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Abstract

In this work, analytical solutions are presented for laminated composite plates using
a nonlocal third-order shear deformation theory considering the surface stress effects.
The theory is based on Eringen’s theory of nonlocal continuum mechanics [1] and the
third-order plate theory of Reddy [2, 3]. The mathematical formulation for surface
stress is based on Gurtin and Murdoch’s work [4],[5]. Analytical solutions of bending
and vibration of simply supported laminated and isotropic plates are presented using
new formulation to illustrate the effects of nonlocality and surface stress on deflection
and vibration frequencies for various span-to-thickness ratios (a/h).

1 Background

In modeling micro and nano structures, where material size effects are prominent (e.g., study
of elastic waves when dispersion effect is taken into account and the determination of stress at
the crack tip when the singularity of the solution is of concern), conventional theories cannot
model the material behavior accurately. There has been considerable focus in recent yeas
towards the development of generalized continuum theories that account for the inherent
micro-structure in natural and engineering materials (see [6], [7], [8], and [9]). The notion of
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generalized continua unifies several extended continuum theories that account for such size
dependence due to the underlying micro-structure of the material. A systematic overview and
detailed discussion of generalized continuum theories has been given by Bazant and Jirasek
[10]. These theories can be categorized as gradient continuum theories (see the works by
Mindilin et al. [11], [12], [13], Toupin[14], Steinmann et al. [7], [15], [16], [17], Casterzene
et al. [18], Fleck et al. [19], [20], Askes et al. [21], [22], [23]), micro continuum theories (see
Eringen [24], [25], [6], [26], [1], Steinmann et al. [27], [28]), and nonlocal continuum theories
(see works by Eringen [26], Jirasek [29], [30], Reddy [31], [32], [33], [34] and others [35]).
Recently, the higher-order gradient theory for finite deformation has been elaborated (for
instance see [36], [37], [38], [18], and [39]) within classical continuum mechanics in the context
of homogenization approaches. A comparison of various higher-order gradient theories can
be found in [19]. A more detailed formulation of gradient approach in spatial and material
setting has been presented in [27].

Nonlocality of the stress-strain relationship introduces length scale at which classical elas-
ticity theories are inadequate in modeling the response. Classical theory is inherently size
independent. The nonlocal formulations can be of integral-type formulations with weighted
spatial averaging or by implicit gradient models which are categorized as strongly nonlocal,
while weakly nonlocal theories include, for instance, explicit gradient models [10]. The non-
locality arises due to the discrete structure of matter and the fluctuations in the inter-atomic
forces. The two dominant physical mechanisms that lead to size dependency of elastic be-
havior at the nanoscale are surface energy effects and nonlocal interactions [40]. Recently,
various beam theories (e.g., Euler-Bernoulli, Timoshenko, Reddy, and Levinson beam the-
ories) were reformulated using Eringen’s nonlocal differential constitutive model by Reddy
[31], and analytical solutions for bending, buckling, and natural vibrations for isotropic
plates were also presented. Various shear deformation beam theories were also reformulated
by Reddy [31] using nonlocal differential constitutive relations of Eringen. Subsequently,
similar works have been carried out by Aydogdu [32] and Civalek [33].

Nonlocal elastic rod models have been developed to investigate the small-scale effect on
axial vibrations of the nanorods by Aydogdu [41] and Adhikari et al. [42]. Free vibration
analysis of microtubules based on nonlocal theory and Euler-Bernoulli beam theory was
carried out by Civalek et al. [33]. Free vibration analysis of functionally graded carbon
nanotubes using the Timoshenko beam theory has been studied, and numerical solutions
were obtained using the Differential Quadrature Method (DQM) by Janghorban et al. [43]
and others (see [44], [45] & [46]). Eringen’s nonlocal elasticity theory has also been applied to
study bending, buckling, and vibration of nanobeams using the Timoshenko beam theory (see
[47], [48], [49] and [50]). Numerical solutions were obtained using two different collocation
techniques, global (RDF) and local (RDF-FD), with multi-quadrics radial basis functions
(see Roque et al. [51]). Static deformation of micro- and nano-structures were studied using
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nonlocal Euler-Bernoulli and Timoshenko beam theories and explicit solutions were derived
for displacements for standard boundary conditions by Wang et al. [52, 53, 54]. Iterative
nonlocal elasticity for classical plates has been presented in [55]. Thai et al. [56] developed
a nonlocal shear deformation beam theory with a higher-order displacement field that does
not require shear correction factors [57].

Analytical study on the nonlinear free vibration of functionally graded nanobeams in-
corporating surface effects has been presented in [58], [59] and [60]. The effect of nonlocal
parameter, surface elasticity modulus, and residual surface stress on the vibrational frequen-
cies of Timoshenko beam has been studied in [61] and [62]. The coupling between nonlocal
effect and surface stress effect for the nonlinear free vibration case of nanobeams has been
studied in [63].

Some explicit solutions involving trigonometric expansions are also presented recently for
nonlocal analysis of beams [64]. A finite element framework for nonlocal analysis of beams
is presented in a recent work by Sciarra et al.[65]. Size effects on elastic moduli of plate like
nanomaterials has been studied in [66]. Studies to understand thermal vibration of single
wall carbon nanotube embedded in an elastic medium using DQM has also been reported in
[67]. The recent studies has been towards the application of nonlocal nonlinear formulations
for the vibration analysis of functionally graded beams [68]. The effect of surface stresses
on bending properties of metal nanowires is presented in [69]. There has been some works
on transforming nonlocal approaches to gradient type formulations [70]. Semi analytical
approach for large amplitude free vibration and buckling of nonlocal functionally graded
beams has been reported in [71]. Barretta et al. [72] derived a new variational frame
work following the gradient type nonlocal constitutive law and a thermodynamic approach.
Wang et al. [52] presented the scale effect on static deformation of micro- and nano-rods or
tubes through nonlocal EulerBernoulli beam theory and Timoshenko beam theory. Explicit
solutions for static deformation of such structures with standard boundary conditions are
derived. Huu et al.[56] based on the modified couple stress theory and Timoshenko beam
theory examined static bending ,buckling and free vibration behaviors of size dependent
functionally graded sandwich micro beams [57].

These nonlocal laminated plate theories allow for the small-scale effect which becomes
significant when dealing with micro and nano laminated plate-like structures [31]. The
nonlocality arises due to the discrete structure of matter and the fluctuations in the inter
atomic forces [73]. In the case of plate like structures, when the width to thickness ratio of the
plate becomes less than 20, transverse shear stresses play a key role on the behaviour of the
plate. Various theories have been developed to take care of shear strains into account such
as first order shear deformation theory (FSDT) by Mindlin, Third order shear deformation
theory (TSDT) by Reddy [3], and other generalized higher order shear deformation theories
(e.g., see [74], [75], [76], [77], [78], [79], and [80]). Lu et al. [81] proposed a non-local plate

3



  

model based on Eringens theory of nonlocal continuum mechanics. The basic equations for
the non-local Kirchhoff and the Mindlin plate theories are derived. Maranganti et al. [40]
estimated nonlocal elasticity length scales for various classes of materials like semiconductors,
metals, amorphous solids, and polymers using a combination of empirical molecular dynamics
and lattice dynamics. The effect of inter atomic forces is also studied. Farajpoura et al. [82]
investigated the buckling response of orthotropic single layered graphene sheet subjected to
linearly varying normal stresses using the nonlocal elasticity theory. The nonlocal theory
of Eringen and the equilibrium equations of a rectangular plate are employed to derive the
governing equations. Differential quadrature method (DQM) has been used to solve the
governing equations for various boundary conditions.

Wang et al.[80] presented a large-deflection mathematical analysis of rectangular plates
under uniform lateral loading. The analysis is based on solving two fourth-order, second-
degree, partial differential von Krmn equations relating the lateral deflections to the applied
load. Plates with two boundary conditions, namely, simply supported edges and held edges,
are considered. Neves et al. [83] derived higher-order shear deformation theory for modeling
functionally graded plates to account for extensibility in the thickness direction. Arash et al.
[84] studied the application of the nonlocal continuum theory in modeling of carbon nano
tubes and graphene sheets. A variety of nonlocal continuum models in modeling of the two
materials under static and dynamic loadings are introduced and reviewed. The superiority
of nonlocal continuum models to their local counterparts, the necessity of the calibration of
the small-scale parameter and the applicability of nonlocal continuum models are discussed.
Yan et al. [85] applied nonlocal continuum mechanics to derive complete and asymptotic
representation of the infinite higher-order governing differential equations for nano-beam and
nano-plate models.

Wang et al. [86] presented elastic buckling analysis of micro- and nano-rods/tubes based
on Eringens nonlocal elasticity theory and the Timoshenko beam theory. Sun et al. [66]
presented a semi continuum model for nano structured materials that possess a plate like ge-
ometry such as ultra-thin films. This model accounts for the discrete nature in the thickness
direction. In-plane Youngs modulus, and in-plane and out-plane Poissons ratios are inves-
tigated with this model. It is found that the values of the Youngs modulus and Poissons
ratios depend on the number of atomic layers in the thickness direction and approach the
respective bulk values as the number of atom layers increases. Murmu et al. [87] solved vi-
bration of double-nano beam-systems which are important in nano-optomechanical systems
and sensor applications. Expressions for free bending-vibration of double-nano beam-system
are established within the framework of Eringens nonlocal elasticity theory. The increase
in the stiffness of the coupling springs in double-nano beam-system reduces the nonlocal
effects during the out-of-phase modes of vibration. Wang et al. [88] conducted study of
the mechanisms of nonlocal effect on the transverse vibration of two-dimensional 2D nano

4



  

plates, for example, mono layer graphene and boron-nitride sheets. It is found that such
a nonlocal effect stems from a distributed transverse force due to the curvature change in
the nanoplates and the surface stress due to the nonlocal atom-to-atom interaction. Using
the principle of virtual work the governing equations are derived for rectangular nanoplates.
Solutions for buckling loads are computed using differential quadrature method (DQM). It
is shown that the nonlocal effect is quite significant in graphene sheets and has a decreasing
effect on the buckling loads.

Murmu et al. [89, 90, 91] have studied small-scale effects on the free in-plane vibration of
nano plates employing nonlocal continuum mechanics. Equations of motion of the nonlocal
plate model for this study are derived and presented. Explicit relations for natural frequencies
are obtained through direct separation of variables. It has been shown that nonlocal effects
are quite significant in in-plane vibration studies and need to be included in the continuum
model of nanoplates such as in graphene sheets. Han et al. [92] studied influence of the
molecular structure on indentation size effect in polymers. The indentation size effect in
polymers is examined which manifests itself in increased hardness at decreasing indentation
depths. Nikolov et al. [93] applied the micro-mechanical origin of size effects in elasticity
of solid polymers. It was shown that size effects related to rotational gradients can be
interpreted in terms of Frank elasticity arising from the finite bending stiffness of the polymer
chains and their interactions. A relationship between the gradient of the nematic director
field, related to the orientation of the polymer segments, and the curvature tensor associated
with rotational gradients was derived.

The focus of the present work is to develop analytical solutions for bending and free
vibration of laminates composite plates using the nonlocal third-order shear deformation
theory which accounts for surface stress effects. The nonlocal theory used here is that of
Eringen [1], which considers the size effect by assuming that stress at a point depends not
only on the strain at that point but also on strains at the neighbouring points. Navier
solutions of bending and vibration of simply supported rectangular laminates are presented
using this nonlocal theory to illustrate the effect of nonlocality on deflections and natural
frequencies for various side-to-thickness ratios a/h and plate aspect ratios a/b.

The paper is organized as follows. Section 2 contains an introduction to the nonlocal
theories. In Section 3 the third-order shear deformation theory of Reddy [3, 2] is extended
to include the nonlocal and surface effects. The surface stresses for plates and laminates
are discussed in detail in this section. The equilibrium equations are also presented in the
section. In Section 4 the Navier solutions for antisymmetric cross-ply and angle-ply laminates
are presented. Section 5 is devoted to numerical examples. Conclusions and remarks are
presented in 6.
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2 Nonlocal theories

Nonlocal elasticity theory invokes the length scale parameter in order to account for the size
effects [1]. Neglecting the size effects, when dealing with micro and nano scale fields, may
result in inaccurate solutions. So one must consider the small scale effects and atomic forces
to obtain solutions with acceptable accuracy. In nonlocal elasticity theory, it is assumed that
the stress at a point in a continuum body is function of the strain at all neighbor points of the
continuum. The effects of small scale and atomic forces are considered as material parame-
ters in the constitutive equation. Following experimental observations, Eringen proposed a
constitutive model that expresses the nonlocal stress tensor σ

nl at point x as

σ
nl =

∫

K(|x′ − x|, τ)σ(x′) dx′ (1)

where, σ(x) is the classical macroscopic stress tensor at point x and K(|x′ − x|, τ) is the
Kernel function which is normalized over the volume of the body represents the nonlocal
modulus. |x′ − x| is the nonlocal distance and τ is the material constant that depends on
the internal and external characteristic length.

As per Hooke’s law we have

σ(x) = C(x) : ǫ(x) (2)

where ε is the strain tensor and C is the fourth-order elasticity tensor. Equations (1) and
(2) together form the nonlocal constitutive equation for Hookean solid. Equation (1) can be
represented equivalently in differential form as

(

1 − τ 2l2∇2
)

σ
nl = σ (3)

where τ = (e0a)2

l2
, e0 is a material constant and a and l are the internal and external charac-

teristic lengths respectively. In general, ∇2 is the three-dimensional Laplace operator. The
nonlocal parameter µ can be taken as µ = τ 2l2.

3 Third-order shear deformation theory

In the third-order shear deformation theory (TSDT) of Reddy [2, 3] the assumptions of
straightness and normality of the transverse normal after deformation are relaxed by ex-
panding the displacements as cubic functions of thickness coordinate. Consequently, the
transverse shear strains and transverse shear stresses vary quadratically through the thick-
ness of the laminate and avoids the need for shear correction factors. Here, the Reddy
third-order shear deformation theory is reformulated to account for the Eringen’s nonlocal
model and surface stress effect.
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3.1 Displacement field

The displacement field is based on a quadratic variation of transverse shear strains (and hence
stresses) and vanishing of transverse shear stresses on top and bottom of a general laminate
composed of different layers. The displacement field of the Reddy third-order theory [2, 3]
is

u(x, y, z) = u0(x, y) + zφx − 4z3

3h2

(

φx +
∂w0

∂x

)

v(x, y, z) = v0(x, y) + zφy − 4z3

3h2

(

φy +
∂w0

∂y

)

(4)

w(x, y, z) = w0(x, y)

where u0, v0, w0 are in-plane displacements of a point on the mid-plane (i.e., z = 0). φx and
φy denote the rotations of a transverse normal line at the mid-plane (φx = ∂u

∂z
and φy = ∂u

∂z
).

The total thickness of the laminate is given by h.

3.2 Strain-displacement relations

The strain fields of the TSDT is
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where c1 = 4
3h2 and c2 = 3c1.

3.3 Stress-strain relationships

The constitutive equations for each layer in the global coordinates are given by [3]






σxx

σyy

σxy







=





Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66











εxx

εyy

εxy







,

{

σyz

σxz

}

=

[

Q̄44 Q̄45

Q̄45 Q̄55

]{

γyz

γxz

}

(10)

where

Q̄11 = Q11

[

cos4 θ + 2 (Q12 + 2Q66) sin2 θ cos2 θ
]

+ Q22 sin4 θ

Q̄12 = (Q11 + Q22 − 4Q66) sin2 θ cos2 θ + Q12

(

sin4 θ + cos4 θ
)

Q̄16 = (Q11 − Q12 − 2Q66) sin θ cos3 θ + (Q12 − Q22 + 2Q66) sin3 θ cos θ
(11)

Q̄22 = Q11 sin4 θ + 2 (Q16 + 2Q66) sin2 θ cos2 θ + Q22 cos4 θ

Q̄26 = (Q11 − Q12 − 2Q66) sin3 θ cos θ + (Q12 − Q22 + 2Q66) sin θ cos3 θ

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ + Q66 sin4 θ cos4 θ

Q̄44 = Q44 cos2 θ + Q55 sin2 θ

Q̄45 = (Q55 − Q44) cos θ sin θ (12)

Q̄55 = Q44 sin2 θ + Q55 cos2 θ

Q11 =
E1

1 − ν12ν21

, Q12 =
ν12E1

1 − ν12ν21

, Q22 =
E2

1 − ν12ν21

, Q66 = G12, (13)

Q16 = Q26 = 0, Q44 = G23, Q45 = G12, Q55 = G13 (14)

where θ is the orientation, measured counterclockwise, from the fiber direction to the positive
x-axis, E1 and E2 are elastic moduli, ν12 and ν21 are Poisson’s ratios, and G12, G13 and G23

are the shear moduli.

3.3.1 Surface stress

Because of interaction between the elastic surface and bulk material, in-plane forces in dif-
ferent directions act on the plate. The resulting in-plane loads lead to surface stresses. The
general expression for surface stresses as given by Gurtin and Murdoch (see [4] and [5]) is
given by

σs
αβ = τ sδαβ + 2(µs − τ s)εαβ + (λs + τ s)uγ,γδαβ + τ suα,β (15a)

σs
3β = τ su3,β (15b)
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where α, β, γ = 1, 2 and where λs and µs are the Lame’s constants and τ s is the surface
stress parameter. From equations (15), we can write individual surface stresses as

σs
xx = (2µs + λs − τ s) εxx + (λs + τ s) εyy +

(

1 +
∂u

∂x

)

τ s (16)

σs
yy = (2µs + λs − τ s) εyy + (λs + τ s) εxx +

(

1 +
∂v

∂y

)

τ s (17)

σs
xy = 2 (µs − τ s) εxy + τ s ∂u

∂y
(18)

σs
xz = τ s ∂w

∂x
(19)

σs
yz = τ s ∂w

∂y
(20)

Gurtin and Murdoch [4, 5] also gave the surface equilibrium equations as

σs
iα,α + σi3 = ρsüi (21)

where i = 1, 2, 3 and α = 1, 2. The equilibrium equation (21) will not be satisfied since we
have taken σzz to be zero. To satisfy the equilibrium condition (21), we assume σzz to vary
linearly through the thickness and is given by the equation

σzz =







(

∂σs
xz

∂x
+

∂σs
yz

∂y
− ρs ∂w

∂t2

)∣

∣

∣

at top
+

(

∂σs
xz

∂x
+

∂σs
yz

∂y
− ρs ∂w

∂t2

)∣

∣

∣

at bottom

2







+







(

∂σs
xz

∂x
+

∂σs
yz

∂y
− ρs ∂w

∂t2

)
∣

∣

∣

at top
−

(

∂σs
xz

∂x
+

∂σs
yz

∂y
− ρs ∂w

∂t2

)
∣

∣

∣

at bottom

h






z (22)

The superscript s is used to denote the quantities corresponding to the surface.
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3.4 Stress resultants

The stress resultants for TSDT including surface stress effects are given as
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where σk
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σzz

After substituting the values of stresses from Equations (10), and (16)–(22) into Equa-
tions (23)–(26), we obtain stress resultants in terms of strains as,
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where Zi1, Li1 and Oi1 (i = 1, 2, 3) are given in the appendix.

{Aij, Bij, Dij, Eij, Fij, Hij} =
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Using Equation (3), the nonlocal stress resultants can be written as
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(32)

(

1 − µ∇2
)







Mnl
xx

Mnl
yy

Mnl
xy







=







Mxx

Myy

Mxy







(33)

(

1 − µ∇2
)







P nl
xx

P nl
yy

P nl
xy







=







Pxx

Pyy

Pxy







(34)

(

1 − µ∇2
)















Qnl
xz

Qnl
yz

Rnl
xz

Rnl
yz















=















Qxz

Qyz

Rxz

Ryz















(35)
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3.5 Equations of equilibrium

The governing equilibrium equations for the third-order shear deformation theory for lam-
inated plates can be derived using the principle of virtual displacements (Hamilton’s prin-
ciple). By substituting the nonlocal stress resultants in terms of displacements into the
statement of principle of virtual displacements and using integration-by-parts, the equations
of motion can be obtained as [73]

∂ Nnl
xx

∂x
+

∂ Nnl
xy

∂y
=

(

1 − µ∇2
)

(

I0ü0 + J1φ̈x − c1I3
∂ ẅ0

∂x

)

(36)

∂ Nnl
xy

∂x
+

∂ Nnl
yy

∂y
=

(

1 − µ∇2
)

(

I0v̈0 + J1φ̈y − c1I3
∂ ẅ0

∂y

)

(37)

∂ Q̄nl
x

∂x
+

∂ Q̄nl
y

∂y
+

∂

∂x

(

Nnl
xx

∂ w0

∂x
+ Nnl

yy

∂ w0

∂y

)

+
∂

∂y

(

Nnl
xy

∂ w0

∂x
+ Nnl

yy

∂ w0

∂y

)

+c1

(

∂2 P nl
xx

∂x 2 + 2
∂2 P nl

xy

∂x ∂y
+

∂2 P nl
yy

∂y2

)

+ q =
(

1 − µ∇2
)

[

I0ẅ0 − c2
1I6

(

∂ ẅ0

∂x 2 +
∂2 ẅ0

∂y2

)]

+
(

1 − µ∇2
)

{

c1

[

I3

(

∂ ü0

∂x
+

∂ v̈0

∂y

)

+ J4

(

∂ φ̈x

∂x
+

∂ φ̈y

∂y

)

]}

(38)

∂ M̄nl
xx

∂x
+

∂ M̄nl
xy

∂y
− Q̄nl

x =
(

1 − µ∇2
)

(

J1ü0 + K2φ̈x − c1J4
∂ ẅ0

∂x

)

(39)

∂ M̄nl
xy

∂x
+

∂ M̄nl
yy

∂y
− Q̄nl

y =
(

1 − µ∇2
)

(

J1v̈0 + K2φ̈y − c1J4
∂ ẅ0

∂y

)

(40)

where

M̄nl
α β = Mnl

α β − c1P
nl
α β (α, β = 1, 2, 6) : Q̄α = Qnl

α − c2R
nl
α (α = 4, 5) (41)

Ii =
N
∑

k=1

∫ zk+1

zk

ρ(k)(z)i dz (i = 0, 1, 2, .., 6) (42)

Ji = Ii − c1Ii+2, K2 = I2 − 2c1I4 + c2
1I6, c1 =

4

3h2
, c2 = 3c1 (43)

4 Navier’s solution procedure

In Navier’s method, the generalized displacements are expanded in a double Fourier series in
terms of unknown parameters. The choice of the functions in the series is restricted to those
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which satisfy the boundary conditions of the problem. Substitution of the displacement
expansions into the governing equations should result in a unique, invertible, set of algebraic
equations among the parameters of the expansion (see Reddy [3]). Navier’s solution can be
developed for rectangular laminates with two sets of simply supported boundary conditions
(SS-1 and SS-2). It turns out that the type of simply supported boundary conditions for
antisymmetric cross-ply (SS-1) and antisymmetric angle-ply (SS-2) are different, as will be
shown shortly. In the following subsections, Navier solutions of cross-ply laminates for the
SS-1 boundary conditions and anti-symmetric angle-ply laminates for the SS-2 boundary
conditions including nonlocal and surface stress effects are presented.

4.1 Boundary conditions and displacement expansions for SS-1

The SS-1 boundary conditions for the third-order shear deformation plate theory are

u0(x, 0, t) = 0, u0(x, b, t) = 0, v0(0, y, t) = 0, v0(a, y, t) = 0

φx(x, 0, t) = 0, φx(x, b, t) = 0, φy(0, y, t) = 0, φy(a, y, t) = 0 (44)

w0(x, 0, t) = 0, w0(x, b, t) = 0, w0(0, y, t) = 0, w0(a, y, t) = 0

Nxx(0, y, t) = 0, Nxx(a, y, t) = 0, Nyy(x, 0, t) = 0, Nyy(x, b, t) = 0
(45)

M̄xx(0, y, t) = 0, M̄xx(a, y, t) = 0, M̄yy(x, 0, t) = 0, M̄yy(x, b, t) = 0

The following displacement expansions that satisfy SS-1 boundary conditions are used:

u0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Umn(t) cos αx sin βy

v0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Vmn(t) sin αx cos βy

w0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Wmn(t) sin αx sin βy (46)

φx(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Xmn(t) cos αx sin βy

φy(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Ymn(t) sin αx cos βy

where α = mπ
a

and β = nπ
b

. Umn, Vmn, Wmn, Xmn and Ymn are coefficients that are to be
determined.
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4.2 Boundary conditions and displacement expansions for SS-2

The SS-2 boundary conditions for the third-order shear deformation plate theory are

u0(0, y, t) = 0, u0(a, y, t) = 0, v0(x, 0, t) = 0, v0(x, b, t) = 0

φx(x, 0, t) = 0, φx(x, b, t) = 0, φy(0, y, t) = 0, φy(a, y, t) = 0 (47)

w0(x, 0, t) = 0, w0(x, b, t) = 0, w0(0, y, t) = 0, w0(a, y, t) = 0

Nxy(0, y, t) = 0, Nxy(a, y, t) = 0, Nxy(x, 0, t) = 0, Nxy(x, b, t) = 0
M̄xx(0, y, t) = 0, M̄xx(a, y, t) = 0, M̄yy(x, 0, t) = 0, M̄yy(x, b, t) = 0

The following displacement expansions that satisfy SS-2 boundary conditions are used:

u0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Umn(t) sin αx cos βy

v0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Vmn(t) cos αx sin βy

w0(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Wmn(t) sin αx sin βy (48)

φx(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Xmn(t) cos αx sin βy

φy(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Ymn(t) sin αx cos βy

4.3 The Navier solutions

For both SS-1 and SS-2, the transverse load qz(x, y, t) is expressed in double Fourier sine
series as

qz(x, y, t) =
∞
∑

n=1

∞
∑

m=1

Qmn(t) sin αx sin βy

(49)

Qmn(t) =
4

ab

∫ a

0

∫ b

0

qz(x, y, t) sin αx sin βy dx dy

Substituting the displacement expansions in Equation (48) into the governing equations of
equilibrium yields the following ordinary differential equations in time:

S∆ + M∆̈ = F (50)
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where ∆ is the displacement vector, ∆̈ is the acceleration vector, S and M are the stiffness
and mass matrices, respectively. The displacement ∆ and force vector F are given as

∆ =























Umn

Vmn

Wmn

Xmn

Ymn























, F = (1 − µ∇2)























0
0

Qmn

0
0























, Qmn =
16q0

π2mn
for uniform load (51)

The coefficients of the stiffness matrix S and mass matrix M for the two types of boundary
conditions are given in the subsections to follow.

For static bending analysis we set ∆̈ to zero and obtain

S∆ = F (52)

For the natural vibration, we assume that the solution is periodic ∆(t) = ∆0e
iωt, where ω is

the frequency of natural vibration and i =
√

−1. Thus, the free vibration problem consists
of solving the eigenvalue problem

(

S − ω2M
)

∆ = 0 (53)

4.3.1 Anti-symmetric cross-ply laminate

The coefficients of the stiffness matrix Sij for anti-symmetric cross-ply laminate are

S11 = A11α
2 + A66β

2 + (2µs + λs)
(

α2h + 2α2b
)

S12 = (A12 + A66)αβ

S13 = −c1[E11α
2 + (E12 + 2E66)β

2]α − c1(2µ
s + λs)

(

h4

32
α3 +

bh3

4
α3

)

S14 = B̂11α
2 + B̂33β

2 + (2µs + λs)

(−c1h
4

32
α2 + bhα2 − c1bh

3

4
α2

)

S15 = (B̂12 + B̂66)αβ

S21 = S12

S22 = A66α
2 + A22β

2 + (2µs + λs)
(

β2h + 2β2a
)

S23 = −c1[E22β
2 + (E12 + 2E66)α

2]β − c1(2µ
s + λs)

(

h4

32
β3 +

ah3

4
β3

)

S24 = (B̂12 + B̂66)αβ
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S25 = B̂66α
2 + B̂22β

2 + (2µs + λs)

(−c1h
4

32
β2 + ahβ2 − c1ah3

4
β2

)

S31 = S13 − c1
bh3

8
α3(4µs + λs)

S32 = S23 − c1
ah3

8
β3(4µs + λs)

S33 = Ā55α
2 + Ā44β

2 + c2
1[H11α

4 + 2(H12 + 2H66)α
2β2 + H22β

4]

+
c1νh4τ s

40(1 − ν)
(α4 + β4 + α2β2) + (2µs + λs)

[

h7

448
(c2

1α
4 + c2

1β
4) +

h6

32
(bc2

1α
4 + ac2

1β
4)

]

S34 = Â55α − c1[F̂11α
3 + (F̂12 + 2F̂66)αβ2]

+ (2µs + λs)

(−c1h
5

80
α3 +

c2
1h

7

448
α3 − c1h

4

8
bα3 +

c2
1h

6

32
bα3

)

(54)

S35 = Ā44β − c1[F̂22β
3 + (F̂12 + 2F̂66)α

2β]

+ (2µs + λs)

(−c1h
5

80
β3 +

c2
1h

7

448
β3 − c1h

4

8
aβ3 +

c2
1h

6

32
aβ3

)

S41 = S14 + (2µs + λs)

(

bhα2 − c1
bh3

8
α2

)

S42 = S24

S43 = S34 +

(

νh2τ s

6(1 − ν)
− c1h

4ντ s

40(1 − ν)

)

(α3 + αβ2)

+ (2µs + λs)

(−c1h
5

80
α3 +

c2
1h

7

448
α3 − c1h

4

8
bα3 +

c2
1h

6

32
bα3

)

S44 = Ā55 + D̄11α
2 + D̄66β

2

+ (2µs + λs)

(

h3

12
α2 − c1h

5

40
α2 − c1bh

4

4
α2 +

c2
1h

7

448
α2 +

c2
1bh

6

32
α2

)

S45 = (D̄12 + D̄66)αβ

S51 = S15

S52 = S25 + (2µs + λs)

(

ahβ2 − c1
ah3

8
β2

)

S53 = S35 +

(

νh2τ s

6(1 − ν)
− c1h

4ντ s

40(1 − ν)

)

(β3 + βα2)

+ (2µs + λs)

(−c1h
5

80
β3 +

c2
1h

7

448
β3 − c1h

4

8
aβ3 +

c2
1h

6

32
aβ3

)

S54 = S45

S55 = Ā44 + D̄33α
2 + D̄22β

2 + (2µs + λs

(

h3

12
β2 − c1h

5

40
β2 − c1ah4

4
α2 +

c2
1h

7

448
β2 +

c2
1bh

6

32
β2

)
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where

Âij = Aij − c1Dij, B̂ij = Bij − c1Eij, D̂ij = Dij − c1Fij (i, j = 1, 2, 6)

F̂ij = Fij − c1Hij, Āij = Âij − c1D̂ij = Aij − 2c1Dij + c2
1Fij (i, j = 1, 2, 6) (55)

D̄ij = D̂ij − c1F̂ij = Dij − 2c1Fij + c2
1Hij (i, j = 1, 2, 6)

The coefficients of the mass matrix Mij are

M11 = I0, M22 = I0

M33 = I0 + c2
1I6(α

2 + β2) + 2aρs c1h
4νρs

160(1 − ν)
(α2 + β2), M34 = −c1J4α

M35 = −c1J4β,M43 = − νh2ρs

6(1 − ν)
α +

c1h
4νρs

160(1 − ν)
β (56)

M44 = K2, M53 = − νh2ρs

6(1 − ν)
β +

c1h
4νρs

160(1 − ν)
α

M55 = K2

where ρs is the surface density.
The in-plane stresses in each laminate layer can be computed using Equation (10), where

the strains are given as







εxx

εyy

εxy







=
∞
∑

m=1

∞
∑

n=1







(

R̄xx
mn(1, 1) + zS̄xx

mn(1, 1) + c1z
3T̄ xx

mn(1, 1)
)

sin αx sin βy
(

R̄xx
mn(2, 1) + zS̄xx

mn(2, 1) + c1z
3T̄ xx

mn(2, 1)
)

sin αx sin βy
(

R̄xx
mn(3, 1) + zS̄xx

mn(3, 1) + c1z
3T̄ xx

mn(3, 1)
)

sin αx sin βy







(57)

where






R̄xx
mn

R̄yy
mn

R̄xy
mn







=







−αUmn

−βVmn

βUmn + αVmn







,







S̄xx
mn

S̄yy
mn

S̄xy
mn







=







−αXmn

−βYmn

βXmn + αYmn







(58)







T̄ xx
mn

T̄ yy
mn

T̄ xy
mn







=







αXmn + α2Wmn

βYmn + β2Wmn

−(βXmn + αYmn + 2αβWmn)







(59)

The transverse stresses are determined from the following equations

{

σyz

σxz

}

= (1 − c2z
2)

∞
∑

m=1

∞
∑

n=1

[

Q44 0
0 Q55

]{

(Ymn + βWmn) sin αx cos βy
(Xmn + αWmn) cos αx sin βy

}

(60)

17



  

4.3.2 Anti-symmetric angle-ply laminate

The stiffness coefficients Sij for the SS-2 case are given by

S11 = A11α
2 + A66β

2 + (2µs + λs)
(

α2h + 2α2b
)

S12 = (A12 + A66)αβ

S13 = −c1(3E16α
2 + E26β

2)β − c1(2µ
s + λs)

(

h4

32
α3 +

bh3

4
α3

)

S14 = 2B̂16αβ + (2µs + λs)

(−c1h
4

32
α2 + bhα2 − c1bh

3

4
α2

)

S15 = B̂16α
2 + B̂26β

2, S21 = S12

S22 = A66α
2 + A22β

2 + (2µs + λs)
(

β2h + 2β2a
)

S23 = −c1(E16α
2 + 3E26β

2)α − c1(2µ
s + λs)

(

h4

32
β3 +

ah3

4
β3

)

S24 = S15

S25 = 2B̂26αβ + (2µs + λs)

(−c1h
4

32
β2 + ahβ2 − c1ah3

4
β2

)

S31 = S13 + c1
bh3

8
α3(4µs + λs)

S32 = S23 + c1
ah3

8
β3(4µs + λs)

S33 = Ā55α
2 + Ā44β

2 + c2
1[H11α

4 + 2(H12 + 2H66)α
2β2 + H22β

4]

+
c1νh4τ s

40(1 − ν)
(α4 + β4 + α2β2) + (2µs + λs)

[

h7

448
(c2

1α
4 + c2

1β
4) +

h6

32
(bc2

1α
4 + ac2

1β
4)

]

(61)

S34 = Â55α − c1[F̂11α
3 + (F̂12 + 2F̂66)αβ2]

+ (2µs + λs)

(−c1h
5

80
α3 +

c2
1h

7

448
α3 − c1h

4

8
bα3 +

c2
1h

6

32
bα3

)

S35 = Ā44α − c1[F̂22β
3 + (F̂12 + 2F̂66)α

2β2]

+ (2µs + λs)

(−c1h
5

80
β3 +

c2
1h

7

448
β3 − c1h

4

8
aβ3 +

c2
1h

6

32
aβ3

)

S41 = S14 + (2µs + λs)

(

bhα2 − c1
bh3

8
α2

)
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S42 = S24

S43 = S34 +

(

νh2τ s

6(1 − ν)
− c1h

4ντ s

40(1 − ν)

)

(α3 + αβ2)

S44 = Ā55 + D̄11α
2 + D̄66β

2

+ (2µs + λs)

(

h3

12
α2 − c1h

5

40
α2 − c1bh

4

4
α2 +

c2
1h

7

448
α2 +

c2
1bh

6

32
α2

)

S45 = (D̄12 + D̄66)αβ, S51 = S15

S52 = S25 + (2µs + λs)

(

ahβ2 − c1
ah3

8
β2

)

S53 = S35 +

(

νh2τ s

6(1 − ν)
− c1h

4ντ s

40(1 − ν)

)

(β3 + βα2)

+ (2µs + λs)

(−c1h
5

80
β3 +

c2
1h

7

448
β3 − c1h

4

8
aβ3 +

c2
1h

6

32
aβ3

)

S54 = S45

S55 = Ā44 + D̄33α
2 + D̄22β

2 + (2µs + λs)

(

h3

12
β2 − c1h

5

40
β2 − c1ah4

4
α2 +

c2
1h

7

448
β2 +

c2
1bh

6

32
β2

)

The coefficients of the mass matrix for anti-symmetric angle-ply laminates are same as those
in Equation (56). The in-plane stresses in each layer can be computed using the equation
(10) where the strains are given as











ε
(0)
xx

ε
(0)
yy

ε
(0)
xy











=
∞
∑

m=1

∞
∑

n=1







αUmn cos αx cos βy
βVmn cos αx cos βy

−(βUmn + αVmn) sin αx sin βy







(62)











ε
(1)
xx

ε
(1)
yy

ε
(1)
xy











= −
∞
∑

m=1

∞
∑

n=1







αXmn sin αx sin βy
βYmn cos αx cos βy

−(βXmn + αYmn) cos αx cos βy







(63)











ε
(3)
xx

ε
(3)
yy

ε
(3)
xy











= c1

∞
∑

m=1

∞
∑

n=1







(αXmn + α2Wmn) sin αx sin βy
(βYmn + β2Wmn) sin αx sin βy

−(βXmn + αYmn + 2αβWmn) cos αx cos βy







(64)
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5 Numerical Examples

5.1 Preliminary comments

In this section we present several examples of the analytical solutions obtained in this study.
Navier’s solution is obtained using 100 terms in the series for uniformly distributed load.
Both bending and free vibration solutions are presented for each problem. The following
four examples are considered:

(1) Isotropic plates with following material properties E = 30 × 106 Mpa, ν = 0.3, a = 10
mm, q0 = 1, and ρ = 1, and subjected to a uniformly distributed transverse load of
intensity q0.

(2) Antisymmetric cross-ply (0◦/90◦/0◦/90◦) laminated plates.

(3) Symmetric cross-ply (0◦/90◦/90◦/0◦) laminated plates.

(4) Antisymmetric angle-ply (30◦/ − 30◦/30◦/ − 30◦) laminated plates.

For all examples the thickness of all layers are equal and each layer is orthotropic with
following material properties: E1 = 175×103 MPa, E2 = 7×103 MPa, G12 = 3.5×103 MPa,
G13 = 3.5 × 103 MPa, G23 = 1.4 × 103 MPa, ν12 = 0.25, ν13 = 0.25, ν21 = (E2/E1)ν12, and
a = 20 mm. The following notations are used for deflection and frequency namely: w̄nl is the
dimensionless maximum deflection with nonlocal effect; w̄s is the dimensionless maximum
deflection with surface effect; w̄nls dimensionless maximum deflection with nonlocal and sur-
face effect. ω̄nl dimensionless fundamental frequency with nonlocal effect; ω̄s dimensionless
first mode frequency with surface effect. ω̄nls dimensionless fundamental frequency with non-
local and surface effect. For the isotropic plate example, the dimensionless maximum center
deflection, fundamental frequency, respectively, are obtained as w̄ = w0 × (Eh3/q0a

4) × 102,
ω̄ = ωh

√

ρ/G. For all the laminated plate examples, the maximum center deflection, and

fundamental frequency are dimensionless as w̄ = w× (E2h
3/q0a

4)×102 and ω̄ = ωh
√

ρ/G13,
where a, b, and h are the length, width and thickness of the plate, respectively; q0 is the
intensity of the uniformly distributed transverse load and ρ is the material density; E and
G are Young’s and shear moduli, respectively. The dimensionless stress measures used are

σ̄xx = σxx

(a

2
,
b

2
,
h

2

)( h2

b2q0

)

, σ̄yy = σyy

(a

2
,
b

2
,
h

2

)( h2

b2q0

)

(65)

τ̄yz = τyz

(a

2
, 0, 0

)( h

bq0

)

, τ̄xz = τxz

(

0,
b

2
, 0

)( h

bq0

)

20



  

Table 1: Comparison of dimensionless maximum deflection, stresses, and fundamental fre-
quency considering nonlocal and surface effects.

a/b a/h µ τ s (N/m) ω̄ w̄ σ̄xx σ̄yy τ̄yz τ̄xz

1 10 0 0.0 3.12158 4.67311 0.28817 0.28817 0.45601 0.45601
0 1.7 3.12158 4.67311 0.28817 0.28817 0.45600 0.45600
0 3.4 3.12157 4.67312 0.28816 0.28816 0.45600 0.45600
0 6.8 3.12157 4.67312 0.28816 0.28816 0.45600 0.45600
1 0.0 2.33344 5.50767 0.32446 0.32446 0.99054 0.99054
3 0.0 1.70051 7.17679 0.39105 0.39105 2.05960 2.05960
5 0.0 1.40336 8.84591 0.45954 0.45954 3.12866 3.12866
1 1.7 2.33344 5.50765 0.32447 0.32447 0.99054 0.99054
3 3.4 1.70051 7.17678 0.39108 0.39108 2.05960 2.05960
5 6.8 1.40335 8.84592 0.45955 0.45955 3.12866 3.12866

1 20 0 0.0 6.02405 4.49614 0.28749 0.288171 0.46252 0.46252
0 1.7 6.02405 4.49615 0.28749 0.287488 0.45252 0.45252
0 3.4 6.02405 4.49616 0.28749 0.287489 0.46252 0.46252
0 6.8 6.02406 4.49617 0.28749 0.28749 0.46252 0.46252
1 0.0 4.50309 5.30811 0.32345 0.32346 1.00854 1.00854
3 0.0 3.28214 6.93205 0.39539 0.39539 2.10057 2.10057
5 0.0 2.70821 8.55599 0.46733 0.46733 3.12606 3.12606
1 1.7 4.50308 5.30812 0.32346 0.32346 1.00854 1.00854
3 3.4 3.28214 6.93206 0.39539 0.39539 2.10057 2.10057
5 6.8 2.70821 8.55600 0.46733 0.46733 3.12605 3.12605
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Figure 1: (a)Deflection ratio w̄nl/w̄ versus a/h for various values of µ and τ s = 0. (b)
Deflection ratio versus a/h for various values of τ s and µ = 0.
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5.2 Isotropic plates

A simply supported isotropic square plate subjected to a uniformly distributed transverse
load is considered. Both static bending and free vibration analysis has been performed.
Table 1 shows the nondimensional maximum values of deflections, stresses and fundamental
frequency. Two different aspect ratios of a/h = 10 and a/h = 20 are considered. The nonlo-
cal parameter µ and surface effect parameter τ s are varied. It is observed that the maximum
values of the dimensionless deflection increases with increase in nonlocal parameters µ and
τ s. The dimensionless frequency decreases with an increase in nonlocal parameters. For a
fixed nonlocal parameter an increase in surface parameter has a stiffening effect and there is
a decrease in the maximum deflection and increase in the frequency as given in Table 1. The
rate of change in the solutions for the surface effect is quite small; the change is not seen in
some cases unless additional decimal places are reported.

Figure 1 (a) shows the variation of deflection ratio w̄nl/w̄ (ratio of dimensionless max-
imum deflection with nonlocal effect to the dimensionless maximum deflection with out
nonlocal effect) with increasing values of a/h. Figure 1(b) shows variation of deflection ratio
w̄s/w̄ with increasing values of a/h where w̄s/w̄ is the ratio of dimensionless maximum de-
flection with surface effect to the dimensionless maximum deflection with out surface effect.
It is observed that the ratio increases as the value of a/h increases.

Figure 2 (a) shows the variation of deflection ratio w̄nl/w̄ with increasing values of a/h.
Figure 2(b) shows the variation of frequency ratio i.e ω̄nls/ω̄ with increasing values of a/h
where ω̄nls/ω̄ is the ratio of dimensionless fundamental frequency with nonlocal effect to the
dimensionless fundamental frequency without the nonlocal effect.

Figure 3(a) shows the variation of frequency ratio ω̄s/ω̄ with increasing values of a/h
where ω̄s/ω̄ is the ratio of dimensionless fundamental frequency with surface effect to the
dimensionless fundamental frequency without the surface effect. Figure 3(b) shows the vari-
ation of frequency ratio ω̄nl/ω̄ with increasing values of a/h where ω̄nl/ω̄ is the ratio of
dimensionless fundamental frequency with surface and nonlocal effect to the dimensionless
fundamental frequency with no surface and nonlocal effects. As stated earlier, the rate of
change in the solutions for the surface effect is quite small.

Figure 4(a), Figure 4(b), Figure 5(a), Figure 5(b) respectively shows the variation of σ̄xx,
σ̄yy,τ̄yz,τ̄xz with thickness coordinate z/h for various values of nonlocal parameter µ. The
plot clearly indicates that the nonlocal parameter has a significant effect on the stresses.

5.3 Antisymmetric cross-ply (0◦/90◦/0◦/90◦) laminated plates

A simply supported square antisymmetric cross ply laminated plate subjected to a uniformly
distributed transverse load is considered. Both static bending and free vibration analysis
has been performed. Table 2 shows the dimensionless maximum deflections, stresses and
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Figure 2: (a)Deflection ratio versus a/h for various values of µ and τ s,(b) Frequency ratio
versus a/h for various values of µ and τ s = 0
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Figure 4: (a) Distribution of σ̄xx predicted by both local and nonlocal TSDT (b) Distribution
of σ̄yy predicted by both local and nonlocal TSDT
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Table 2: Dimensionless maximum deflections and stresses in simply supported antisymmetric
cross-ply laminate (0/90/0/90) under sinusoidally distributed transverse load

a/b a/h µ τ s (N/m) w̄ ω̄ σ̄xx σ̄yy τ̄yz τ̄xz

1 10 0 0.0 1.05268 0.02440 0.74527 0.69058 0.62303 0.62303
0 1.7 1.05271 0.02440 0.74529 0.69060 0.62303 0.62303
0 3.4 1.05273 0.02440 0.7453 0.69062 0.62303 0.62302
0 6.8 1.05276 0.02440 0.74534 0.69066 0.623022 0.62302
1 0.0 1.05314 0.01824 0.74546 0.69086 0.62471 0.62471
3 0.0 1.05405 0.01329 0.74585 0.69141 0.62808 0.62808
5 0.0 1.05496 0.01097 0.74624 0.69196 0.62145 0.62145
1 1.7 1.05316 0.01824 0.74548 0.69088 0.62470 0.62470
3 3.4 1.05409 0.01330 0.74589 0.69144 0.62807 0.62808
5 6.8 1.05504 0.01097 0.74632 0.69203 0.62144 0.62143

20 0 0.0 0.86949 0.01235 0.73810 0.69693 0.63228 0.63228
0 1.7 0.86963 0.01235 0.73830 0.69705 0.63227 0.63227
0 3.4 0.86976 0.01235 0.73840 0.69718 0.63227 0.63226
0 6.8 0.86003 0.01235 0.73870 0.69742 0.63225 0.63225
1 0.0 0.86959 0.00923 0.73825 0.69700 0.63273 0.63273
3 0.0 0.86979 0.00673 0.73837 0.69713 0.63364 0.63364
5 0.0 0.86999 0.00555 0.73850 0.69727 0.63454 0.63454
1 1.7 0.86972 0.00923 0.73838 0.69712 0.63273 0.63272
3 3.4 0.87006 0.00672 0.73863 0.69726 0.63345 0.63362
5 6.8 0.87053 0.00550 0.73902 0.69776 0.63451 0.63450
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first mode frequency for aspect ratio of a/h = 10 and a/h = 20 with nonlocal and surface
effects. The dimensionless stresses are computed as before except σ̄yy is now computed at
h/4. The nonlocal parameter µ and surface effect parameter τ s are varied. It is observed
that the maximum values of the dimensionless deflection increases with increase in nonlocal
parameter. The dimensionless frequency decreases with increase in nonlocal parameter.
For a fixed nonlocal parameter an increase in surface parameter there is a increase in the
maximum deflection and decrease in the frequency as given in Table 2.

Figure 6(a), Figure 6(b), Figure 7(a), Figure 7(b) respectively shows the variation of σ̄xx,
σ̄xx, τ̄yz, and τ̄xz with thickness coordinate z/h for various values of nonlocal parameter µ
clearly indicating the dependence of stresses on nonlocal parameter.

5.4 Symmetric cross-ply (0◦/90◦/90◦/0◦) laminated plates

A simply supported, symmetric cross-ply, square laminated plate subjected to a uniformly
distributed transverse load is considered. Both static bending and free vibration analysis
has been performed. Table 3 shows the nondimensional maximum deflections, stresses, and
fundamental frequency for aspect ratios of a/h = 10 and a/h = 20, and with nonlocal
and surface effects. The dimensionless stresses are computed as before except σ̄yy and τxz

and are computed at h/4. The nonlocal parameter µ and surface effect parameter τ s are
varied. It is observed that the maximum values of the dimensionless deflection increases
with increase in nonlocal parameter. The dimensionless frequency decreases with increase in
nonlocal parameter. For a fixed nonlocal parameter an increase in surface parameter there
is a increase in the maximum deflection and decrease in the frequency as given in Table 3.

Figure 8(a), Figure 8(b), Figure 9(a), Figure 9(b) respectively shows the variation of σ̄xx,
σ̄yy, τ̄yz, and τ̄xz with thickness coordinate z/h for various values of nonlocal parameter µ.

5.5 Antisymmetric angle-ply (30◦/ − 30◦/30◦/ − 30◦) plates

An simply supported square antisymmetric angle-ply laminated plate subjected to a uni-
formly distributed load is considered for static bending and free vibration analysis. Ta-
ble 4 shows the dimensionless maximum deflections, stresses and first mode frequency for
a/h = 10, 20 with nonlocal and surface effects. The nonlocal parameter µ and surface effect
parameter τ s are varied. It is observed that the maximum values of the dimensionless deflec-
tion increases with increase in nonlocal parameter. The dimensionless frequency decreases
with increase in nonlocal parameter. For a fixed nonlocal parameter an increase in surface
parameter there is a increase in the maximum deflection and decrease in the frequency as
given in Table 4.
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Figure 6: Distribution of normal stress predicted by both local and nonlocal TSDT for
a/h = 10 (a) σ̄xx (b) σ̄yy
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Figure 7: Distribution of shear stress predicted by both local and nonlocal TSDT for a/h =
10 (a) τ̄yz (b) τ̄xz
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Figure 8: Distribution of stresses predicted by both local and nonlocal TSDT for a/h = 10
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Figure 9: Distribution of shear stresses predicted by both local and nonlocal TSDT for
a/h = 10 (a) τ̄yz (b) τ̄xz
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Figure 10: Distribution of normal stresses predicted by both local and nonlocal TSDT for
a/h = 10 (a) σ̄xx (b) σ̄yy
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Figure 11: Distribution of shear stresses predicted by both local and nonlocal TSDT for
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Table 3: Comparison of dimensionless maximum deflection, stresses, and fundamental fre-
quency considering nonlocal and surface effects.

a/b a/h µ τ s (N/m) w̄ ω̄ σ̄xx σ̄yy τ̄yz τ̄xz

1 10 0 0.0 1.04791 0.63904 0.78113 0.51637 0.35436 0.83210
0 1.7 1.04793 0.63904 0.78115 0.51639 0.35435 0.83215
0 3.4 1.04795 0.63904 0.78117 0.51640 0.35430 0.83216
0 6.8 1.04799 0.63904 0.78121 0.51643 0.35425 0.83217
1 0.0 1.22372 0.47770 0.87500 0.56740 0.98390 1.48640
3 0.0 1.57532 0.34812 1.06275 0.66960 2.24299 2.79510
5 0.0 1.92690 0.287291 1.25050 0.77180 3.50208 4.10370
1 1.7 1.22374 0.44769 0.87503 0.56750 0.98380 1.48650
3 3.4 1.57539 0.34811 1.06282 0.66970 2.24297 2.79520
5 6.8 1.92710 0.28729 1.25066 0.77190 3.50203 4.10380

20 0 0.0 0.77599 0.32140 0.81068 0.40153 0.32469 0.87520
0 1.7 0.77610 0.32145 0.81081 0.40160 0.32464 0.87530
0 3.4 0.77621 0.32142 0.81094 0.40167 0.32460 0.87534
0 6.8 0.77642 0.32139 0.8112 0.4018 0.32450 0.87540
1 0.0 0.80988 0.24025 0.84070 0.40867 0.48547 1.05720
3 0.0 0.87760 0.17509 0.90000 0.42295 0.80704 1.42010
5 0.0 0.94545 0.14449 0.96070 0.43720 1.12860 1.78490
1 1.7 0.81000 0.24024 0.84080 0.40874 0.48543 1.05723
3 3.4 0.87790 0.17508 0.90100 0.42311 0.80694 1.42110
5 6.8 0.94600 0.14448 0.96316 0.43756 1.1284 1.78510

Figures 10(a), 10(b), 11(a), and 11(b), respectively, show the variation of σ̄xx, σ̄xx, τ̄yz,
and τ̄xz with thickness coordinate z/h for various values of the nonlocal parameter µ.

6 Conclusions and Remarks

In this work, analytical solutions are presented for laminated composite plates using the
Reddy nonlocal third-order shear deformation theory considering the surface stress effects.
The nonlocal theory considers the size effect by assuming that stress at a point depends
on the strain at that point as well as on strains at the neighbouring points. Analytical
(Navier’s) solutions of bending and vibration of a simply supported composite laminated
and isotropic plates are developed using this theory to illustrate the effect of nonlocality
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Table 4: Dimensionless maximum deflections, fundamental frequencies, and stresses in simply
supported (SS-2) antisymmetric angle-ply laminates (30/ − 30/30/ − 30) under sinusoidally
distributed transverse load

a/b a/h µ τ s (N/m) w̄ ω̄ σ̄xx σ̄yy τ̄yz τ̄xz

1 10 0 0.0 0.74203 0.16985 0.36808 0.14231 0.64644 0.887065
0 1.7 0.74204 0.16985 0.368085 0.14231 0.64644 0.887064
0 3.4 0.74205 0.16985 0.36809 0.14231 0.64644 0.887061
0 6.8 0.74206 0.16985 0.3681 0.14232 0.64644 0.887059
1 0.0 0.74956 0.12696 0.36951 0.14280 0.75265 1.01536
3 0.0 0.76463 0.09254 0.37238 0.14379 0.96506 1.27196
5 0.0 0.77970 0.07635 0.37525 0.14477 1.17746 1.52856
1 1.7 0.74957 0.12696 0.36952 0.14280 0.75265 1.01535
3 3.4 0.76465 0.09254 0.37239 0.14379 0.96505 1.27195
5 6.8 0.77973 0.07636 0.37528 0.14478 1.17745 1.52855

20 0 0.0 0.55072 0.08552 0.32459 0.12745 0.58790 0.95253
0 1.7 0.55077 0.08552 0.32463 0.12746 0.58789 0.95253
0 3.4 0.55083 0.08552 0.32466 0.12748 0.58787 0.95254
0 6.8 0.55094 0.08552 0.32473 0.12750 0.58784 0.95254
1 0.0 0.55213 0.06393 0.32471 0.12752 0.61420 0.98801
3 0.0 0.55494 0.04659 0.32496 0.12768 0.66679 1.05897
5 0.0 0.55775 0.03845 0.32521 0.12783 0.71938 1.12993
1 1.7 0.55218 0.06393 0.32475 0.12754 0.61419 0.98802
3 3.4 0.55505 0.04659 0.32503 0.12771 0.66676 1.05898
5 6.8 0.55796 0.03845 0.32535 0.12789 0.71931 1.12995
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and surface stress on deflection and vibration frequencies for various span-to-thickness (a/h)
ratios. The results indicate that the maximum center deflections increase with an increase
in the nonlocal parameter µ and surface stress parameter τ s, latter having relatively less
effect. The opposite is observed for frequencies. The difference in solutions between the two
theories decreases as the value of a/h increases. Thus, the parameters associated with the
nonlocal formulation have the softening effect.

The nonlocal third-order theory can be extended to include the von Kármán nonlinearity
and finite element models of the theory can be developed. Bending and vibration solutions
of composite laminates for other types of boundary conditions can be developed using the
finite element method. The effect of nonlocal parameter on the bending and free vibration
response of plates with non-rectangular geometries and for boundary conditions that do not
admit analytical solutions can be determined with the help of the finite element model.
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