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Abstract

In this paper, we present the non-local nonlinear finite element formulations for the case of

nonuniform rotating laminated nano cantilever beams using the Timoshenko beam theory. The

surface stress effects are also taken into consideration. Non-local stress resultants are obtained by

employing Eringen’s nonlocal differential model. Geometric nonlinearity is taken into account

by using the Green Lagrange strain tensor. Numerical solutions of nonlinear bending and free

vibration are presented. Parametric studies have been carried out to understand the effect of

non-local parameter and surface stresses on bending and vibration behavior of cantilever beams.

Also, the effects of angular velocity and hub radius on the vibration behavior of the cantilever

beam are studied.

Keywords: Timoshenko beam, nonlocal parameter, surface stress, geometric non-linearity, fi-

nite element analysis, numerical results.
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1 Introduction

The properties of any material at the macroscopic scale are influenced by the inhomogeneities

present at the microscopic scale and nanoscale. This points to the need for incorporating micro

motions in continuum mechanical formulations [1] and [2]. There has been considerable focus

towards the development of generalized continuum theories [3], which account for the inherent

microstructure in such natural and engineering materials (see [4] and [5]).The notion of general-

ized continua unifies several extended continuum theories that account for such a size dependence

due to the underlying microstructure of the material. A systematic overview and detailed discus-

sion of generalized continuum theories has been given by Bazant and Jirasek [6]. These theories

can be categorized as gradient continuum theories for instance see works of Mindilin et al. ([7],[8],

and [9]), Toupin[10], Steinmann et al. ([1], [11],[12], and [13]), and works of Casterzene et al.[14],

Fleck et al.([15] and [16]), Askes et al.([17], [18], and[19]), micro continuum theories (see works

by Eringen[20],[21],[3]), Steinmann et al. [22], [23], and nonlocal continuum theories (see works

by Eringen[24], Jirasek [25], Reddy [26], and others [27], [28] and [29], [30]). In some of the ear-

lier works, the higher-order gradient theory for finite deformation has been elaborated (for instance

see[31], [32],[33], and [14]) within classical continuum mechanics in the context of homogeniza-

tion approaches. A comparison of various higher order gradient theories can be found in [15]. A

more detailed formulation of gradient approach in spatial and material setting has been presented

in [22] and an overview of nonlocal theories of continuum mechanics can be found in [34].

The nonlocal formulations can be of integral-type with weighted spatial averaging or by im-

plicit gradient models which are categorized as strongly nonlocal, while weakly nonlocal theories

include, for instance, explicit gradient models [6]. In this work, we consider a strongly nonlo-

cal problem. The Timoshenko beam can be considered as a specific one-dimensional version of

a Cosserat continuum. Reddy [26] reformulated various beam theories such as Euler–Bernoulli,
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Timoshenko, Reddy, and Levinson beam theory using Eringen’s nonlocal differential constitutive

model. The analytical solutions for bending, buckling, and free vibrations were also presented in

[26]. Various shear deformation beam theories were also reformulated in recent works by Reddy

[35] using nonlocal differential constitutive relations. Similar works have been carried out to study

bending, buckling, and free vibration of nanobeams by Aydogdu [27], Civalek [28].

Classical continuum mechanics takes exclusively the bulk into account, nevertheless, neglecting

possible contributions from the surface of the deformable body. However, surface effects play

a crucial role in the material behavior, the most prominent example being surface tension . A

mathematical framework was first developed by Gurtin [36] to study the mechanical behavior

of material surfaces. The effect of surface stress on wave propagation in solids has also been

studied by Gurtin [37]. The tensorial nature of surface stress was established using the force

and moment balance laws. Bodies whose boundaries are material surfaces are discussed and the

relation between surface and body stress examined in a recent work by Steinmann [38] and by

Hamilton [39]. The surface effects has been applied to modeling two- [40] and three-dimensional

continua in the frame work of finite element method [41], [42]. Similar studies on static analysis

of nano beams using nonlocal finite element models have been conducted by Mahmoud [43].

Eringen’s nonlocal elasticity theory has also been applied to bending, buckling, and vibration

of nano beams using the Timoshenko beam theory (see [44], [45], [46] and [47]). Analytical solu-

tions for beam bending problems for different boundary conditions were derived using the nonlocal

elasticity theory and the Timoshenko beam theory by Wang et al. [48]. A finite element framework

for nonlocal analysis of beams has also been made in a recent work by Sciarra et al. [49]. Nonlocal

elastic rod models have been developed to investigate the small-scale effect on axial vibrations of

the nano rods by Aydogdu [50] and Adhikari et al[51]. Free vibration analysis of microtubules

based on nonlocal theory and the Euler–Bernoulli beam theory was carried out by Civalek et al.

[28]. Free vibration analysis of functionally graded carbon nanotubes with various thicknesses,

based on the Timoshenko beam theory, has been investigated to obtain numerical solutions us-
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ing Differential Quadrature Method (DQM) by Janghorban et al. [52] and others [53],[54], [55].

Analytical study on the nonlinear free vibration of functionally graded nano beams incorporating

surface effects has been presented in [56], [57] and [58]. The effect of surface stresses on bending

properties of metal nanowires is presented in [59]. Free vibration analysis of rotating nano can-

tilevers using non-local theory and the Euler–Bernoulli beam theory has been carried out in [60]

and [61].

The focus of this work is on nonlocal nonlinear formulation together with surface effects for

static and free vibration analysis of rotating layered nano cantilever beams using Timoshenko

beam theory. A non-local nonlinear finite element formulation for the case of nonuniform rotating

isotropic and laminated nano cantilever beams using the Timoshenko beam theory is presented.

The surface stress effects and the geometric nonlinearity is taken into account by using the Green

Lagrange strain tensor. Numerical results are presented to bring out the parametric effects of non-

local parameter and surface stresses on bending and vibration behavior of layered nano cantilever

beams.

2 Nonlocal Theories

In classical elasticity, stress at a point is a function of strain at that point. Whereas in nonlocal

elasticity, stress at a point is a function of strains at all points in the continuum. In nonlocal

theories, forces between the atoms and internal length scale are considered in the constitutive

equation. Nonlocal theory was first introduced by Eringen [3]. According to Eringen, the stress

field at a point x in an elastic continuum not only depends on the strain field at that point but also

on the strains at all other points of the body. Eringen attributed this fact to the atomic theory of

lattice dynamics and experimental observation on phonon dispersion. The nonlocal stress tensor σ

at a point x in the continuum is expressed as Eringen expressed a constitutive model that expresses
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the nonlocal stress tensor at a point x as

σi j =

∫

v

K(|x′ − x|, τ)ti j(x′)dv(x′) (1)

where the volume intergarl in Eq. (1) is over the region v occupied by the body and ti j is the

Hookean stress stress tensor at point x defined as

ti j = ci jklεkl (2)

and the kernel function K(|x′ − x|, τ) represents the nonlocal modulus, |x′ − x| is the distance and

τ is the material constant that depends on internal and external characteristic lengths. The Kernel

function can be obtained by matching the lattice dynamics with nonlocal results [24]. For example

Kernel function for 2-D problems has the form

K(|x|) = (2π2l2τ2)−1K0(|x|/lτ), τ = e0a/l, (3)

where K0 is the modified Bessel function, a and l are internal and external characteristic lengths,

e0 is the material constant which is defined by the experiment. In the nonlocal linear elasticity,

equations of motion can be obtained from nonlocal balance law

σi j, j + fi = ρü (4)

where i, j take symbols x, y, z and fi, ρ and ui are the components of the body force, mass density

and displacement vector. By substituting Eq. (1) into Eq. (4), the integral form of nonlocal

constitutive equation is obtained. Because solving an integral equation is more difficult than a

differential equation, Eringen [24] proposed a differential form of nonlocal constitutive equation

as

(1 − τ2l2∇2)σi j = ti j (5)
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Eq. (5) is more convenient than the integral relation (1) to apply to various linear elasticity prob-

lems.

3 Laminated Beams

3.1 Classical Timoshenko Beam Theory

In the Timoshenko beam theory, the effects of shear deformation is also considered. Distribution

of transverse shear stress is assumed to be constant through the thickness. The displacement field

is given by

u(x, z, t) =
[

u(x, t) + zϕx

]

êx + w(x, t)êz (6)

The non-zero components of Lagrangian strain tensor can be written as

εxx =

[

du

dx
+

1

2
(
dw

dx
)2

]

+ z

[

dϕx

dx

]

=

[

ε(0)
xx

]

+ z
[

ε(1)
xx

]

(7a)

εxz =
1

2

(

ϕx +
dw

dx

)

(7b)

εzz =
∂w

∂z
+

1

2

[

(
∂u

∂z
)2
+ (

∂w

∂z
)2]
=

1

2
ϕ2

x (7c)

and εzz is positive and non-zero. Its contribution is through a material length scale. Therefore, for

a laminate layer, following stress-strain relationship is used

σxx = Q̄11(εxx − ςxx∆T ) + αεzz

σxz = KsQ̄55γxz (8a)

σzz = αεxx + βεzz

σs
= τ0
+ E sεxx (8b)
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where, α and β are material length scale parameters, Ks is shear correction factor and

Q̄11 = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ + Q22 sin4 θ (9)

Q̄55 = Q55 cos2 θ + Q44 sin2 θ (10)

ςxx = ς1 cos2 θ + ς2 sin2 θ (11)

Q11 =
E1

1 − ν12ν21

, Q12 =
ν12E2

1 − ν12ν21

,Q66 = G12 (12)

Q22 =
E2

1 − ν12ν21

, Q55 = G13, Q44 = G23 (13)

where, E1, E2, ν12, G12, G13 and G23 are six independent engineering constants and θ is the orien-

tation of the laminate layer. The axial force due to rotation of a cantilever beam is given as

Nax =
ρAΩ2

2
(L − x)(L + x − 2r) (14)

Therefore, the stress resultants can be written as

Nxx =

N
∑

k=1

∫ zk+1

zk

bσxx dz +

∮

Γ

σs ds + +
ρAΩ2

2
(L − x)(L + x − 2r) (15a)

Mxx =

N
∑

k=1

∫ zk+1

zk

bσxxz dz +

∮

Γ

σsz ds (15b)

Nzz =

N
∑

k=1

∫ zk+1

zk

bσzz dz (15c)

Nxz =

N
∑

k=1

∫ zk+1

zk

bσxz dz (15d)

Using equations (7) and (8), the stress resultants in equation (15) can be written as

Nxx = Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + h) − H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r) (16a)

Mxx = B̃ε(0)
xx + D̃ε(1)

xx + J̃εzz − Õ∆T (16b)

Nzz = C̃ε(0)
xx + F̃εzz (16c)

Nxz = G̃γxz (16d)
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where

Ã =

N
∑

k=1

Q̄
(k)

11
(zk+1 − zk)b + 2E s (b + h) , B̃ =

1

2

N
∑

k=1

Q̄
(k)

11
(z2

k+1 − z2
k)b (17a)

D̃ =
1

3

N
∑

k=1

Q̄
(k)

11
(z3

k+1 − z3
k)b + E s

[

h3

6
+

bh2

2

]

, G̃ = Ks

N
∑

k=1

Q̄55(zk+1 − zk)b (17b)

C̃ =

N
∑

k=1

α(zk+1 − zk)b, F̃ =

N
∑

k=1

β(zk+1 − zk)b, H̃ =

N
∑

k=1

Q̄
(k)

11
ς(k)

xx (zk+1 − zk)b (17c)

J̃ =
1

2

N
∑

k=1

(z2
k+1 − z2

k)b, Õ =
1

2

N
∑

k=1

Q̄
(k)

11
ς(k)

xx (z2
k+1 − z2

k)b (17d)

3.2 Nonlocal Timoshenko Beam Theory

Using equation (5), the nonlocal stress resultants in terms of strains can be written as

Nnl
xx = µ

d2Nnl
xx

dx2
+ Ãε(0)

xx + B̃ε(1)
xx + C̃εzz + 2τ0 (b + h) − H̃∆T +

ρAΩ2

2
(L − x)(L + x − 2r) (18)

Mnl
xx = µ

d2Mnl
xx

dx2
+ B̃ε(0)

xx + D̃ε(1)
xx + J̃εzz − Õ∆T (19)

Nnl
zz = C̃ε(0)

xx + F̃εzz (20)

Nnl
xz = µ

d2Nnl
xz

dx2
+ G̃γxz (21)

3.3 Equations of motion

Let us consider the transversely applied point load on the cantilever beam as dirac delta function

given as

P = Q0δ(x − xp) (22)

where Q0 is the point load applied at the point xp on the beam. By using the principle of virtual

work, the equations of motion for cantilever beam using Timoshenko beam theory can be obtained
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as

dNxx

dx
+ fx = m0

d2u

dt2
(23)

d

dx

[

Nxz + Nxx

dw

dx

]

+ fz + P = mo

d2w

dt2
(24)

dMxx

dx
− (Nxz + Nzzϕx) = m1

d2ϕ

dt2
(25)

where

mi =

∫

A

ρzi dA

and, fx and fz are the axially and transversely distributed forces, respectively. Manipulating the

equations of motion and using equations (18) to (21), the following relations are obtained:

Nnl
xx = Ãε(0)

xx + B̃ε(1)
xx + C̃εzz + 2τ0 (b + h) − µ

d fx

dx
+ µm0

d3u

dxdt2

− H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r) (26a)

Mnl
xx = B̃ε(0)

xx + D̃ε(1)
xx + J̃εzz − Õ∆T + µm1

d3ϕ

dxdt2
+ µm0

d2w

dt2
− µ fz − µP

− µ
d

dx

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + h) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

− µ
d

dx

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

+ µ
d

dx

[(

C̃ε(0)
xx + F̃εzz

)

ϕx

]

(26b)

Nnl
zz = C̃ε(0)

xx + F̃εzz (26c)

Nnl
xz = G̃γxz − µ

d fz

dx

− µ
d2

dx2

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + h) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

− µ
d2

dx2

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

(26d)

By substituting the expressions for nonlocal stress resultants (26) back in the equations of mo-
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tion (23) to (25), we obtain the equilibrium equation for nonlocal Timoshenko beam theory includ-

ing surface stress effects as

m0

d2u

dt2
− µm0

d4u

dx2dt2
=

d

dx

(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + h) − µ
d fx

dx

)

+
d

dx

(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

+ fx (27)

m0

d2w

dt2
− µm0

d4w

dx2dt2
=

d

dx

(

G̃γxz

)

− µ
d2 fz

dx2
+ fz + P

+
d

dx

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + h) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

+
d

dx

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

− µ
d3

dx3

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

− µ
d3

dx3

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

(28)

m1

d2ϕx

dt2
− µm1

d4ϕx

dx2dt2
=

d

dx

(

B̃ε(0)
xx + D̃ε(1)

xx + J̃εzz − Õ∆T
)

− G̃γxz − ϕx

(

C̃ε(0)
xx + F̃εzz

)

+ µ
d2

dx2

[(

C̃ε(0)
xx + F̃εzz

)

ϕx

]

(29)

3.4 Finite Element Formulation

The principle of virtual work for the Timoshenko beam has the form

0 =

∫ l

0

[Nnl
xxδε

(0)
xx + Mnl

xxδε
(1)
xx + Nnl

xzδγxz + Nnl
zzδεzz

− fxδu − fzδw − Pδw + m0üδu + m0ẅδw + m1ϕ̈δϕ] dx

− Q1δu(0) − Q4δu(l) − Q2δw(0) − Q5δw(l) − Q3δϕ(0) − Q6δϕ(0) (30)

10

ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

After substituting the expressions for stress resultants from equation (26) into the equation (30),

we obtain

0 =

∫ T

0

∫ l

0

(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2
− H̃∆T

+
ρAΩ2

2
(L − x)(L + x − 2r)

)

δε(0)
xx +

(

µm1

d3ϕ

dxdt2
+ µm0

d2w

dt2
− µ fz − µP

)

δε(1)
xx

+

(

B̃ε(0)
xx + D̃ε(1)

xx + J̃εzz − Õ∆T
)

δε(1)
xx

−µ
d

dx

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

δε(1)
xx

−µ
d

dx

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

δε(1)
xx

+ µ
d

dx

[(

C̃ε(0)
xx + F̃εzz

)

ϕx

]

δε(1)
xx +

(

G̃γxz + µm0

d3w

dxdt2
− µ

d fz

dx

)

δγxz

−µ
d2

dx2

[(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

]

δγxz

−µ
d2

dx2

[(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

]

δγxz

+

(

C̃ε(0)
xx + F̃εzz

)

δεzz − fxδu − fzδw − Pδw

+ m0üδu + m1ẅδw + m1ϕ̈xδϕx dx

[

−Q1δu(xa) − Q4δu(xb) − Q2δw(xa) − Q5δw(xb) − Q3δϕ(xa) − Q6δϕ(xb)
]

dT (31)

The underlined expressions in the above equation does not allow us to construct a quadratic

functional. So after omitting the underlined expressions in the equation (31), it can be equivalently

written into the following three equations

∫ T

0

∫ l

0

[

(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dδu

dx

+

(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dδu

dx
− fxδu + m0üδu dx

+ [−Q1δu(xa) − Q4δu(xb)] dT

]

(32)
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∫ T

0

∫ l

0

(

Ãε(0)
xx + B̃ε(1)

xx + C̃εzz + 2τ0 (b + H) − µ
d fx

dx
+ µm0

d3u

dxdt2

)

dw

dx

dδw

dx

+

(

−H̃∆T +
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

dδw

dx

+

(

G̃γxz + µm0

d3w

dxdt2
− µ

d fz

dx

)

dδw

dx
− fzδw − Pδw + m0ẅδw dx

+ [Q2δw(xa) − Q5δw(xb)] dT = 0 (33)

∫ T

0

∫ l

0

(

G̃γxz + µm0

d3w

dxdt2
− µ

d fz

dx

)

δϕx

+

(

µm1

d3ϕx

dxdt2
+ µm0

d2w

dt2
− µ fz − µP

)

dδϕx

dx

+

(

B̃ε(0)
xx + D̃ε(1)

xx + J̃εzz − Õ∆T
) dδϕx

dx

+

(

C̃ε(0)
xx + F̃εzz

)

ϕxδϕx + m1ϕ̈xδϕx dx

+
[

−Q3δϕx(xa) − Q6δϕx(xb)
]

dT = 0 (34)

The generalized displacements (ū, w̄, ϕ̄x) are approximated using the Lagrange interpolation func-

tions

ū(x) =

m
∑

j=1

∆
1
jψ

(1)

j
(x) (35a)

w̄(x) =

n
∑

j=1

∆
2
jψ

(2)

j
(x) (35b)

ϕ̄x(x) =

p
∑

j=1

∆
3
jψ

(3)

j
(x) (35c)

By subsituting equation (35) for ū, w̄ and ϕ̄x, and putting δū = ψ1
i , δw̄ = ψ2

i , δϕ̄x = ψ
3
i

into the weak

form statements (32)-(34), the finite element model of the Timoshenko beam can be expressed as
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













∆
1

∆
2

∆
3







































+









































M11 M12 M13

M21 M22 M23

M31 M32 M33















































































∆̈
1

∆̈
2

∆̈
3







































=







































F1

F2

F3







































(36)
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where the stiffness coefficients K
αβ

i j
, mass matrix coefficients M

αβ

i j
and force coefficients Fα

i
(α, β =

1, 2, 3) are defined as follows:

K11
i j =

∫ l

0

Ã
dψ

(1)

i

dx

dψ
(1)

j

dx
dx

K12
i j =

∫ l

0

1

2
Ã

dw

dx

dψ
(1)

i

dx

dψ
(2)

j

dx
dx

K13
i j =

∫ l

0

1

2
C̃ϕx

dψ
(1)

i

dx
ψ

(3)

j
dx +

∫ l

0

B̃
dψ

(1)

i

dx

dψ
(3)

j

dx
dx

K21
i j =

∫ l

0

Ã
dw

dx

dψ
(2)

i

dx

dψ
(1)

j

dx
dx

K22
i j =

∫ l

0

G̃
dψ

(2)

i

dx

dψ
(2)

j

dx

+
1

2















Ã

(

dw

dx

)2

+ C̃ (ϕx)
2















dψ
(2)

i

dx

dψ
(2)

j

dx
dx (37)

K23
i j =

∫ l

0

G̃
dψ

(2)

i

dx
ψ

(3)

j
dx +

∫ l

0

B̃
dw

dx

dψ
(2)

i

dx

dψ
(3)

j

dx

K31
i j =

∫ l

0

C̃ϕxψ
(3)

i

dψ
(1)

j

dx
dx +

∫ l

0

B̃
dψ

(3)

i

dx

dψ
(1)

j

dx
dx

K32
i j =

∫ l

0

G̃ψ
(3)

i

dψ
(2)

j

dx
dx +

∫ l

0

1

2
B̃

dw

dx

dψ
(3)

i

dx

dψ
(2)

j

dx
dx

K33
i j =

∫ l

0

D̃
dψ

(3)

i

dx

dψ
(3)

j

dx
+ G̃ψ

(3)

i
ψ

(3)

j
+

1

2
J̃ϕx

dψ
(3)

i

dx
ψ

(3)

j

+
1

2















C̃

(

dw

dx

)2

+ F̃(ϕx)
2















ψ
(3)

i
ψ

(3)

j
dx

M11
i j = m0ψ

(1)

i
ψ

(1)

j
+ µm0

dψ
(1)

i

dx

dψ
(1)

j

dx

M21
i j = µm0

dw

dx

dψ
(2)

i

dx

dψ
(1)

j

dx

M22
i j = m0ψ

(2)

i
ψ

(2)

j
+ µm0

dψ
(2)

i

dx

dψ
(2)

j

dx
(38)
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M32
i j = µm0ψ

(3)

i

dψ
(2)

j

dx
+ µm0

dψ
(3)

i

dx
ψ

(2)

j

M33
i j = µm1

dψ
(3)

i

dx

dψ
(3)

j

dx
+ m1ψ

(3)

i
ψ

(3)

j

M12
i j = 0 , M13

i j = 0 , M23
i j = 0 , M31

i j = 0

F1
i =

∫ l

0















fxψ
(1)

i
+ µ

d fx

dx

dψ
(1)

i

dx
− 2τ0(b + h)

dψ
(1)

i

dx















dx

+

∫ l

0

(

H̃∆T −
ρAΩ2

2
(L − x)(L + x − 2r)

)

dψ
(1)

i

dx
dx

+ Q1ψ
(1)

i
(0) + Q4ψ

(1)

i
(l)

F2
i =

∫ l

0















fzψ
(2)

i
+ Pψ

(2)

i
+ µ

(

d fz

dx
+

d fx

dx

dw

dx

)

dψ
(2)

i

dx
− 2τ0(b + h)

dw

dx

dψ
(2)

i

dx















dx

+

∫ l

0

(

H̃∆T −
ρAΩ2

2
(L − x)(L + x − 2r)

)

dw

dx

dψ
(2)

i

dx
dx

+ Q2ψ
(2)

i
(0) + Q5ψ

(2)

i
(l)

F3
i =

∫ l

0















µ















fz

dψ
(3)

i

dx
+ P

dψ
(3)

i

dx
+

d fz

dx
ψ

(3)

i















+ Õ∆T
dψ

(3)

i

dx















dx + Q3ψ
(3)

i
(0) + Q6ψ

(3)

i
(l)

(39)

4 Reduction to the case of Isotropic Beams

The displacement field and corresponding strains are same as given in (6) and (7). For an isotropic

material, following stress-strain relationship is used:
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σxx = Eεxx + αεzz − Eς∆Tεxx

σxz = GKsγxz (40)

σzz = αεxx + βεzz

σs
= τ0
+ E sεxx

where α and β are material length scale parameters, and E, G, Ks and ς are Young’s moduli,

shear moduli, shear correction factor and co-efficient of thermal expansion, respectively. The axial

force due to rotation of a cantilever beam is given as

Nax =
ρAΩ2

2
(L − x)(L + x − 2r) (41)

where ρ is the mass density, Ω is the angular velocity of rotation and r is the hub radius as shown

in Figure 1. The stress resultants can be written as

Nxx =

∫

A

σxx dA +

∮

Γ

σs ds +
ρAΩ2

2
(L − x)(L + x − 2r) (42a)

Mxx =

∫

A

σxxz dA +

∮

Γ

σsz ds (42b)

Nzz =

∫

A

σzz dA (42c)

Nxz =

∫

A

σxz dA (42d)

Using equations (7) and (8), the stress resultants in equation (42) can be written as

Nxx = Ãε(0)
xx + C̃εzz + 2τ0 (b + h) − EAς∆T +

ρAΩ2

2
(L − x)(L + x − 2r) (43a)

Mxx = D̃ε(1)
xx (43b)

Nzz = C̃ε(0)
xx + F̃εzz (43c)

Nxz = G̃γxz (43d)
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where

Ã = EA + 2E s (b + h) (44)

C̃ = αA (45)

D̃ = EI + E s

[

h3

6
+

bh2

2

]

(46)

F̃ = βA (47)

G̃ = KsGA (48)

The equations of motion of the cantilever beam using Timoshenko beam theory can now be

obtained as

dNxx

dx
+ fx = m0

d2u

dt2
(49)

d

dx

[

Nxz + Nxx

dw

dx

]

+ fz + P = mo

d2w

dt2
(50)

dMxx

dx
− (Nxz + Nzzϕx) = m1

d2ϕ

dt2
(51)

where

mi =

∫

A

ρzi dA

and fx and fz are the axially and transversely distributed forces, respectively.

The generalized displacements (ū, w̄, ϕ̄x) are approximated using Lagrange interpolation func-
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tions

ū(x) =

m
∑

j=1

∆
1
jψ

(1)

j
(x) (52a)

w̄(x) =

n
∑

j=1

∆
2
jψ

(2)

j
(x) (52b)

ϕ̄x(x) =

p
∑

j=1

∆
3
jψ

(3)

j
(x) (52c)

By subsituting equation (52) for ū, w̄ and ϕ̄x, and putting δū = ψ1
i , δw̄ = ψ2

i , δϕ̄x = ψ
3
i

into the weak

form statements as discussed in previous sections, the finite element model of the Timoshenko

beam can be expressed as:









































K11 K12 K13

K21 K22 K23

K31 K32 K33















































































∆
1

∆
2

∆
3







































+









































M11 M12 M13

M21 M22 M23

M31 M32 M33















































































∆̈
1

∆̈
2

∆̈
3







































=







































F1

F2

F3







































(53)

where the stiffness coefficients K
αβ

i j
, mass matrix coefficients M

αβ

i j
and force coefficients Fα

i
(α, β =
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1, 2, 3) are defined as follows:

K11
i j =

∫ l

0

Ã
dψ

(1)

i

dx

dψ
(1)

j

dx
dx

K12
i j =

∫ l

0

1

2
Ã

dw

dx

dψ
(1)

i

dx

dψ
(2)

j

dx
dx

K13
i j =

∫ l

0

1

2
C̃ϕx

dψ
(1)

i

dx
ψ

(3)

j
dx

K21
i j =

∫ l

0

Ã
dw

dx

dψ
(2)

i

dx

dψ
(1)

j

dx
dx

K22
i j =

∫ l

0

G̃
dψ

(2)

i

dx

dψ
(2)

j

dx

+
1

2















Ã

(

dw

dx

)2

+ C̃ (ϕx)
2















dψ
(2)

i

dx

dψ
(2)

j

dx
dx (54)

K23
i j =

∫ l

0

G̃
dψ

(2)

i

dx
ψ

(3)

j
dx

K31
i j =

∫ l

0

C̃ϕxψ
(3)

i

dψ
(1)

j

dx
dx

K32
i j =

∫ l

0

G̃ψ
(3)

i

dψ
(2)

j

dx
dx

K33
i j =

∫ l

0

D̃
dψ

(3)

i

dx

dψ
(3)

j

dx
+ G̃ψ

(3)

i
ψ

(3)

j

+
1

2















C̃

(

dw

dx

)2

+ F̃(ϕx)
2















ψ
(3)

i
ψ

(3)

j
dx

M11
i j = m0ψ

(1)

i
ψ

(1)

j
+ µm0

dψ
(1)

i

dx

dψ
(1)

j

dx

M21
i j = µm0

dw

dx

dψ
(2)

i

dx

dψ
(1)

j

dx

M22
i j = m0ψ

(2)

i
ψ

(2)

j
+ µm0

dψ
(2)

i

dx

dψ
(2)

j

dx
(55)
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M32
i j = µm0ψ

(3)

i

dψ
(2)

j

dx
+ µm0

dψ
(3)

i

dx
ψ

(2)

j

M33
i j = µm1

dψ
(3)

i

dx

dψ
(3)

j

dx
+ m1ψ

(3)

i
ψ

(3)

j

M12
i j = 0 , M13

i j = 0 , M23
i j = 0 , M31

i j = 0

F1
i =

∫ l

0















fxψ
(1)

i
+ µ

d fx

dx

dψ
(1)

i

dx
− 2τ0(b + h)

dψ
(1)

i

dx















dx

+

∫ l

0

[

EAς∆T −
ρAΩ2

2
(L − x)(L + x − 2r)

]

dψ
(1)

i

dx
dx

+ Q1ψ
(1)

i
(0) + Q4ψ

(1)

i
(l)

F2
i =

∫ l

0















fzψ
(2)

i
+ Pψ

(2)

i
+ µ

(

d fz

dx
+

d fx

dx

dw

dx

)

dψ
(2)

i

dx
− 2τ0(b + h)

dw

dx

dψ
(2)

i

dx















dx

+

∫ l

0

[

EAς∆T −
ρAΩ2

2
(L − x)(L + x − 2r)

]

dw

dx

dψ
(2)

i

dx
dx

+ Q2ψ
(2)

i
(0) + Q5ψ

(2)

i
(l)

F3
i =

∫ l

0

µ















fz

dψ
(3)

i

dx
+ P

dψ
(3)

i

dx
+

d fz

dx
ψ

(3)

i















dx + Q3ψ
(3)

i
(0) + Q6ψ

(3)

i
(l)

(56)

5 Numerical results

We will present numerical examples to demonstrate the application of the above non-linear non-

local formulation in this section. Static bending behavior of both isotropic and laminated beam

are studied in the first example. Free vibration analysis of both isotropic and laminated beam are

carried out in the second example. Clamped free boundary conditions (C-F) are considered in each

example. Sinusoidal distribution of load with the intensity q0 is used. Numerical implementation

is made after developing a MATLAB code for the Timoshenko beam finite element as discussed in

the previous section.
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For the static bending analysis of the beam, the following cases are considered for the paramet-

ric study, namely (a) the effect of non-local parameter µ, (b) the effect of surface modulus Es and

(c) the effect of surface tension parameter τ on the nonlinear behavior of both isotropic and lami-

nated beam. For the free vibration analysis, the following cases are considered for the parametric

study, namelely (a) the variation of fundamental frequency ratio with aspect ratio for different val-

ues of non-local parameter µ, (b) the effect of surface modulus Es on the variation of fundamental

frequency with aspect ratio of both isotropic and laminated beam.

C-F beam: u(x=0) = 0, w(x=0) = 0, φ(x=0) = 0

5.1 Example 1: Static bending analysis

The material properties of the isotropic beam are taken as: Elastic modulus E = 17.73 x 1010 N/m2

and Poisson’s ratio ν = 0.27. The material properties of the laminated

beam are taken as: E11 = 140 x 109 N/m2, E22 = 10 x 109 N/m2 and ν12 = 0.3. Four layered

cross ply laminate (0/90/0/90) is considered. The boundary condition read as: To study the effect

of non-local parameter µ on the non-linear behavior of the beam, the non-local parameter µ is

varied from 0 to 5 nm2. The plot of non-local parameter µ versus the central deflection w is shown

in Figure 2. It is observed that for both isotropic beam and laminated beam with increase in the

non-local parameter µ there is a decrease in the bending behavior.

To study the effect of the surface modulus Es on the non-local non-linear behavior, the surface

modulus values of 0 N/m, 13 N/m and −3 N/m are taken. The plot of intensity of distributed load

versus central transverse deflection is shown in Figure 3. For the positive value of surface modulus

Es, there is an increase in stiffness of the beam and hence reduction in the deflection of the beam.

Negative values of Es tends to decrease the stiffness of the beam and hence results in reduced

deflection. To study the effect of surface tension τ on the bending behavior of the beam, a surface

tension value of τ = 1.7 N/ is taken for analysis. A plot of intensity of distributed load versus
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center deflection for different values of τ is presented in Figure 4. The surface tension τ stiffens

the beam and reduces the deflections.

5.2 Example 2: Free vibration analysis

In this example, a beam with aspect ratio L/H varying from 10 to 50 is considered for the non-

local non-linear free vibration analysis. The material properties for isotropic and laminated beam

are taken same as in the previous example.Clamped-Free (C-F) boundary condition is considered.

To study the effect of non-local parameter on the variation of frequency ratio with the aspect ratio

of the beam, various nonlocal parameters µ from 0 to 5 nm2 are taken. The frequency ratio is

defined as

Frequency ratio =
ωnl(with non-local effect)

ωnl(without non-local effect)

The plot of frequency ratio versus aspect ratio L/H of isotropic and laminated beams are pre-

sented in Figure 5. It is observed that with the increase in the non-local parameter µ there is a

decrease in the natural frequency of vibration of the beam. This trend is same for both isotropic

beam and laminated beam.

The effect of surface modulus Es on the non-linear natural frequency versus aspect ratio is

studied. The plots for both isotropic and laminated beams are preseted in Figure 6. Positive values

of Es stiffen the beam and thus resulting in higher frequencies. Negative values of Es have the

opposite effect and decrease the frequencies. Surface tension τ has no effect on the vibration

characteristics of the beam.

Figure 7 shows the variation of natural frequency with non-dimensional angular velocity λ (see

Equation (57))for different values on non-local parameter µ. It is observed that as the dimensionless

angular velocity increases, the natural frequency also increases. It is also seen that with increase
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in nonlocality there is a increase in natural frequencies of vibration.

λ4
=
ρAL4

EI
Ω

2 (57)

The variation of natural frequency with the variation of hub radius for different non-local pa-

rameter values is presented in Figure 8. It is seen that natural frequency decreases with increase

in the hub radius. It is also seen that with increase in nonlocality there is a increase in natural

frequencies of vibration.

The variation of natural frequency with the variation of dimensionless angular velocity for dif-

ferent surface modulus Es values is presented in Figure 9. Natural frequencies of vibration are

higher for positive value of Es and lower for negative values of Es.

6 Summary and Conclusions

The effects of non-local parameter and surface stress on non-linear bending and vibration charac-

teristics of beams are studied using the Timoshenko beam theory and Eringen’s non-local differen-

tial model together with Gurtin and Murdoch surface elasticity theory. Simplified Green–Lagrange

strain tensor is used to model geometric non-linearity. The finite element method is used to solve

the resulting non-linear equations. Parametric studies are carried out to investigate the influence

of non-local parameter (µ), surface parameters (Es and τ), hub radius (r) and angular velocity (λ).

It is found that nonlocal parameter stiffens the cantilever beam resulting in lower deflections and

higher natural frequencies of vibration. Positive values of Es relaxes the beam stiffness resulting

in lower deflections and higher frequencies. It is also found that with increase in angular velocity

of rotation the natural frequency increases and with increase in hub radius the natural frequency

decreases.
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Figure 1: Rotating nano laminated cantilever beam
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Figure 2: Plot of nonlocal parameter versus end deflection of the cantilever beam subjected

to point load (Q0 = 10N) at the end (for L/H = 20) for (a) isotropic beam and (b) laminated

beam.
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Figure 3: Plot of load versus end deflection for different values of surface parameter Es for

(a) Isotropic beam and (b) laminated beam.
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Figure 4: Plot of load versus end deflection for different values of surface tension parameter

τ for (a) Isotropic beam and (b) laminated beam.
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Figure 5: Plot of aspect ratio L/H versus frequency ratio for different values of nonlocal

parameter µ for (a) isotropic beam and (b) laminated beam.
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Figure 6: Plot of aspect ratio L/H versus non-dimensional natural frequency for different

values of surface modulus Es for (a) isotropic beam and (b) laminated beam.
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Figure 7: Plot of non-dimensional angular velocity versus non-dimensional natural fre-

quency for different values of nonlocal parameter for (a) isotropic beam and (b) laminated

beam.
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Figure 8: Plot of hub radius versus non-dimensional natural frequency for different values

of nonlocal paramter µ for (a) isotropic beam and (b) laminated beam.
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Figure 9: Plot of non-dimensional angular velocity versus non-dimensional natural fre-

quency for different values of surface modulus Es for (a) isotropic beam and (b) laminated

beam.
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