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Abstract: The multiple linear models based piece-wise linearization approach is used to 

obtain control-oriented non-linear model of the non-linear multivariable wet grinding 

process of an industrial lead-zinc ore beneficiation plant. The overall process outputs are 

computed as a weighted sum of outputs from multiple models identified at several 

operating zones. The output weights of linear models are computed by a pseudo fuzzy 

supervisor. The linear models are identified using a transfer matrix identification 

technique using standard TF structures, and genetic algorithm based constrained 

optimisation formulation for the parameter estimation. A rigorous, plant validated model 

based wet grinding process simulator is used to obtain the identification and validation 

data for the proposed approach.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 

Grinding plays a critical role in most of the ore 

beneficiation operations in mineral processing plants. 

The size of the particles produced by the grinding 

operation also drives the performance of the 

downstream process units, e.g. flotation.  Hence, the 

better process understanding and tighter control of 

the grinding process is of utmost interest to the 

mineral process engineers.  

 

 For better process understanding, the most 

efficient tool is process modelling and simulation. 

Over the years, the modelling of the grinding process 

has attained a reasonable state of accuracy and 

robustness (Herbst et al. (1973, 1983), Kinneberg et 

al. (1984), Lynch et al. (1975), Rajamani et al. (1984, 

1991a)). Most of the cases, these approaches follow 

the hybrid path of physical and empirical routes 

where mass balance of the materials is carried out 

using physical laws and the separation kinetics are 

modelled using empirical methods. Such models 

usually require some specific process information 

such as process equipment design specifications, and 

the process parameters e.g. selection function, 

breakage function, and kinetic parameters etc. 

Mostly, such parameters are difficult to know exactly 

and accurately in industrial plants. Hence, it is 

required to have some specific tuning parameters in 

such rigorous models and tune and validate them 

using the plant data obtained by performing well-

designed but tedious plant tests. In general, such 

exercise of tuning the model parameters becomes 

quite cumbersome and computationally demanding, 

mainly because the parameters appear in the model 

in a quite complex mathematical form. Many 

researchers have worked on such model parameter 

tuning techniques with respect to wet grinding 

process. Some of them cover several aspects of 

single as well as multiple objective optimizations of 

industrial grinding operations (Birch et al. (1972), 

Bryson et al. (1969), Herbst et al. (1979), Lapidus et 

al. (1967), Rajamani et al. (1991b), Mitra and 

Gopinath (2004)). These kind of hybrid grinding 

models are reported to work really well in many 

cases (Mitra and Gopinath (2004)) if tuned properly 

with the plant using the data obtained from hardware 

sensors in at least some bare minimum flow streams.  

 

 For tighter control of the industrial wet grinding 

process in mineral industry, compared to the 

conventional control algorithms (e.g PID), the 

multivariable control algorithm such as Model 

Predictive Control (MPC) can be considered more 

appropriate, particularly for the supervisory control 

(Maciejowski, 2002). This is because the MPC can 

efficiently and systematically handle the issues like 

a) significant amount of interaction among various 

     



process/operational variables, and 2) the requirement 

to operate the process within the operational and 

equipment constraints, usual in an industrial wet 

grinding process. Additionally, MPC provides 

several other benefits (Maciejowski, 2002), (Morari 

and Lee, 1999).  

 

 The MPC algorithms inherently require the 

dynamic model of the process. Ideally, it is good if 

the first principle based rigorous models described 

above are used as the MPC model, because such 

models are quite accurate, and are applicable in a 

wider operating region. However, such rigorous 

models are not suitable for use in MPC, particularly 

for the online industrial control applications. Because 

such models - 1) are computationally very 

demanding, and 2) are mostly the non-linear models.  

Although, use of non-linear models are possible in 

Non-Linear Model Predictive Control (NLMPC), but 

the NLMPC algorithms based on non-linear models 

are still not suitable and popular for online industrial 

control applications. Because NLMPC require 

solving non-linear programming (optimisation) 

problem, for which the reliable and efficient online 

algorithms are still scarce.  On the other hand, the 

MPC algorithms based on linear models are popular 

and proven in wide range of industrial applications.  

 

 Thus, the conflicting requirement of modelling 

the non-linear grinding process accurately, but 

without using non-linear models (Bequette et. Al. 

2003), has motivated us to propose using multiple 

linear models based piece-wise linearization 

approach for modelling the non-linear grinding 

process in this paper. The paper is organized as 

follows. Section-2 describes the industrial wet 

grinding process of an industrial lead-zinc ore 

beneficiation plant, along with the brief description 

of the rigorous model based plant simulator. The 

rigorous simulator was developed, tuned, and 

validated well with the plant data in the earlier work 

by (Mitra and Gopinath, 2004), and is used as a plant 

emulator in this work. In section-3, the proposed 

multiple linear model based non-linear modelling 

approach is described. In Section-4 the results of the 

proposed approach are presented and discussed. 

Section-5 contains the concluding remarks. 

 

 

2. PROCESS DESCRIPTION 

 

The industrial grinding process under consideration 

is a part of lead-zinc ore beneficiation plant. Ore 

beneficiation is carried out in mainly two stages: 

grinding and flotation. Pulverization of the ore to 

finely ground particles in wet grinding mills is 

performed in order to liberate the valuables, i.e. lead 

and zinc, from its associated gangue. The ground 

particles are then selectively floated in flotation cells 

for individual recovery of lead and zinc by various 

means of physical and chemical separation. The 

grinding circuit has three stages:  1) a rod mill in 

open circuit operation, 2) a ball mill in closed circuit 

operation, and 3) a two-stage classification unit (one 

hydro-cyclone for the primary classification and two 

hydro-cyclones in parallel for the secondary 

classification).  

 

 After crushing in primary and secondary 

crushers, the ore from the mine is sent to fine ore 

storage bin. Fresh ore feed from the fine ore storage 

bin along with water is fed to the rod mill. The rod 

mill discharge slurry is mixed with the ball mill 

discharge slurry in a sump known as the primary 

sump (sump-1). Water is added to the primary sump 

to reduce the pulp density to facilitate the flow of the 

slurry smoothly within the circuit. The slurry from 

the primary sump is fed to primary cyclone, the 

primary classification unit. The overflow from the 

primary cyclone goes to another sump, namely 

secondary sump, where water is added to lower pulp 

density further. The mixed slurry from the secondary 

sump is fed to the secondary cyclone, the secondary 

classification unit. The underflow product from both 

primary and secondary cyclones is fed to the ball 

mill. The overflow from the secondary cyclone is the 

final product from the grinding circuit and goes to 

flotation circuit as feed. The complete circuit 

configuration is given in Fig. 1. In this circuit, only 

the input and output streams are having the hardware 

sensors (shown by black circles in Fig. 1) that can 

indicate the status of key performance indicators 

(KPI) of the circuit (some properties of slurry at the 

final product stream) dynamically. 

 

 In the grinding circuit presented in Fig. 1, three 

main input process variables, which are also used 

typically as the manipulated variables for the control 

of grinding operation, are solid stream of raw ore and 

water streams going to primary and secondary 

sumps. The circuit has only one physical output that 

is the secondary cyclone overflow stream. The five 

KPIs identified for grinding circuit control are 

throughput (output 1), percentages of three size 

classes(+150µ, -63µ and  -38µ) i.e. output 2, output 

3, output 4 respectively and  percent solids (output 5) 

present  the final output  stream, and the recirculation 

load (output-6). Here + sign is used to denote 
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Fig. 1. Schematic of the industrial wet grinding 

process of lead-zinc ore beneficiation plant. 

     



Fig. 2. Schematic of the proposed multiple linear

model based piece-wise linearization approach

for modelling the nonlinear zinc-ore grinding

process 
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percentage retained whereas – sign is used to denote 

percentage passing through the given mesh size in 

micron. These are termed as control variables and 

measured dynamically only at the output stream. 

 

 

2.1 Rigorous Validated Model for process emulation 

 

The hybrid (phenomenological and empirical) model 

of the above industrial grinding process is developed 

and validated with the plant data. Mathematically 

this hybrid model is a system of differential algebraic 

equations (DAEs) solved using the DASSL routines 

(Petzold, 1983). For this hybrid model, the details of 

the modelling and parameter estimation procedure, 

and results of the model validation with actual 

industry data are given in (Mitra and Gopinath, 

2004). This hybrid model also includes as an output 

the recirculation load, an important KPI for the 

grinding operation, which is normally not measured 

online. This hybrid model represents the industrial 

plant operations very well across all possible 

operating zones and therefore can be considered as a 

close mimic of the plant. The simulator based on this 

rigorous hybrid model is used as a plant emulator in 

the current work. The simulator has 3 inputs and 6 

outputs described in the previous section. 

Fig. 3. Trapezoidal membership function schematic 

of the pseudo fuzzy supervisor defining weights 

of the LTI models 
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3. PROPOSED MODELLING APPROACH 

 

 The proposed approach of modelling the 

considered non-linear grinding process is based on 

the piece-wise linear approximation using multiple 

linear models. Hence, the over all operating region is 

divided into five operating zones defined by the 

second input i.e. a water flow rate to sump-1. Then, 

for each of the five operating zones, LTI MIMO 

models are identified. The non-linear process outputs 

are computed as a weighted sum of the outputs from 

each LTI MIMO model. The weights for each LTI 

model output is online determined using a special 

pseudo fuzzy logic supervisor. Fig. 2 shows the 

schematic diagram of the proposed modelling 

approach. 

adjacent operating zones (e.g. zone-1 and zone-2), 

the weights for the outputs from the LTI models 

corresponding to these zones are computed as a real 

value within a real interval [0,1]. The values of the 

weights for models corresponding to these zones 

(e.g. zone 1 and zone-2) depend upon the vicinity of 

the current operating condition to a particular zone 

i.e. zone-1 or zone-2, with the constraints of having 

sum of weights equal to 1.  

  
  
3.2 LTI MIMO System Identification 3.1 Pseudo Fuzzy Supervisor 
  
The proposed multiple linear model based non-linear 

modelling approach requires identification of the 

linear models. For which it is required to collect 

plant data across all operational regimes in which the 

grinding circuit is operated. For plant data collection, 

it is required to carry out well- designed plant tests 

covering various operating conditions and 

combinations of the process inputs (solids and water 

flow-rates). Performing such plant tests in all 

possible operating regimes is not an economically 

affordable task. Because, it requires disturbing the 

operational settings for running the plant in stable 

mode that incurs a huge loss for this energy intensive 

process. Besides, the data collection for system 

identification is a huge time consuming process. For 

The pseudo fuzzy supervisor is used for the smooth 

switching of the LTI MIMO model, mainly at the 

boundary of the different operating zones. As shown 

in Fig. 3, the weight computation logic of the pseudo 

fuzzy supervisor is similar to a typical trapezoidal 

fuzzy membership function (Driankov and 

Hellendoorn, 1993). The value of the membership 

function for each zone decides the weight of the 

linear model-output from the respective operating 

zone. When the current operating condition of the 

process exclusively falls within a particular operating 

zone, the weight of the LTI model corresponding to 

this zone is taken as 1. For all other model outputs, 

the weight is 0. However, when the current operating 

condition of the process is at the boundary of two  

     



these reasons, input-output data for the current work 

is not collected directly from the plant. Instead, the 

plant data is generated using the plant emulator 

described in section 2.1. After obtaining the data for 

each zone, the system identification step is required 

to find the linear models. 

 

 Several standard and popular linear system 

identification tools are available, e.g. System 

Identification Toolbox of MATLAB (Ljung, 1997), 

and can be used to identify LTI MIMO systems 

models using the input-output data from the system 

for different operating zones.  However, in this work, 

recently proposed different approach of transfer 

matrix model identification (Barve and Junnuri, 

2004) is used for linear system identification. In the 

proposed multivariable identification approach, 

MIMO system is represented using LTI transfer 

function (TF) matrix whose elements are the 

standard, fixed structure transfer functions like 

FOPDT, SOPDT, etc. These model structures are 

capable of well approximating very large class of 

systems found in practice. The system identification 

problem is then considered as the problem of 

simultaneously estimating the parameters of all TFs 

in the TF matrix. This is posed mathematically as the 

constrained optimisation problem, which minimizes 

some specific objective function based on the error 

between the actual and the linear model simulated 

response. A genetic algorithm is used to solve the 

proposed optimisation problem (Rao, 1996). The 

proposed identification approach has been 

successfully tested on several system identification 

benchmark data sets available at DaISy, (De Moor, 

2004), (Barve and Junnuri, 2004). The DaISy 

provides benchmark data sets for various 

experimental and industrial systems covering wide 

range of application areas, such as chemical, 

electrical and mechanical systems. 

  

 

4. RESULTS AND DISCUSSION 

 

As described in the previous section, the first 

principle based, plant validated simulator is available 

for the considered process and is used to emulate or 

mimic the plant. This is preferred to performing 

tedious plant tests because a) the industrial plant tests 

affects the production during the plant test periods, 

hence they should be avoided, unless it is 

compulsory, and b) the plant emulator (mimic) that is 

validated earlier across the complete operating region 

by performing the plant tests is already available. 

Hence, in the sequel, measured or plant data means 

the data obtained from the rigorous model based 

plant emulator. 

 

 The considered multivariable grinding process 

has three input and six output variables. As described 

in section-2, the three input process variables are 

solid stream of raw-ore, water streams going to 

primary and secondary sumps. The output process 

variables are one physical output variable (i.e. 

secondary cyclone overflow stream), and five KPIs. 

The five KPIs identified are throughput (output 1), 

percentages of three size classes (+150µ, -63µ and -

38µ) i.e. output 2, output 3, output 4 respectively, 

percent solids (output 5) present in the final output 

stream, and the recirculation load (output-6). 

 

 First, the plant data is collected after applying the 

Pseudo Random Binary Sequence (PRBS) signal 

covering the complete operating region as the inputs. 

From the obtained plant data, it was observed that the 

considered wet grinding process shows the non-

linear behaviour. Particularly, the dynamic response 

of the second output (i.e. size fraction 150+) with 

respect to   the first and third inputs (i.e. raw ore-feed 

and water flow rate to sump-2) change depending 

upon the current operating value of the second input 

i.e. the water flow rate to sump-1. Though, output 6 

shows some non-linearity, it is not significant and is 

not considered as non-linear in this work. Thus, in 

the considered process output-2 is considered to be 

non-linear, whereas the other five outputs are 

considered as linear. 

 

 For piece-wise linear approximation of the 

second output, the over all operating region is 

divided in five operating zones. The zones are 

defined based on the operating value of second input 

(i.e. a water flow rate to sump-1). The plant data is 

obtained for each of the five operating zone by 

applying the PRBS as inputs. However, in this case 

the first and third inputs cover the complete 

operating region, but the second input (i.e. the water 

flow rate to sump-1) is restricted to be within a 

particular operating zone. The LTI MIMO models 

are identified for each operating zone.  

  

 The outputs of the overall non-linear process are 

defined as a weighted sum of the outputs from each 

LTI MIMO model. The second input defines the 

operating zone of the non-linear process, it is 

considered as an input variable to the pseudo fuzzy 

logic supervisor.  The five outputs from the fuzzy 

supervisor are weights for LTI models corresponding 

to each zone. After obtaining linear models for each 

zone, the proposed multi-model based non-linear 

model is simulated and validated in MATLAB/ 

SIMULINK (Mathworks, 2000). The identification 

and validation dataset of approx 5000 data-points are 

used in each zone for modelling the second output, 

whereas for modelling all other outputs, 

identification and validation datasets of 10000 and 

50000 data-points are used. Finally, for the validation 

of overall non-linear model, a separate validation 

data set of 50000 data-points is used. 

 

 The performance of the identified models is 

analysed based on three well-known performance 

criteria (Ljung, 1999),(Chui and Maciejowski, 1998), 

(Barve and Junnuri, 2004) namely; mean square error 

(MSE), percentage simulation error (% ERR), and 

cross-correlation coefficient (in percentage) between 

the simulated and an actual output (COR). As 

described above, five (multiple) models are   

considered for the second output. These performance 

     



Table 1: Performance measures for the multiple 

linear models identified using the transfer matrix 

approach of system identification 

 

Output MSE AERR  COR 

Output-1 0.2613 13.85 99.04 

0.0351 31.73 96.99 

0.0247 25.12 96.81 

0.0200 29.74 95.90 

0.0182 27.95 96.42 

Output-2: Zone-1 

                Zone-2 

                Zone-3 

                Zone-4 

                Zone-5 0.0181 29.01 96.13 

Output-3 0.1600 12.51 99.25 

Output-4 0.1505 16.77 98.64 

Output-5 0.1512 14.68 98.79 

Output-6 1.2478 20.88 97.80 

    

 

Table-2: Comparison of the performance of the 

proposed multimodel based non-linear modelling 

approach and the single linear model approach 

 

Approach Performance 

Measure 
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MSE 0.0824 1.6116 

AERR 86.92 28.38 
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Fig. 4. Simulated response of the proposed non-linear 

model for outputs 1, 2 and 3: validation data 

(solid) simulated data (dotted) 

-1

0

1
Sizeclass-3 #4

o
u
tp

u
t

-1

0

1
Percentage solids #5

o
u
tp

u
t

200 400 600 800 1000 1200 1400
-1

0

1
REcirculation load #6

Time Samples

o
u
tp

u
t

 

 

measures  for  the  linear  models  for all  outputs  are 

shown in Table-1; see that performance measures for 

five zones are given for the second output. 

 

 In Table-2, for the second output, the 

performance measures of the proposed non-linear 

model is compared with the performance measures of 

the single linear model identified using data covering 

complete operating region (across all five zones). 

Though it may seem unnecessary to compare them 

expecting better results with non-linear models, the 

purpose of showing comparison is to find whether 

the improvement is significant or not. It is clearly 

observed that the significant improvement is possible 

by the proposed non-linear modelling approach. This 

justifies the exercise of modelling and using the 

proposed non-linear modelling approach for the 

considered wet grinding process. Fig. 5. Simulated response of the proposed non-linear 

model for outputs 4,5 and 6: validation data 

(solid) simulated data (dotted) 
 

 It is observed that the performance of the 

proposed approach is superior justifying the use of 

multiple linear model based non-linear modelling. In 

Fig. 4 and 5 simulated and measured (i.e. rigorous 

plant emulator) response for all the six process 

outputs are shown. It can be seen that the response of 

the non-linear model obtained by the proposed 

approach matches well with the plant data (i.e. plant 

emulator data). Fig. 6 shows the comparison of the 

simulated responses for output-2 obtained by a single 

overall linear model, and the proposed multiple 

linear models based non-linear simulation along with 

the plant data. It is clearly observed that the non-

linear model based on the proposed approach 

matches better compared to the single linear models. 
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Fig. 6. Comparison of output-2 responses: Proposed 

non-linear model (dotted), Over-all single linear 

model (dashed) with the plant data (solid). 

     



     

 

5. CONCLUSIONS 

 

The considered industrial wet grinding process can 

be modelled accurately using multiple linear models 

based non-linear modelling approach. The proposed 

approach shows significant improvement in the 

performance measures in comparison to the approach 

based on the single over-all linear model. Hence, for 

the considered process multiple linear model based 

NMPC should provide tighter control, compared to 

the single model based linear MPC. Though 

inherently non-linear modelling is possible for the 

same process using rigorous or other data based 

techniques, but they are not control-relevant from the 

model predictive control perspective. Because, their 

use in the industrial model predictive control is 

discouraged due to lack of reliable non-linear MPC 

algorithms based on inherently non-linear models. In 

this context, the proposed multiple linear model 

based non-linear modelling approach proves to be 

very useful and control-relevant, because it allows 

the use of reliable and proven linear model predictive 

control algorithms for the non-linear MPC control of 

the industrial wet grinding process. 
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