the considered area. In fact,

if the sink is at the center of the considered area, every

node can connect to the sink with the shortest distance. An

interesting inference that can be made from Fig. 13 is that the

transmission cost of the proposed LWCDA algorithm for data

aggregation in both grid-wise and random deployment scenario

is robust to the sink location and is much lower compared

to that of the traditional methods for all the considered sink

locations. This can be justified by noting that the proposed

LWCDA algorithm aggregates data through clustering where

required transmission cost is independent of the sink location.

In addition, to aggregate measurements from randomly dis-

tributed CHs, which are connected through MST along with

the sink node, incur almost same transmission cost irrespective

of the sink location.

The data aggregation algorithms proposed in the literature

such as [7]-[18] do not discuss hardware implementation

details. The implementation procedure and assumptions con-

sidered for software simulations differ when it comes to real-

time hardware implementation. For the completeness of the

proposed algorithm and analysis, we describe an optimal way

of implementation which shows the efficacy of the proposed

method in a real-time scenario.

VI. REAL-TIME IMPLEMENTATION

The in-house IITH Motes [20] are used for implementing

the proposed data aggregation algorithm (LWCDA). The IITH

Mote is a ZigBee system-on-chip combining a 2.4 GHz IEEE

802.15.4 radio transceiver with a 8 MHz, 8-bit processor

having 128 kB of flash memory and 8 kB of RAM. TinyOS

[37] is used to program the proposed LWCDA algorithm on the

nodes. Based on the required compression rate Γ, the threshold

value Thr will be decided. From the selected M CHs, the

probability of the ith node becoming a CH is PCH = M
N

as

discussed in Section III. Let Tui
denote the generated uniform

random value at the ith node, i.e., Tui
∈ U ∼ [0, 1]. If

Tui
≤ Thr then the ith node becomes a CH. CH probability

can be rewritten as PCH = Pr{Tui
≤ Thr} = Thr where

i ∈ [1, N ]. For example, if the threshold is considered to be

Thr = 0.3 then on an average 30% of the nodes become CHs

(PCH = 0.3) and Γ = 70% compression can be achieved.

The sink node broadcasts a starting packet with the specified

threshold Thr value. Each node in the network broadcasts this

packet once so that the threshold value reaches every other

node in the network. The nodes calculate Received Signal

Strength Indication (RSSI) values from the received packets

and stores them in a table. It is important to note that each

node will have RSSI values of all the other nodes that are in its

radio range (communication range). Using the created RSSI

table, the nodes, which are selected as leaf nodes, connect to

nearer CHs and CHs form MST.

As the sink node requires the knowledge of Φ, i.e., {αi}
values and respective indices ∆j , where i ∈ cj and j ∈ [1,M ],
in the initial phase (i.e., first cycle of data aggregation), CH

sends {αi}, ∆j to the sink along with the final measurement∑
i∈cj

αixi. This is a small overhead as α and the respective

node index (node address) together can take a maximum of

three octets when short address mode is considered. By the

end of the initial phase, all the nodes register their respective

destination node addresses. In data sensing phase (i.e., from

second data aggregation cycle on-wards), in each cycle, all the
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Algorithm 1 Pseudo code for the data aggregation algorithm

at node level

Require: Thr

1: Data collection round r = 0
2: Generate uniform random value Tui

∈ U ∼ [0, 1] (i refers node number)
3: if Tui

≤ Thr then

4: Type = CH
5: else

6: Type = Leafnode
7: end if

8: while r ≥ 0 do

9: if Type == CH then

10: r = r + 1
11: if r == 1 then

12: Broadcast CH packet
13: Generate uniform random value Ri ∈ U ∼ [0, 1]
14: if Ri ≤ 0.5 then

15: αi = −1
16: else

17: αi = 1
18: end if

19: Discover the next hop destination node CHdest: CH node or the
leaf node in MST towards the sink

20: end if

21: Measure data sample xi

22: Compute: αixi

23: Receive data packets from all the leaf nodes and descendant CHs
24: Compute:

∑
i∈cj

αixi

25: Send CH data packet to CHdest using pack and forward method
26: else

27: r = r + 1
28: if r == 1 then

29: Find RSSIh =max
h

{RSSIof CHs which are in the radio range}

30: Leafdest = CHh

31: if Leafdest == NULL then

32: Discover the next hop destination node Leafdest = neighboring
leaf node in the shortest path towards nearer CH

33: end if

34: Generate uniform random value Ri ∈ U ∼ [0, 1]
35: if Ri ≤ 0.5 then

36: αi = −1
37: else

38: αi = 1
39: end if

40: end if

41: Measure data sample xi

42: Compute: αixi

43: Send the data packet to Leafdest
44: end if

45: end while

leaf nodes compute their measurements and send them to their

respective destined CHs. Further, each CH computes the final

measurement and forwards it to the sink. Pseudo code of the

node level implemented algorithm is described in Algorithm

1.

The proposed LWCDA algorithm is independent of the

deployment scenario. As an example to verify the implemen-

tation efficacy of the LWCDA, we deployed 50 nodes grid-

wise in an area of 321.44 ft2 as shown in Fig. 14. The sink

node is connected to a PC that collects measured data from

all the nodes in the network. For illustration, we considered a

threshold Thr = PCH = 0.3 and obtained 14 CHs among the

deployed 50 nodes in a particular realization of the experiment,

while the remaining nodes are connected to their respective

CHs. Accordingly, 14 clusters were formed, and thus the

rows of the measurement matrix Φ14×50 were generated. The

resultant measurement matrix Φ14×50 is shown in Fig. 15. To

Fig. 14: Experimental setup with N = 50 nodes deployed in an area of
321.44 ft2.
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Fig. 15: Measurement matrix Φ14×50 constructed from the real field deploy-
ment with N = 50 nodes and Γ = 70%.

evaluate the efficacy of the proposed method, we considered

coherence as the metric. We repeated the above experiment

for a range of threshold values Thr = 0.1 : 0.1 : 0.9, and in

each case of Thr, the measurement matrix Φ was constructed.

To compute the coherence of Φ against all the compression

rates, we obtained Φ for 10 realizations and for each Thr.

Each realization gives one mutual coherence value µ for a

pair of Φ and Ψ. We then averaged µ over 10 realizations for

each Thr. To compare with the real deployment, we simulate

a similar scenario in software. Average coherence values of

the matrix A designed from both the experiment (exp.) as

well as the simulation (sim.) are plotted in Fig. 16. Fig. 16

illustrates that the coherence values of the matrix A where

the proposed measurement matrix is constructed from the

experiment as well as the simulation with DFT, DCT and

DWT bases are in excellent agreement. These results show

efficacy of the proposed method in a real-time implementation.

It justifies our claim that the proposed method does not require

any extra computational overhead (such as the generation of

the individual columns of the matrix Φ, storage of Φ etc.).

Hence, the proposed method can be implemented on low end

commercial off-the-shelf IoT nodes.
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Fig. 16: Comparison of the mutual coherence µ for the CS matrix A = ΦΨ
where Φ is constructed from the real-time deployment and simulations against
different compression rates Γ, with N = 50 nodes and for different bases
DFT, DCT and DWT. Mutual coherence curves from simulation and real-
time deployment are very close and demonstrate the efficacy of the proposed
method.

VII. CONCLUSION

In this paper, we proposed a CS based data aggregation

method for IoT networks which is both light weight (possess-

ing low complexity) and energy efficient. In the proposed data

aggregation algorithm, to minimize the transmission cost, data

is aggregated from non-overlapping clusters where each node

can contribute to one measurement. Hence, the columns of the

measurement matrix constructed from the proposed algorithm

are coherent and recovery is not possible for the data which is

sparse in the canonical basis (Identity matrix). However, we

showed that the measurement matrix when combined with the

popular bases (DFT, DCT, DWT, Laplacian and DiWT) can

guarantee the recovery of data with high fidelity.

Unlike conventional methods, in the proposed data ag-

gregation method the node-level complexity is independent

of the network size and data sparsity. The comparison of

the transmission cost concludes that the proposed method

is energy efficient and can aid in extending the network

lifetime by achieving minimal transmission cost. Hardware

implementation demonstrated the efficacy of the proposed

algorithm in a real-time implementation. Further, through the

analysis of the measurement matrix combined with the popular

bases, we found that our data aggregation method using the

DFT basis yields a better reconstruction quality than other

bases. However, it is still unknown whether there exists a

relation between the measurement matrix and the DFT basis.

We hope to provide a deeper insight in our future investigations

and present theoretical guarantees. We observed that there is

a slight variation in the performance obtained through DFT

and DCT bases. In future, we will pursue a thorough analysis

of this discrepancy in the performance variation and study the

behavior of energy consumption of the proposed method in

the presence of interference.
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