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NOTES ON ATKIN-LEHNER THEORY FOR DRINFELD MODULAR FORMS

TARUN DALAL AND NARASIMHA KUMAR

Abstract. In this article, we settle a part of the Conjecture by Bandini and Valentino ([BV19a])
for Sk,l(Γ0(T )) when dim Sk,l(GL2(A)) ≤ 2. Then, we frame this conjecture for prime, higher
levels, and provide some evidence in favor of it. For any square-free level n, we define oldforms
Sold
k,l

(Γ0(n)), newforms Snew
k,l

(Γ0(n)), and investigate their properties. These properties depend

on the commutativity of the (partial) Atkin-Lehner operators with the Up-operators. Finally,
we show that the set of all Up-operators are simultaneously diagonalizable on Snew

k,l
(Γ0(n)).

1. Introduction

The theory of oldforms and newforms is a well-understood area in the theory of classical modular
forms. Certain properties of modular forms heavily depend on whether they belong to oldforms or
newforms. For example, the space of newforms has a basis consisting of normalized eigenforms for
all the Hecke operators. In fact, the Fourier coefficients of these normalized eigenforms generate a
number field. To the best of author’s knowledge, the analogues theory of oldforms and newforms
is not much known for Drinfeld modular forms.

In this article, we propose a definition of oldforms, newforms for Drinfeld modular forms of
square-free level. We justify these definitions by showing that these spaces are invariant under the
action of the Hecke operators. The proof requires the commutativity of the (partial) Atkin-Lehner
operators with the Up-operators and certain properties of the space of p-oldforms and p-newforms.

In a series of papers (cf. [BV19], [BV19a], [BV20], [Val22]), Bandini and Valentino have defined
p-oldforms, p-newforms and studied some of their properties. In [BV19], the authors defined T -

oldforms ST−old
k,l (Γ0(T )), T -newforms ST−new

k,l (Γ0(T )) for p = (T ). In [BV19a], a sequel to [BV19],
they have made the following conjecture:

Conjecture 1.1. ([BV19a, Conjecture 1.1] for Γ0(T ))

(i) ker(TT ) = 0 where TT is acting on Sk,l(GL2(A)),

(ii) Sk,l(Γ0(T )) = ST−old
k,l (Γ0(T ))⊕ ST−new

k,l (Γ0(T )),

(iii) UT is diagonalizable on Sk,l(Γ0(T )).

In [BV19a], [BV22], the authors proved Conjecture 1.1 in some special cases, using harmonic
cocycles, the trace maps Tr and Tr′, and the linear algebra interpretation of the Hecke operators
Tp and Up-operators. In this article, by studying the action of the TT -operators on the Fourier
coefficients of Drinfeld modular forms, we prove:

Theorem 1.2 (Theorem 4.6, Theorem 4.7). If dimSk,l(GL2(A)) ≤ 1, then Conjecture 1.1 is

true for Sk,l(Γ0(T )). Furthermore, if dimSk,l(GL2(A)) = 2, then Sk,l(Γ0(T )) = ST−old
k,l (Γ0(T ))⊕

ST−new
k,l (Γ0(T )) holds.

Our methods in the proof of Theorem 4.6 and Theorem 4.7 are completely different from that
of [BV19a], [BV22]. Our methods are based on the analysis of the Fourier coefficients of the image
of an element via the Hecke operator TT . We are very optimistic that our methods are suitable
for generalizations, i.e., when dimSk,l(GL2(A)) ≥ 3.

In a continuation work ([BV20]), for any prime ideal p, the authors extended the definition of
p-oldforms, p-newforms to level p, level pm with p ∤ m. So, it is quite natural to understand Conjec-
ture 1.1 for level p, level pm with p ∤ m. In this article, we frame it as a question (cf. Question 4.3)
and provide some evidences in favor of it.
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First, we generalize the results of [BV19a] for p = (T ) to any arbitrary prime ideal p (cf.
Proposition 4.10). This implies that Question 4.3 has an affirmative answer in these cases. Then,
we exhibit some cases where Question 4.3 for the level pm is true (cf. Proposition 4.11). Here, we
bring a word of caution. If m 6= A, we show that the direct sum decomposition in Question 4.3(2)
may fail when l = 1 (cf. Proposition 4.13, Remark 4.14). More precisely, we exhibit non-zero
Drinfeld cusp forms which are both p-oldforms and p-newforms. We believe that this is the only
case where it may fail, and in fact, it may serve as a guiding example in future works.

In the final section, we propose a definition of oldforms Sold
k,l (Γ0(n)) and newforms Snew

k,l (Γ0(n))
for Drinfeld modular forms of square-free level n. In fact, we justify our definition by showing
that these spaces are invariant under the action of the Hecke operators (cf. Theorem 5.5). This
requires the commutativity of the (partial) Atkin-Lehner operators with the Tp and Up-operators.
For the Tp-operators, this is exactly Theorem 1.1 of [Val22]. Then, we prove an analogous result
for the Up-operators (cf. Theorem 5.4). Finally, we prove that the Up-operators are simultaneously
diagonalizable on Snew

k,l (Γ0(n)) (cf. Corollary 5.6).

Notations: Throughout the article, we use the following notations:

• Let p be an odd prime number and q = pr for some r ∈ N.
• Let k ∈ N and l ∈ Z/(q − 1)Z such that k ≡ 2l (mod q − 1). Let 0 ≤ l ≤ q− 2 be a lift of
l ∈ Z/(q − 1)Z. By abuse of notation, we write l for the integer as well as its class.

Let Fq denote the finite field of order q. Set A := Fq[T ], K := Fq(T ). Let K∞ = Fq((
1
T )) be the

completion of K with respect to the infinite place ∞ (corresponding to 1
T -adic valuation), and

denote by C := K̂∞, the completion of K∞. Let p = (P ) denote a prime ideal of A with a monic
irreducible polynomial P .

An overview of the article. The article is organized as follows. In §2, we recall some basic
theory of Drinfeld modular forms. In §3, we introduce certain important operators and study the
inter-relations between them. In §4 we prove Theorem 1.2 and study the validity of Question 4.3
for prime, higher levels. In §5, we define oldforms, newforms and show that they are invariant
under the action of the Hecke operators.
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2. Basic theory of Drinfeld modular forms

In this section, we recall some basic theory of Drinfeld modular forms (cf. [Gos80], [Gos80a],
[Gek88], [GR96] for more details).

Let L = π̃A ⊆ C be the A-lattice of rank 1 corresponding to the rank 1 Drinfeld module (which
is also called Carlitz module) ρT = TX+Xq, where π̃ ∈ K∞( q−1

√
−T ) is defined up to a (q−1)-th

root of unity. The Drinfeld upper half-plane Ω = C − K∞, which is analogue to the complex
upper half-plane, has a rigid analytic structure. The group GL2(K∞) acts on Ω via fractional
linear transformations.

Definition 2.1. Let k ∈ N, l ∈ Z/(q − 1)Z and f : Ω → C be a rigid holomorphic function on Ω.
For any γ =

(
a b
c d

)
∈ GL2(K∞), we define the slash operator |k,lγ on f by

f |k,lγ := (det γ)l(cz + d)−kf(γz). (2.1)

For an ideal n ⊆ A, let Γ0(n) denote the congruence subgroup {
(
a b
c d

)
∈ GL2(A) : c ∈ n}. Now,

we define a Drinfeld modular form of weight k, type l for Γ0(n):

Definition 2.2. A rigid holomorphic function f : Ω → C is said to be a Drinfeld modular form
of weight k, type l for Γ0(n) if

(1) f |k,lγ = f , ∀γ ∈ Γ0(n),
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(2) f is holomorphic at the cusps of Γ0(n).

The space of Drinfeld modular forms of weight k, type l for Γ0(n) is denoted by Mk,l(Γ0(n)).
Furthermore, if f vanishes at the cusps of Γ0(n), then we say f is a Drinfeld cusp form of weight
k, type l for Γ0(n) and the space of such forms is denoted by Sk,l(Γ0(n)).

If k 6≡ 2l (mod q − 1), then Mk,l(Γ0(n)) = {0}. So, without loss of generality, we can assume
that k ≡ 2l (mod q − 1). Let u(z) := 1

eL(π̃z) , where eL(z) := z
∏

06=λ∈L(1− z
λ) be the exponential

function attached to the lattice L. Then, each Drinfeld modular form f ∈Mk,l(Γ0(n)) has a unique

u-series expansion at ∞ given by f =
∑∞

i=0 af (i)u
i. Since

(
ζ 0
0 1

)
∈ Γ0(n) for ζ ∈ F×

q , condition (1)
of Definition 2.2 implies af (i) = 0 if i 6≡ l (mod q − 1). Hence, the u-series expansion of f at ∞
can be written as

∑
0≤ i≡l mod (q−1) af (i)u

i. Any Drinfeld modular form of type l 6= 0 is a cusp

form, i. e., Mk,l(Γ0(n)) = Sk,l(Γ0(n)).

2.1. Examples. We now give some examples of Drinfeld modular forms.

Example 2.3 ([Gos80], [Gek88]). Let d ∈ N. For z ∈ Ω, the function

gd(z) := (−1)d+1π̃1−qdLd

∑

a,b∈Fq [T ]
(a,b) 6=(0,0)

1

(az + b)qd−1

is a Drinfeld modular form of weight qd − 1, type 0 for GL2(A), where π̃ is the Carlitz period and

Ld := (T q − T ) . . . (T qd − T ) is the least common multiple of all monics of degree d. We refer gd
as an Eisenstein series and it does not vanish at ∞.

Example 2.4 ([Gos80a], [Gek88]). For z ∈ Ω, the function

∆(z) := (T − T q2)π̃1−q2Eq2−1 + (T q − T )qπ̃1−q2 (Eq−1)
q+1,

is a Drinfeld cusp form of weight q2−1, type 0 for GL2(A), where Ek(z) =
∑

(0,0) 6=(a,b)∈A2
1

(az+b)k
.

Example 2.5 ([Gek88]). For z ∈ Ω, the function

h(z) :=
∑

γ=
(
a b
c d

)
∈H\GL2(A)

det γ

(cz + d)q+1
u(γz),

where H =
{(

∗ ∗
0 1

)
∈ GL2(A)

}
, is a Drinfeld cusp form of weight q + 1, type 1 for GL2(A).

We end this section by introducing an important function E, which is not modular. In [Gek88],
Gekeler defined the function E(z) := 1

π̃

∑
a∈Fq[T ]
a monic

(
∑

b∈Fq [T ]
a

az+b ), which is analogous to the Eisen-

stein series of weight 2 over Q. For any prime ideal p = (P ), using E, we can construct the
following Drinfeld modular form

EP (z) := E(z)− PE(Pz) ∈ S2,1(Γ0(p)). (2.2)

(cf. [DK21, Proposition 3.3] for a detailed discussion about EP ).

3. Certain important operators

In this section, we recall certain important operators and study their properties.

3.1. Atkin-Lehner operators: Let r, n be two ideals of A generated by monic polynomials r,
n, respectively, with r | n. The following definition can be found in [Sch96, Page 331].

Definition 3.1. For r||n (i.e., r|n with (r, n
r
) = 1), the (partial) Atkin-Lehner operator W

(n)
r

is defined by the action of the matrix
(
ar b
cn dr

)
on Mk,l(Γ0(n)), where a, b, c, d ∈ A such that

adr2 − bcn = ζ · r for some ζ ∈ F×
q .

By [DK21, Proposition 3.2], the action of W
(n)
r on Mk,l(Γ0(n)) is well-defined (here the action

of the slash operator is different from the one in [DK21]). Assume that pα||n with α ∈ N. We now

fix some representatives for the (partial) Atkin-Lehner operators W
(n)
pα and W

(m)
pα−1 .
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Definition 3.2. For f ∈ Sk,l(Γ0(n)), we write f |k,lW (n)
pα := f |k,l

(
Pα b
n Pαd

)
, where b, d ∈ A such

that P 2αd− nb = Pα. Since (Pα, n
Pα ) = 1, such b, d ∈ A exist.

Write n = Pm and m = (m). When α ≥ 2, we can take
(
Pα−1 b
m Pαd

)
as a representative for the

(partial) Atkin-Lehner operator W
(m)

pα−1 .

Lemma 3.3. The operator |k,lW (n)
pα on Sk,l(Γ0(n)) defines an endomorphism and for all f ∈

Sk,l(Γ0(n)), we have (f |k,lW (n)
pα )|k,lW (n)

pα = Pα(2l−k)f

Proof. Since W
(n)
pα ·W (n)

pα =
(
Pα 0
0 Pα

)
γ for some γ ∈ Γ0(n), the lemma follows. �

Lemma 3.4. For i = 1, 2, let pi be two distinct prime ideals of A such that pαi

i ||n for some αi ∈ N.

Then W
(n)

p
α1
1

W
(n)

p
α2
2

=W
(n)

p
α2
2

W
(n)

p
α1
1

.

Proof. The proof of the lemma follows from W
(n)

p
α1
1

W
(n)

p
α2
2

=W
(n)

p
α1
1 p

α2
2

=W
(n)

p
α2
2

W
(n)

p
α1
1

. �

3.2. Hecke operators: We now recall the definitions of Tp and Up-operators.

Definition 3.5. For f ∈ Sk,l(Γ0(n)), we define

Tp(f) := P k−l
∑

Q∈A
degQ<degP

f |k,l
(
1 Q
0 P

)
+ P k−lf |k,l

(
P 0
0 1

)
if p ∤ n,

Up(f) := P k−l
∑

Q∈A
degQ<degP

f |k,l
(
1 Q
0 P

)
if p | n.

The commutativity of the Tp and Up-operators is content of the next proposition.

Proposition 3.6. Let n be an ideal of A and p1, p2 be two distinct prime ideals of A generated by
monic irreducible polynomials P1, P2 respectively. Suppose that p1 | n. Then, Up1 commutes with
Up2 (resp., with Tp2) if p2 | n (resp., if p2 ∤ n) as operators on Sk,l(Γ0(n)).

Proof. Since P1 and P2 are distinct primes, for any b ∈ A with deg b < degP1 there exists a unique

b′ ∈ A with deg b′ < degP1 such that P1|(b− b′P2). Thus,
(
1

b−b′P2
P1

0 1

)
∈ Γ0(n) and

(
1 b
0 P1

)(
P2 0
0 1

)
=

(
1

b−b′P2
P1

0 1

)(
P2 0
0 1

)(
1 b′

0 P1

)
. Now the result follows from Definition 3.5 and the following equality

∑

b∈A
deg b<degP1

∑

d∈A
deg d<degP2

( 1 b+dP1
0 P1P2

)

=
∑

c∈A
deg c<degP1+degP2

(

1 c
0 P1P2

)

=
∑

d′∈A
deg d′<degP2

∑

b′∈A
deg b′<degP1

(

1 d′+b′P2
0 P1P2

)

. �

3.3. The Trace operators. We define the trace operators and mention some of its properties.

Definition 3.7. For any ideal r|n, we define the trace operator Trnr :Mk,l(Γ0(n)) −→Mk,l(Γ0(r))
by Trnr (f) =

∑
γ∈Γ0(n)\Γ0(r)

f |k,lγ.

We conclude this section with a proposition where we explicitly compute the action of the trace
operator in terms of the (partial) Atkin-Lehner operators and the Hecke operators.

Proposition 3.8. Let m, n be two ideals of A generated by monic polynomials m,n, respectively,
such that n = Pm. Let α ∈ N such that Pα||n. If f ∈ Sk,l(Γ0(n)), then

Trnm(f) =

{
f + P−lUp(f |W (n)

p ) if α = 1,

P−l−(α−1)(2l−k)Up(f |W (n)
pα )|k,lW (m)

pα−1 if α ≥ 2.

Proof. If α = 1, then this proposition is exactly [DK21, Proposition 3.6]. When n is a prime ideal,
this coincides with [Vin14, Proposition 3.8]. Note that, the action of the slash operator here is
different from there.
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Now, we let α ≥ 2. By definition, we have

UP (f |W (n)
pα ) = P k−l

∑

degQ<degP

f |k,l
(
Pα b
n Pαd

)(
1 Q
0 P

)
= P k−l

∑

degQ<degP

f |k,l
( Pα PαQ+bP

n nQ+Pα+1d

)

= P k−l
∑

degQ<degP

f |k,l
(
P 0
0 P

)(
Pα−1 Pα−1Q+b
m mQ+Pαd

)
= P l

∑

degQ<degP

f |k,l
(
Pα−1 Pα−1Q+b
m mQ+Pαd

)

= P l
∑

degQ<degP

f |k,l
( 1−mQ Pα−1Q

− m2

Pα−1 Q 1+mQ

)(
Pα−1 b
m Pαd

)
.

We now show that
{( 1−mQ Pα−1Q

− m2

Pα−1 Q 1+mQ

)
: degQ < degP

}
is a set of representatives for Γ0(n)\Γ0(m).

Let
(

s t
mx y

)
∈ Γ0(m), where s, t, x, y ∈ A satisfy sy − tmx = ζ ∈ F×

q . Let −ζ−1sx ≡ Q1 (mod P ),

where Q1 ∈ A such that degQ1 < degP. Since Pα−1||m, there exists an unique Q2 ∈ A with
degQ2 < degP such that m

Pα−1Q2 ≡ 1 (mod P ). Since P |m, the choice of Q1 and sy − tmx =
ζ ∈ F×

q implies that x + yQ1 ≡ 0 (mod P ). Let Q ∈ A with degQ < degP such that Q1Q2 ≡ Q

(mod P ). Then x+ m
Pα−1Qy ≡ 0 (mod P ). Hence, we get

( s(1+mQ)+t m2

Pα−1 Q t(1−mQ)−sPα−1Q

mx(1+mQ)+y m2

Pα−1 Q y(1−mQ)−mxPα−1Q

)
∈

Γ0(n) and
(

s t
mx y

)
=

( s(1+mQ)+t m2

Pα−1 Q t(1−mQ)−sPα−1Q

mx(1+mQ)+y m2

Pα−1 Q y(1−mQ)−mxPα−1Q

)( 1−mQ Pα−1Q

− m2

Pα−1 Q 1+mQ

)
.

Thus, the set
{( 1−mQ Pα−1Q

− m2

Pα−1 Q 1+mQ

)
: degQ < degP

}
forms a complete set of representatives for

Γ0(n)\Γ0(m). Therefore

UP (f |W (n)
pα ) = P l

∑

degQ<degP

f |k,l
( 1−mQ Pα−1Q

− m2

Pα−1 Q 1+mQ

)(
Pα−1 b
m Pαd

)
= P l(Trnmf)|k,lW

(m)

pα−1 .

Applying W
(m)
pα−1 operator on both sides, the proposition follows from Lemma 3.3. �

Corollary 3.9. Let p,m be with (p,m) = 1. If f ∈ Sk,l(Γ0(p)), then Trpmm (f) = Trp1(f).

Proof. Since f |W (pm)
p = f |W (p)

p , the result follows from Proposition 3.8. �

4. p-oldforms and p-newforms for level pm

Let p be a prime ideal of A. Throughout this section, we consider m an ideal of A generated by
a monic polynomialm such that p ∤ m. We first recall the definitions of p-oldforms and p-newforms
(cf. [BV20], [Val22]). Consider the map

(δ1, δP ) : (Sk,l(Γ0(m)))2 −→ Sk,l(Γ0(pm)) defined by (f, g) −→ δ1f + δP g,

where δ1, δP : Sk,l(Γ0(m)) → Sk,l(Γ0(pm)) given by δ1(f) = f and δP (f) = f |k,l
(
P 0
0 1

)
.

Definition 4.1. The space of p-oldforms Sp−old
k,l (Γ0(pm)) of level pm is defined as the subspace

of Sk,l(Γ0(pm)) generated by the image of (δ1, δP ).

Definition 4.2. The space of p-newforms Sp−new
k,l (Γ0(pm)) of level pm is defined as

Sp−new
k,l (Γ0(pm)) := Ker(Trpmm ) ∩Ker(Tr′

pm

m ), where Tr′
pm

m f := Trpmm (f |W (pm)
p ).

We wish to understand Conjecture 1.1 for prime p, higher levels pm. We now formulate it as a
question and provide some evidences in favor of it. More precisely:

Question 4.3 (For level pm). Suppose m is an ideal of A such that p ∤ m.

(1) ker(Tp) = 0, where Tp ∈ End(Sk,l(Γ0(m))),
(2)

Sk,l(Γ0(pm)) = Sp−old
k,l (Γ0(pm))⊕ Sp−new

k,l (Γ0(pm)), (4.1)

(3) The Up-operator is diagonalizable on Sk,l(Γ0(pm)).
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When we say that “Question 4.3 is true for level pm”, we mean all the statements of Question 4.3
are true. We first show, if m = A, p = (P ) with degP = 1, then Question 4.3 is true for level p if
dim Sk,l(GL2(A)) ≤ 1. In particular, Conjecture 1.1 is true for Sk,l(Γ0(T )). Furthermore, we show
the direct sum decomposition in Question 4.3(2) holds for Sk,l(Γ0(p)) if dimSk,l(GL2(A)) ≤ 2.
Finally, we give some evidences in the support of Question 4.3 for level pm.

4.1. Question 4.3 when dim Sk,l(GL2(A)) ≤ 2: We now discuss on implications of Ques-
tion 4.3(1),(2) to Question 4.3(3). If Question 4.3(2) is true, then the diagonalizability of the Up-

operator on Sk,l(Γ0(pm)) depends on that of the Up-operators on S
p−old
k,l (Γ0(pm)), Sp−new

k,l (Γ0(pm)).

By [BV20, Remark 2.17], the Up-operator is diagonalizable on S
p−new
k,l (Γ0(pm)). However, the Up-

operator is diagonalizable on Sp−old
k,l (Γ0(pm)) if and only if the Tp-operator is diagonalizable on

Sk,l(Γ0(m)) and is injective (cf. [BV20, Remark 2.4]). Therefore, if Question 4.3(1),(2) are true,
then Question 4.3(3) is equivalent to check the diagonalizability of the Tp-operator on Sk,l(Γ0(m)).

4.1.1. Reformulation of Question 4.3(2). In [Val22], Valentino gave a necessary and sufficient
condition for Question 4.3(2) to hold. More precisely:

Theorem 4.4. [Val22, Theorem 3.15] The map Id − P k−2l(Tr′pmm )2 is bijective on Sk,l(Γ0(pm))
if and only if Question 4.3(2) holds.

We now rephrase Theorem 4.4 in terms of the eigenvalues of the Tp-operator.

Proposition 4.5. The Tp-operator has no eigenform on Sk,l(Γ0(m)) with eigenvalues ±P k
2 if and

only if Question 4.3(2) holds.

The proof of Proposition 4.5 depends on the following observations. For any ϕ ∈ Sk,l(Γ0(m)),
we have:

ϕ|k,lW (pm)
p = ϕ|k,l

(
1 b
m dP

)(
P 0
0 1

)
= ϕ|k,l

(
P 0
0 1

)
= δPϕ,

(δPϕ)|k,lW (pm)
p = ϕ|k,l

(
P 0
0 1

)(
P b
Pm dP

)
= P 2l−kϕ.

(4.2)

Combining Proposition 3.8 with (4.2) we obtain

Tr′pmm (δ1(ϕ)) = ϕ|k,lW (pm)
p + P l−k(Up(δ1(ϕ))) = δPϕ+ P l−k(Up(δ1(ϕ))) = P l−kTpϕ, (4.3)

where W
(pm)
p :=

(
P b

Pm dP

)
for some b, d ∈ A with dP 2 − bPm = P.

Proof of Proposition 4.5. The proof of Theorem 4.4 implies that if f ∈ ker(Id − P k−2l(Tr′
pm

m )2),
then f ∈ Im(δ1). Thus ker(Id − P k−2l(Tr′

pm

m )2) ⊆ Sk,l(Γ0(m)). Therefore, Id − P k−2l(Tr′
pm

m )2 is
bijective on Sk,l(Γ0(pm)) if and only if it is bijective on Sk,l(Γ0(m)).

For any f ∈ Sk,l(Γ0(m)), (4.3) implies Tr′
pm

m (Tr′
pm

m (f)) = P l−kTr′
pm

m (Tp(f)) = P 2l−2kTp(Tp(f)).

Thus, on Sk,l(Γ0(m)), we have Id−P k−2l(Tr′
pm

m )2 = Id−P−kT 2
p . Observe that the map Id−P−kT 2

p

is bijective on Sk,l(Γ0(m)) if and only if the Tp-operator has no eigenform on Sk,l(Γ0(m)) with

eigenvalues ±P k
2 . Now the proposition follows from Theorem 4.4. �

We now prove a part of the Conjecture 1.1 for Sk,l(Γ0(T )) when dim Sk,l(GL2(A)) ≤ 2. We
first prove that, Conjecture 1.1 is true for Sk,l(Γ0(T )) when dim Sk,l(GL2(A)) ≤ 1.

Theorem 4.6. For m = A, degP = 1, Question 4.3 is true for Sk,l(Γ0(P )) when dimSk,l(GL2(A)) ≤
1. In particular, Conjecture 1.1 is true for Sk,l(Γ0(T )) when dimSk,l(GL2(A)) ≤ 1.

Theorem 4.6 can be thought of as a continuation of the work done by Bandini and Valentino
in [BV19a], [BV20], and [BV22]. Their method mainly involves harmonic cocycles, the trace maps
Tr and Tr′, and the linear algebra interpretation of the Hecke operators Tp and Up-operators.
However, we prove Theorem 4.6 based on the analysis of the Fourier coefficients of the image of
an element via the Tp-operator, which may be suitable for generalizations. Finally, recall that

dimMk,l(GL2(A)) =
[
k−l(q+1)

q2−1

]
+1 (cf. [Cor97, Proposition 4.3]). By [Gek88, Theorem 5.13], the

graded algebra ⊕k,lMk,l(GL2(A)) is generated by g1, h .
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Proof of Theorem 4.6. Suppose dimSk,l(GL2(A)) = 0. Then Question 4.3(1) is trivially true.
Question 4.3(2) and (3) are true by Proposition 4.5, by the diagonalizability of the Tp-operator
on Sk,l(GL2(A)).

Now, suppose dimSk,l(GL2(A)) = 1. Clearly, the Tp-operator is diagonalizable on Sk,l(GL2(A)).
Therefore, combining Proposition 4.5 with the discussions in §4.1, Question 4.3 for the level (P ) is
true if we show ker(Tp) = 0 and the Tp-operator has no eigenform on Sk,l(GL2(A)) with eigenvalues

±P k
2 . We prove this statement in two cases, i.e., for l 6= 0 and l = 0.
We first consider the case l 6= 0. In this case, Sk,l(GL2(A)) = 〈gx1hl〉 for some x ∈ {0, . . . , q}

such that k = x(q − 1) + l(q + 1). The u-series expansions of g1, h are given by

g1 = 1− (T q − T )uq−1 − (T q − T )u(q−1)(q2−q+1) + · · · ∈ A[[u]],

h = −u− u1+(q−1)2 + (T q − T )u1+q(q−1) − u1+(2q−2)(q−1) + · · · ∈ A[[u]].

Therefore, gx1h
l = (−1)l

∑x
i=0(−1)i

(
x
i

)
(T q −T )iui(q−1)+l +O(u(q−1)2+l) ∈ A[[u]]. Let Tp(g

x
1h

l) =∑∞
j=0 aTp(gx

1h
l)(j(q − 1) + l)uj(q−1)+l. By [Gek88, Example 7.4], we have

aTp(gx
1 h

l)(l) =
∑

0≤j<l

(
l−1
j

)
P l−jagx

1 h
l(j(q − 1) + l) ∈ A.

We define x0 := min{x, l − 1}. Then, aTp(gx
1h

l)(l) =
∑

0≤j≤x0

(
l−1
j

)
P l−j(−1)l+j

( x
j

)
(T q − T )j .

Clearly, the set {0 ≤ j ≤ x0 |
(
l−1
j

)( x
j

)
6= 0} is non-empty and let jmax be its maximum. Since

deg(P l−j(T q − T )j) < deg(P l−(j+1)(T q − T )j+1), we get

0 < deg(aTp(gx
1h

l)(l)) = l + jmax(q − 1) ≤ l + x0(q − 1) <
x(q − 1) + l(q + 1)

2
. (4.4)

The first inequality in (4.4) shows that ker(Tp) = 0. The inequality deg(aTp(gx
1 h

l)(l)) <
x(q−1)+l(q+1)

2

in (4.4) shows that Tp(g
x
1h

l) cannot be equal to ±P x(q−1)+l(q+1)
2 gx1h

l. In particular, the Tp-operator

has no eigenform on Sk,l(GL2(A)) with eigenvalues ±P k
2 .

We now consider the case of l = 0. In this case, Sk,0(GL2(A)) = 〈gx1∆〉 for some x ∈ {0, . . . , q}
such that k = x(q − 1) + (q2 − 1). Recall that ∆ = −uq−1 + uq(q−1) − (T q − T )u(q+1)(q−1) +

O(u(q
2−q+1)(q−1)) ∈ A[[u]]. Hence

gx1∆ =

x∑

i=0

(
x
i

)
(−1)i+1(T q − T )iu(i+1)(q−1) +O(uq(q−1)) ∈ A[[u]].

In this case, we consider the coefficient aTp(gx
1∆)(q− 1) to prove our claims. Since agx

1∆
(0) = 0, we

have aTp(gx
1∆)(q − 1) =

∑
0≤j<q−1

( q−2
j

)
P q−1−jagx

1∆
((j + 1)(q − 1)) (cf. [Gek88, Example 7.4]).

We define y0 := min{x, q − 2}. Then,

aTp(gx
1∆)(q − 1) =

∑

0≤j≤y0

( q−2
j

)
P q−1−j(−1)j+1

( x
j

)
(T q − T )j .

Arguing as in the previous case, i.e., l 6= 0, we get 0 < deg(aTp(gx
1∆)(q−1)) < x(q−1)+(q2−1)

2 , which
shows that ker(Tp) = 0 and the Tp-operator has no eigenform on Sk,l(GL2(A)) with eigenvalues

±P k
2 . This completes the proof of the proposition. �

We now show that, a part of the Conjecture 1.1 is true for Sk,l(Γ0(T )) when dim Sk,l(GL2(A)) =
2. More precisely,

Theorem 4.7. Let m = A and degP = 1. If dimSk,l(GL2(A)) = 2, then the direct sum decom-
position in Question 4.3(2) is true for Sk,l(Γ0(p)).

Proof. By Proposition 4.5, it is enough to show Tp-operator has no eigenform on Sk,l(GL2(A))

with eigenvalues ±P k/2. We give a complete proof only for l 6= 0 and the proof is similar when
l = 0. So, we assume l 6= 0.

Since dimSk,l(GL2(A)) = 2, Sk,l(GL2(A)) = 〈gy1hl, gx1∆hl〉 for some y ∈ {q + 1, . . . , 2q + 1}
such that k = y(q− 1)+ l(q+1) and where x := y− (q+1). There are two cases to be considered.
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We first assume that (y, l) 6= (2q + 1, 1): Recall the following u-expansions

gy1 =





y∑

i=0

( y
i

)
(−1)i(T q − T )iui(q−1) +O(u(l+q)(q−1)) if y < l + (q − 1),

l+(q−1)∑

i=0

( y
i

)
(−1)i(T q − T )iui(q−1) +O(u(l+q)(q−1)) if y ≥ l + (q − 1).

gx1 =
x∑

i=0

(
x
i

)
(−1)i(T q − T )iui(q−1) +O(u(q−1)(q2−q+1)). (4.5)

hl = (−1)lul + (−1)llu(q−1)2+l + (−1)l−1l(T q − T )uq(q−1)+l +O(u(l+q)(q−1)+l). (4.6)

∆ = −uq−1 + uq(q−1) − (T q − T )u(q+1)(q−1) +O(u(q
2−q+1)(q−1)).

∆h
l = (−1)l+1

u
q−1+l + (−1)l(1− l)uq(q−1)+l + (−1)l(l − 1)(T q

− T )u(q2−1)+l +O(u(l+q)(q−1)+l) (4.7)

Finally, we have the required u-expansions of gx1∆h
l and gy1h

l as

gx1∆h
l =





(−1)l+1
x+1∑

i=1

(
x

i−1

)
(−1)i−1(T q − T )i−1ui(q−1)+l +O(ul(q−1)+l) if x+ 1 < l,

(−1)l+1
l−1∑

i=1

(
x

i−1

)
(−1)i−1(T q − T )i−1ui(q−1)+l +O(ul(q−1)+l) if x+ 1 ≥ l.

gy1h
l = (−1)l

l−1∑

i=0

( y
i

)
(−1)i(T q − T )iui(q−1)+l +O(ul(q−1)+l).

We first show that Tp(g
x
1∆h

l) 6= ±P x(q−1)+(q2−1)+l(q+1)
2 gx1∆h

l. The (l + (q − 1))-th coefficient of
Tp(g

x
1∆h

l) is given by (cf. [Gek88, Example 7.4])

aTp(gx
1∆hl)(l + (q − 1)) =

∑

0≤i<l+q−1

(
l+q−2

i

)
P l+q−1−iagx

1∆hl(l + (i + 1)(q − 1)). (4.8)

For f ∈ A, g ∈ A \ {0}, | fg | := qdeg(f)−deg(g). Now, take the norm of aTp(gx
1∆hl)(l + (q − 1)) to get

|aTp(gx
1∆hl)(l + (q − 1))| ≤ max

1≤i≤l+q−1
{|P l+q−iagx

1∆hl(l + i(q − 1))|}

= max
1≤i≤l+q−1

{|P l+q−i
∑

α∈N∪{0},β∈N
α+β=i

agx
1
(α(q − 1)) · a∆hl(β(q − 1) + l)|}

By (4.5) and (4.7), we have agx
1
(i(q − 1)) = 0 for x < i ≤ l + q − 1 and a∆hl(β(q − 1) + l) = 0 for

1 ≤ β ≤ l + q − 1 with β /∈ {1, q, q + 1}. Therefore, we get

|aTp(gx
1∆hl)(l + (q − 1))| ≤ max

β∈{1,q,q+1}

{
max

1≤i≤l+q−1,
0≤i−β≤x

{|P l+q−iagx
1
((i − β)(q − 1))a∆hl(β(q − 1) + l)|}

}

= max
{

max
1≤i≤l+q−1
0≤i−1≤x

{qi(q−1)+l}, max
1≤i≤l+q−1
0≤i−q≤x

{q(i−q)(q−1)+l}, max
1≤i≤l+q−1
0≤i−q−1≤x

{q(i−q)(q−1)+l}
}

= max
{
q(x+1)(q−1)+l, qx(q−1)+l, q(x+1)(q−1)+l

}
= q(x+1)(q−1)+l.

Hence, we have

|aTp(gx
1∆hl)(l + (q − 1))| ≤ q(x+1)(q−1)+l. (4.9)

On the other hand, the assumption (y, l) 6= (2q+1, 1) implies (x+1)(q−1)+l < x(q−1)+(q2−1)+l(q+1)
2 .

Since agx
1∆hl(l+(q− 1)) = (−1)l+1, combining the last inequality with (4.9), we get Tp(g

x
1∆h

l) 6=
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±P x(q−1)+(q2−1)+l(q+1)
2 gx1∆h

l. Now, by the same technique, we give an upper bound on the coeffi-
cient aTp(g

y
1h

l)(l + (q − 1)). Recall that,

aTp(g
y
1h

l)(l + (q − 1)) =
∑

0≤i<l+(q−1)

(
l+q−2

i

)
P l+q−1−iagy

1h
l(l + (i+ 1)(q − 1)). (4.10)

Now, take the norm of aTp(g
y
1h

l)(l + (q − 1)) to get

|aTp(g
y

1h
l)(l + (q − 1))| ≤ max

1≤i≤l+q−1
{|P l+q−iagy

1h
l(l + i(q − 1))|}

= max
1≤i≤l+q−1

{|P l+q−i
∑

α,β∈N∪{0}
α+β=i

agy
1
(α(q − 1)) · ahl(β(q − 1) + l)|}.

By (4.6), we get that ahl(β(q − 1) + l) = 0 for 0 ≤ β ≤ l + q − 1 with β /∈ {0, q − 1, q}.
• When y < l + q − 1. In this case, agy

1
(i(q − 1)) = 0 for y < i ≤ l + q − 1. Hence,

|aTp(g
y
1h

l)(l + (q − 1))| ≤ max
β∈{0,q−1,q}

{
max

β∈{0,q−1,q}
1≤i≤l+q−1
0≤i−β≤y

{|P l+q−iagy
1
((i− β)(q − 1))ahl(β(q − 1) + l)|}

}

= max
{

max
1≤i≤l+q−1

0≤i≤y

{qi(q−1)+l+q}, max
1≤i≤l+q−1
0≤i−q+1≤y

{q(i−q)(q−1)+l+q}, max
1≤i≤l+q−1
0≤i−q≤y

{q(i−q)(q−1)+l+q}
}

= max
{
qy(q−1)+l+q, q(y−1)(q−1)+l+q, qy(q−1)+l+q

}
= qy(q−1)+l+q.

• When y ≥ l+(q−1), a similar argument as above gives |aTp(g
y
1h

l)(l+q−1)| ≤ q(l+q−1)(q−1)+l+q .

Finally, we get

|aTp(g
y
1h

l)(l + (q − 1))| ≤
{
qy(q−1)+l+q if y < l + (q − 1),

q(l+(q−1))(q−1)+l+q if y ≥ l + (q − 1).
(4.11)

Since Tp(g
x
1∆h

l) 6= ±P x(q−1)+(q2−1)+l(q+1)
2 gx1∆h

l, it is now enough to show that there does not exist
any c ∈ C such that

Tp(g
y
1h

l + cgx1∆h
l) = ±P

y(q−1)+l(q+1)
2 (gy1h

l + cgx1∆h
l) (4.12)

holds. On the contrary, suppose there is an element c ∈ C such that (4.12) holds with “ + ” sign.
A similar argument works with “− ” sign as well. The l-th coefficients of Tp(g

y
1h

l) and Tp(g
x
1∆h

l)
are given by (cf. [Gek88, Example 7.4])

aTp(g
y
1h

l)(l) = (−1)l
∑

0≤j<l

(
l−1
j

)
P l−j

( y
j

)
(−1)j(T q − T )j,

aTp(gx
1∆hl)(l) =





(−1)l+1
x+1∑

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q − T )j−1 if x+ 1 < l,

(−1)l+1
l−1∑

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q − T )j−1 if x+ 1 ≥ l.

Comparing the l-th coefficients on both sides of (4.12), we get

∑

0≤j<l

(

l−1
j

)

P
l−j

( y
j

)

(−1)j(T q
−T )j − c

x0
∑

j=1

(

l−1
j

)

P
l−j

(

x
j−1

)

(−1)j−1(T q
−T )j−1 = P

y(q−1)+l(q+1)
2 , (4.13)

where x0 := min{x, l − 2} + 1. If c
∑x0

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q − T )j−1 = 0, then the

inequality lq < y(q−1)+l(q+1)
2 would imply that both sides of (4.13) have different degrees. So, the

term c
∑x0

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q−T )j−1 6= 0. Let jmax := max{1 ≤ j ≤ x0|

(
l−1
j

)( x
j−1

)
6=

0}. Then, |∑x0

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q − T )j−1| = qjmax(q−1)+l−q. Since lq < y(q−1)+l(q+1)

2 ,
it follows that

|P
y(q−1)+l(q+1)

2 −
∑

0≤j<l

(
l−1
j

)
P l−j

( y
j

)
(−1)j(T q − T )j| = q

y(q−1)+l(q+1)
2 .
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Therefore, (4.13) gives us

c = −
P

y(q−1)+l(q+1)
2 −∑

0≤j<l

(
l−1
j

)
P l−j

( y
j

)
(−1)j(T q − T )j

∑jmax

j=1

(
l−1
j

)
P l−j

( x
j−1

)
(−1)j−1(T q − T )j−1

∈ K, (4.14)

hence |c| = q
y(q−1)+l(q+1)

2 −(jmax(q−1)+l−q). Note that a(gy
1h

l+cgx
1∆hl)(l + (q − 1)) = (−1)l+1y(T q −

T ) + (−1)l+1c. Using the inequality lq < y(q−1)+l(q+1)
2 , from (4.14) we obtain

|a(gy

1h
l+cgx

1∆hl)((q − 1) + l)| = q
y(q−1)+l(q+1)

2 −(jmax(q−1)+l−q). (4.15)

Comparing (q − 1) + l-th coefficients on both sides of (4.12) we get

|aTp(g
y
1h

l+cgx
1∆hl)((q − 1) + l)| = qy(q−1)+l(q+1)−(jmax(q−1)+l−q). (4.16)

On the other hand, from (4.11) we have

|aTp(g
y

1h
l+cgx

1∆hl)((q − 1) + l)| ≤ max{|aTp(g
y

1h
l)((q − 1) + l)|, |c| · |aTp(gx

1∆hl)((q − 1) + l)|}

≤ max{qy0(q−1)+l+q , q
y(q−1)+l(q+1)

2 −(jmax(q−1)+l−q) · q(x+1)(q−1)+l}

where y0 := min{y, l+(q− 1)}. Since 0 ≤ jmax < l, an easy verification shows that qy0(q−1)+l+q <

qy(q−1)+l(q+1)−(jmax(q−1)+l−q). Moreover, the inequality (x + 1)(q − 1) + l < x(q−1)+(q2−1)+l(q+1)
2

implies q
y(q−1)+l(q+1)

2 −(jmax(q−1)+l−q) · q(x+1)(q−1)+l < qy(q−1)+l(q+1)−(jmax(q−1)+l−q). Therefore, we
can conclude

|aTp(g
y
1h

l+cgx
1∆hl)((q − 1) + l)| < qy(q−1)+l(q+1)−(jmax(q−1)+l−q),

which contradicts (4.16). Hence, the Tp-operator has no eigenform on Sk,l(GL2(A)) with eigen-

value ±P k/2, and the result now follows from Proposition 4.5.
We now consider the case when (y, l) = (2q+1, 1). In this case, Sk,l(GL2(A)) = 〈g2q+1

1 h, gq1∆h〉.
By the u-series expansion, we get aTp(g

2q+1
1 h)(1) = −P, aTp(g

q
1∆h)(1) = 0 and aTp(g

q
1∆h)(q) = P q.

This implies that, for any (c1, c2) ∈ C2\{(0, 0)}, Tp(c1g2q+1
1 h+c2g

q
1∆h) 6= P q2(c1g

2q+1
1 h+c2g

q
1∆h).

This can be checked by comparing the 1-st coefficient if c1 6= 0, the q-th coefficient if c1 = 0. Now,
we are done by Proposition 4.5.

Finally, consider the case l = 0: Here, the proof is exactly similar to l 6= 0, except that we need to

consider (q−1)-th, 2(q−1)-th coefficients and use the inequality (x+2)(q−1) < x(q−1)+2(q2−1)
2 . �

4.2. Evidences to Question 4.3 for prime ideals p: In this section, we give evidences in the
support of Question 4.3 for prime ideals p. In this direction, we need a proposition, which is a
generalization of a result of Gekeler (cf. [Gek88, Corollary 7.6]), where he proved that Tph = Ph
for any prime ideal p = (P ). We now show that this result continues to hold for f ∈Mk,1(Γ0(m))
with af (1) 6= 0.

Proposition 4.8. Suppose the u-series expansion of f ∈Mk,1(Γ0(m)) at ∞ is given by
∑∞

j=0 af (j(q−
1) + 1)uj(q−1)+1 with af (1) 6= 0. If Tpf = λf for some λ ∈ C, then λ = P. In particular,

Tpf = P
k
2 f can happen only when k = 2.

Proof. Let Gi,P (X) denote the i-th Goss polynomial corresponding to the lattice ΛP = ker(ρP ) =
{x ∈ C | ρP (x) = 0}, where ρP is the Carlitz module with value at P . By [Arm11, Proposition
5.2] (the normalization here is different from there), we have

Tpf = P k
∑

j≥0

af (j(q − 1) + 1)(up)
j(q−1)+1 +

∑

j≥0

af (j(q − 1) + 1)Gj(q−1)+1,P (Pu), (4.17)

where up(z) = u(Pz) = uq
d

+ · · · . To determine λ, we wish to compute the coefficient of u in the
u-series expansion of Tpf . In (4.17), the term involving up does not contribute to the coefficient
of u. By [Gek88, Proposition 3.4(ii)], we know that

Gi,P (X) = X(Gi−1,P (X) + α1Gi−q,P (X) + · · ·+ αjGi−qj ,P (X) + · · · ).
In Gi,P (Pu), the coefficient of u in Gj(q−1)+1,P (Pu) is 0 for j > 0. Since G1,P (X) = X (cf.
[Gek88, Proposition 3.4(v)]), we can conclude that Tpf = Paf (1)u+higher terms. By comparing
the coefficient of u on both sides, we get λ = P . �
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Remark 4.9. In Proposition 4.8, Goss polynomials, which occur as the coefficients of Tpf , are
very difficult to handle if l 6= 1 (cf. (4.17) and [Arm11, Proposition 5.2]). So, we have restricted
ourselves to l = 1 in the last proposition.

We now give some instances where Question 4.3 for prime ideals p has an affirmative answer.

Proposition 4.10. For any prime ideal p, Question 4.3 is true for level p in the following cases:

(1) (a) 1 ≤ l ≤ q − 2 and k = 2l+ α(q − 1) where α ∈ {0, . . . , l},
(b) l = 0 and k = β(q − 1) where β ∈ {1, . . . , q + 1},
(c) l = 1 and k = α(q − 1) + (q + 1) where α ∈ {0, . . . , q}.

(2) k ≤ 3q.

Proof. Note that in all of these cases dimSk,l(GL2(A)) ≤ 1. Hence the Tp-operator is diagonaliz-
able on Sk,l(GL2(A)). As in our earlier discussion, Question 4.3 has an affirmative answer for p if
we show that ker(Tp) = 0 and the Tp-operator has no eigenform on Sk,l(GL2(A)) with eigenvalues

±P k
2 . We prove these statements in all cases.

(1) (a) Since l > 0, Mk,l(GL2(A)) = Sk,l(GL2(A)).
• If α ∈ {0, . . . , l − 1}, then dimS2l+α(q−1),l(GL2(A)) = 0 and the result follows
trivially.

• If α = l, then dimS2l+α(q−1),l(GL2(A)) = 1 and S2l+α(q−1),l(GL2(A)) = 〈hl〉.
By [JP14, (9)] (or by [Pet13, Theorem 3.17]), the Tp-operator acts on h

i by P i for

1 ≤ i ≤ q − 2. Since P l 6= ±P l(q+1)
2 for 1 ≤ l ≤ q − 2 the result follows.

(b) When l = 0, we prove the required claim in two steps.

• For β ∈ {1, . . . , q}, Mβ(q−1),0(GL2(A)) = 〈gβ1 〉. Therefore, Sβ(q−1),0(GL2(A)) =
{0} and the result follows.

• If β = q + 1, Sq2−1,0(GL2(A)) = 〈∆〉. By [Gek88, Corollary 7.5], we have Tp(∆) =

P q−1∆. Since P q−1 6= ±P q2−1
2 , the result follows.

(c) If α ∈ {0, . . . , q}, Sk,1(GL2(A)) = 〈gα1 h〉. Since agα
1 h(1) 6= 0, by Proposition 4.8, we have

Tp(g
α
1 h) = Pgα1 h, the result follows.

(2) Let 0 ≤ l ≤ q − 2. If k 6≡ 2l (mod q − 1), then Mk,l(GL2(A)) = {0} and Question 4.3 is
trivially true. So, we only consider the cases k ≡ 2l (mod q− 1) i.e k = 2l+ x(q− 1) for some
x ∈ N ∪ {0}. The condition k ≤ 3q implies x ≤ 4.

• If x < l, then dimMk,l(GL2(A)) = 0 and the result follows.
• If x = l, then k = l(q + 1). If l 6= 0, then Sl(q+1),l(GL2(A)) = 〈hl〉. So, we are back to
case 1(a). If l = 0, then S0,0 = {0} and the result follows.

Therefore, the remaining cases of interest are l < x ≤ 4. If l ≥ 2, the inequality k ≤ 3q forces
that x ≤ 2 and we are back to the case x ≤ l. So, it is enough to consider for l ∈ {0, 1} with
l < x ≤ 4.

• For l = 0: If (q, x) 6= (3, 4), thenMx(q−1),0(GL2(A)) = 〈gx1 〉 and Sx(q−1),0(GL2(A)) = {0}
and the result follows. If (q, x) = (3, 4), then k = (q+1)(q− 1), we are back to case 1(b).

• For l = 1: we have k = (x− 1)(q− 1)+ (q+1) where 1 < x ≤ 3. Since q ≥ 3, we are back
to case 1(c).

This completes the proof of the proposition. �

We remark that our Proposition 4.10 is similar to Theorem 5.8, Corollary 5.11 and Theorem
5.14 of [BV19a] for p = (T )-case. In a contrast to Proposition 4.10, in the next proposition, we
consider the situation with m 6= A and dimSk,l(Γ0(m)) = 2 satisfying Question 4.3 for level pm.

Proposition 4.11. For degm = 1 and p ∤ m, Question 4.3 is true for level pm when

(i) l > q−1
2 and k = 2l− (q − 1), or

(ii) l = 1 and k = q + 1.

Proof. We may assume that m = (T ), since a similar calculation works for any ideal m with
degm = 1. We now follow the strategy as in the proof of the Proposition 4.10.

(i) In this case, Sk,l(Γ0(T )) = {0} (cf. [DK, Proposition 4.1]) and the result follows trivially.
(ii) First, we show that the operator Tp − P is zero on Sq+1,1(Γ0(T )). Recall that, ∆T (z) :=

g1(Tz)−g1(z)
T q−T ,∆W (z) := T qg1(Tz)−Tg1(z)

T q−T ∈Mq−1,0(Γ0(T )).
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By [DK, Proposition 4.3(3)], dimC Sq+1,1(Γ0(T )) = 2 and a basis is given by {∆TET ,
∆WET }. By [DK, Proposition 4.3(8)]), h = −∆WET . Since Tph = Ph, we obtain

Tp(∆WET ) = P∆WET . Note that ∆T = −T−1∆W |W (T )
T and TpW

(T )
T = W

(T )
T Tp (cf.

Theorem 5.3), using ET |2,1W (T )
T = −ET (cf. [DK21, Proposition 3.3]), we get

Tp(∆TET ) = Tp((T
−1∆WET )|W (T )

T ) = (Tp(T
−1∆WET ))|W (T )

T

= T−1(P∆WET )|W (T )
T = P∆TET .

Thus, Tp ≡ P on Sq+1,1(Γ0(T )). So, Tp-operator is injective, diagonalizable on Sq+1,1(Γ0(T )),
which proves Question 4.3(1). Question 4.3(2) follows from Proposition 4.5. Finally, Ques-
tion 4.3(3) follows from the diagonalizability of Tp-operator on Sq+1,1(Γ0(T )).

�

4.3. Counterexample to Question 4.3(2). In the section, we show that the direct sum de-
composition (4.1) does not hold if m 6= A and (k, l) = (2, 1). We first prove a result which is of
independent interest.

Lemma 4.12. Let p1, p2 be two distinct prime ideals of A generated by monic irreducible polyno-
mials P1, P2, respectively. Then, Tp1EP2 = P1EP2 .

Proof. By [Gek88, (8.2)], the function E(z) =
∑

a∈A+
au(az), where A+ denotes the set of all

monic polynomials inA. Hence, EP2(z) =
∑

a∈A+
au(az)−P2

∑
a∈A+

au(P2az) =
∑

a∈A+, P2∤a
au(az).

We now use an argument in the proof of [Pet13, Theorem 2.3] to get

Tp1EP2 =
∑

Q∈A
degQ<degP1

EP2

(
z +Q

P1

)
+ P 2

1EP2(P1z)

=
∑

Q∈A
degQ<degP1

∑

a∈A+

P2∤a

au

(
a
z +Q

P1

)
+ P 2

1

∑

a∈A+

P2∤a

au(P1az)

=
1

π̃

∑

Q∈A
degQ<degP1

∑

a∈A+

P2∤a

∑

b∈A

aP1

az + aQ+ P1b
+ P1

∑

a∈A+

P2∤a

P1au(P1az)

=
1

π̃

∑

a∈A+

P2∤a

aP1

∑

b∈A

∑

Q∈A
degQ<degP1

1

az + aQ+ P1b
+ P1

∑

a∈A+

P2∤a

P1au(P1az)

= P1

∑

a∈A+

P1P2∤a

au(az) + P1

∑

a∈A+

P2∤a

P1au(P1az) = P1

∑

a∈A+

P2∤a

au(az) = P1EP2 .

This completes the proof of the Lemma. �

We now show that, if m 6= A and (k, l) = (2, 1), then there are non-zero Drinfeld cusp forms
which are both p-oldforms and p-newforms.

Proposition 4.13. Suppose m 6= A. For any prime ideal p ∤ m, we have

Sp−old
2,1 (Γ0(pm)) ∩ Sp−new

2,1 (Γ0(pm)) 6= {0}.
Proof. Let p2 be a prime divisor of m generated by a monic irreducible polynomial P2. Clearly,

0 6= EP2 −δPEP2 ∈ S2,1(Γ0(pm)).We show that EP2 −δPEP2 ∈ Sp−old
2,1 (Γ0(pm))∩Sp−new

2,1 (Γ0(pm)).

By definition, EP2 − δPEP2 ∈ Sp−old
2,1 (Γ0(pm)). Combining (4.3), (4.2) and Lemma 4.12, we get

Trpmm (EP2 − δPEP2) = EP2 − P−1Tp(EP2 ) = EP2 − EP2 = 0. (4.18)

By (4.2), we deduce that

Trpmm ((EP2 − δPEP2)|W
(pm)
p ) = Trpmm (EP2 |W

(pm)
p − (δPEP2)|W

(pm)
p ) = Trpmm (δPEP2 − EP2) = 0.

This proves that EP2 − δPEP2 ∈ Sp−new
2,1 (Γ0(pm)). The result follows. �
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Remark 4.14. For f ∈ Sk,l(Γ0(n)), Tp(f
qn) = (Tp(f))

qn for any n ∈ N. An argument similar to
Proposition 4.13 gives us

0 6= Eqn

P2
− P qn−1δPE

qn

P2
∈ Sp−old

2qn,1 (Γ0(pm)) ∩ Sp−new
2qn,1 (Γ0(pm)). (4.19)

Since E behaves like a classical weight 2 Eisenstein series, we believe that the phenomenon in (4.19)
may not happen for l 6= 1.

Proposition 4.13 and Remark 4.14 imply that either one needs to reformulate the definition of
p-newforms for level pm or exclude the cases above in formulating Question 4.3 for level pm.

5. Oldforms and Newforms for square-free level n

In this section, we propose a definition of oldforms and newforms for Drinfeld modular forms of
square-free level. We show that these spaces are invariant under the action of the Hecke operators.
Throughout this section, we assume that n is a square-free ideal of A generated by a (square-free)
monic polynomial n ∈ A. Let p, p1 be two prime ideals of A generated by monic irreducible
polynomials P, P1 ∈ A, respectively.

Definition 5.1 (Oldforms). The space of oldforms of weight k, type l, and square-free level n is
defined as

Sold
k,l (Γ0(n)) :=

∑

p|n

(δ1, δP )((Sk,l(Γ0(n/p)))
2).

The lack of Petersson inner product for Drinfeld modular forms makes it difficult to define
newforms. For classical modular forms, it is well-known that newforms can be characterized in
terms of kernels of the Trace and twisted Trace operators (cf. [Ser73], [Li75] for more details). In
this section, for Drinfeld modular forms, we adopt this approach to define newforms and investigate
their properties.

Definition 5.2 (Newforms). The space of newforms of weight k, type l, and square-free level n
is defined as

Snew
k,l (Γ0(n)) :=

⋂

p|n

(Ker(Trnn
p

) ∩Ker(Tr′
n
n

p

)), where Tr′
n
n

p

f = Trnn
p

(f |k,lW (n)
p ).

Next, we study the action of Hecke operators on Sold
k,l (Γ0(n)), S

new
k,l (Γ0(n)). This depends on the

commutativity of the (partial) Atkin-Lehner operators with the Tp and Up-operators. In [Val22,
Theorem 1.1], the author studied the commutativity of the (partial) Atkin-Lehner operators and
the Tp-operator and proved the following result.

Theorem 5.3. Let n, p ⊆ A be ideals such that p ∤ n and p is prime. For any ideal d of A such

that d||n, the actions of TpW
(n)
d and W

(n)
d Tp on Sk,l(Γ0(n)) are equal.

We now study the commutativity of certain (partial) Atkin-Lehner operators and the Up-
operator. The following result can be thought of as a generalization of Theorem 5.3 to the
Up-operator. Note that, Theorem 5.4 holds for any integral ideal n.

Theorem 5.4. Assume that pα||n for some α ∈ N. For all prime divisors p1 of n with p1 6= p,

the actions of Up1W
(n)
pα and W

(n)
pα Up1 on Sk,l(Γ0(n)) are equal.

Proof. By definition we have

P l−k
1 Up1W

(n)
pα =

∑

Q∈A
degQ<degP1

(
Pα b
n Pαd

)(
1 Q
0 P1

)
=

∑

Q∈A
degQ<degP1

( Pα PαQ+bP1

n nQ+PαP1d

)
,

P l−k
1 W

(n)
pα Up1 =

∑

Q∈A
degQ<degP1

(
1 Q
0 P1

)(
Pα b
n Pαd

)
=

∑

Q∈A
degQ<degP1

(
Pα+Qn b+PαQd

nP1 PαP1d

)
.

To prove the proposition, it suffices to show that for any Q ∈ A with degQ < degP1, there exists
a unique Q′ ∈ A with degQ′ < degP1 such that

(
Pα+Qn b+PαQd

nP1 PαP1d

)
=

(
x y
z w

)( Pα PαQ′+bP1

n nQ′+PαP1d

)
, (5.1)
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for some
(
x y
z w

)
∈ Γ0(n). For any Q,Q

′ ∈ A, (5.1) implies x,w ∈ A, z ∈ n and

− P1y = PαQ′ − PαQd− b+ (nQQ′ + bP1 +
n

Pα
bP1Q). (5.2)

Thus we are reduced to show that for any Q ∈ A with degQ < degP1, there exists a unique
Q′ ∈ A with degQ′ < degP1 such that y ∈ A.

Since P1|n, we have P1|(nQQ′ + bP1 +
n
Pα bP1Q). Now it is enough to show that there exists a

unique Q′ ∈ A with degQ′ < degP1 such that P1 | Pα(Q′ −Qd)− b.
Recall that, Pαd− b n

Pα = 1. Since P1 divides n
Pα , we get QP

αd ≡ Q (mod P1) for any Q ∈ A.
So, it is enough to show that there exists a unique Q′ ∈ A such that P1 | PαQ′ − (Q + b).
Since (Pα, P1) = 1, the congruence Pαf(X) ≡ (Q+ b) (mod P1) has a unique solution in A with
deg(f(X)) < degP1. We are done. �

We are now ready to state the main theorem of this section.

Theorem 5.5. The spaces Sold
k,l (Γ0(n)), S

new
k,l (Γ0(n)) are invariant under the action of the Hecke

operators Tp for p ∤ n and Up for p | n.

Proof. Let p be a prime ideal of A such that p | n. We first show that the space Snew
k,l (Γ0(n)) is stable

under the Up-operator. Let p1 6= p be a prime divisor of n and f ∈ Sp1−new
k,l (Γ0(n)). Theorem 5.4

(resp., Proposition 3.6) implies that the Up-operator commutes with the W
(n)
p1

-operator (resp., the

Up1-operator). Since f ∈ Sp1−new
k,l (Γ0(n)), from Proposition 3.8, we obtain

Trnn
p1

(Up(f)) = Up(f) + P−l
1 Up1(Up(f)|W (n)

p ) = Up(Tr
n
n

p1

(f)) = 0.

A similar argument shows that Tr′
n
n

p1

(Up(f)) = 0. Thus Sp1−new
k,l (Γ0(n)) is stable under the Up-

operator. Since the space Sp−new
k,l (Γ0(n)) is stable under the action of the Up-operator (cf. [BV20,

Proposition 2.15]), the space Snew
k,l (Γ0(n)) is stable under the action of the Up-operator.

Next, we show that the space Sold
k,l (Γ0(n)) is stable under the action of the Up-operator. Let

p1 6= p be a prime divisor of n. Let ψ, ϕ ∈ Sk,l(Γ0(
n

p1
)). Since p| n

p1
, we have Up(ψ), Up(ϕ) ∈

Sk,l(Γ0(
n

p1
)). Moreover, (4.2) and Theorem 5.4 yield

Up(δP1ϕ) = Up(ϕ|W (n)
P1

) = (Up(ϕ))|W (n)
P1

= δP1(Up(ϕ)).

Hence for all p1 | n with p1 6= p we have Up(ψ + δP1ϕ) = Up(ψ) + δP1Up(ϕ) with Up(ψ), Up(ϕ) ∈
Sk,l(Γ0(

n

p1
)). Since the space Sp−old

k,l (Γ0(n)) is stable under the action of the Up-operator (cf. [BV20,

Proposition 2.15]), the space Sold
k,l (Γ0(n)) is stable under the action of the Up-operator.

An argument similar to the above would also imply that the spaces Snew
k,l (Γ0(n)) and S

old
k,l (Γ0(n))

are stable under the Tp-operator for p ∤ n. �

Corollary 5.6. The set of Up-operators (for p | n) are simultaneously diagonalizable on Snew
k,l (Γ0(n)).

Proof of Corollary 5.6. Let p be a prime ideal of A such that p | n. By [BV20, Remark 2.17], the

Up-operator is diagonalizable on S
p−new
k,l (Γ0(n)). By Theorem 5.5, the space Snew

k,l (Γ0(n)) is an Up-

invariant subspace of Sp−new
k,l (Γ0(n)), hence the Up-operator is also diagonalizable on Snew

k,l (Γ0(n)).
Now, the corollary follows from Proposition 3.6 and the fact that a commuting set of diagonalizable
operators on a finite dimensional vector space are simultaneously diagonalizable. �

We conclude this article with a remark that Sold
k,l (Γ0(n))∩Snew

k,l (Γ0(n)) = {0} may happen only
for l 6= 1, because of the following proposition, which is in the spirit of Proposition 4.13. As a
result, one may have to reformulate the definition of oldforms and newforms of level pm for l = 1.

Proposition 5.7. For any two distinct prime ideals p, q generated by monic irreducible polyno-
mials P,Q, respectively, the intersection Sold

2,1 (Γ0(pq))∩Snew
2,1 (Γ0(pq)) 6= {0}. Furthermore, for any

x ∈ N, Sold
2qx,1(Γ0(pq)) ∩ Snew

2qx,1(Γ0(pq)) 6= {0}.

Proof. We now show that EQ − δPEQ ∈ Sold
2,1 (Γ0(pq)) ∩ Snew

2,1 (Γ0(pq)). By definition, 0 6= EQ −
δPEQ ∈ Sold

2,1 (Γ0(pq)). From (4.18) and (4.3), we have Trpqq (EQ − δPEQ) = 0 = Trpqq ((EQ −
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δPEQ)|W (pq)
p ). SinceW

(pq)
p W

(pq)
q =W

(pq)
q W

(pq)
p ,W

(pq)
p Uq = UqW

(pq)
p , by Proposition 3.8 and (4.2),

we get

Trpqp (EQ − δPEQ) = Trpqp (EQ)− Trpqp (EQ)|W (pq)
p

= Trq1(EQ)− Trq1(EQ)|W (pq)
p (cf. Corollary 3.9)

= 0 (since M2,1(GL2(A)) = 0).

Since EQ|W (pq)
q = EQ|W (q)

q = −EQ (cf. [DK21, Proposition 3.3])), we have

Trpqp ((EQ − δPEQ)|W (pq)
q ) = Trpqp ((EQ|W (pq)

q )− EQ|W (pq)
p W

(pq)
q )

= Trpqp ((EQ|W (pq)
q )− (EQ|W (pq)

q )|W (pq)
p )

= Trpqp (−EQ + (EQ|W (pq)
p )) = Trpqp (−EQ + δPEQ) = 0.

Hence, EQ − δPEQ ∈ Snew
2,1 (Γ0(pq)). A similar argument shows that 0 6= Eqx

Q − P qx−1δPE
qx

Q ∈
Sold
2qx,1(Γ0(pq)) ∩ Snew

2qx,1(Γ0(p1q)) for x ∈ N. �
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