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Abstract: In the present work a generalised higher order shear deformation 
theory (GHSDT) for the flexural analysis of the functionally graded plates 
subjected to uniformly distributed load of varying intensities has been 
formulated. A finite element formulation with a confirming type isoparametric 
approximation has been formulated and implemented. Various types of 
boundary conditions have been considered for the analysis. The formulation 
accounts for geometric nonlinear terms in the strains. The formulation also 
complies with plate surface boundary conditions and does not require shear 
correction factors. The formulation has been validated by comparing the results 
with those available in the literature. Numerical results for different load 
parameters, volume fraction, and boundary conditions have been presented and 
compared with literature. Results show that the proposed GHSDT gives a better 
approximation to transverse shear strains and the results are closer to those 
obtained from analytical solutions. 

Keywords: functionally graded plates; nonlinear analysis; GHSDT; rule of 
mixtures; power law. 

Reference to this paper should be made as follows: Srividhya, S., Kumar, B., 
Gupta, R.K. and Rajagopal, A. (2019) ‘Nonlinear analysis of FGM plates using 
generalised higher order shear deformation theory’, Int. J. Materials and 
Structural Integrity, Vol. 13, Nos. 1/2/3, pp.3–15. 

 



   

 

   

   
 

   

   

 

   

   4 S. Srividhya et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Biographical notes: Singam Srividhya is a Research Scholar at the Department 
of Civil Engineering, IIT Hyderabad, India. Her research interests include 
structural analysis of composites and FGM plates. 

Basant Kumar is a Scientist working for the Advanced Systems Laboratory, 
DRDO, Hyderabad, India. His research interests include structural design, 
structural dynamics, composite materials and computational mechanics and 
meshless methods. 

R.K. Gupta is a Senior Scientist at the Advanced Systems Laboratory, DRDO, 
Hyderabad, India. His research interests include structural design of composite 
materials. 

Amritham Rajagopal is an Associate Professor at the Department of Civil 
Engineering at IIT Hyderabad, India. His research interests include mechanics 
of composites, damage and fracture mechanics. 

This paper is a revised and expanded version of a paper entitled ‘Towards 
nonlocal nonlinear of FGM plates using TSDT’ presented at Indian Conference 
on Applied Mechanics (INCAM) 2017, MNNIT Allahabad, India 5–7 July 
2017. 

 

1 Introduction 

Functionally graded materials (FGMs) are a new class of materials which have shown 
potential as alternative materials that can be widely used in aerospace, nuclear, civil, 
automotive, optical, biomechanical, electronics, chemical, mechanical and shipbuilding 
industries. In fact, FGMs have been proposed, developed and successfully used in 
industrial applications since the 1980s (Koizumi, 1993). These advanced materials with 
engineered gradients of composition or properties in the preferred direction/orientation 
are better than homogeneous material composed of similar constituents (Jha et al., 2013). 
Classical composite structures suffer from discontinuity of material properties at the 
interface of the layers and constituents of the composite. Therefore the stress fields in 
these regions create interface problems and thermal stress concentrations under high 
temperature environments. Furthermore, large plastic deformation of the interface may 
trigger the initiation and propagation of cracks in the material (Vel and Batra, 2004). 
These problems can be addressed by use of FGMs with smooth variation of properties 
through the thickness. With prospects of wide range of applications, behavioural analysis 
of FGM’s are important, however they may undergo elastic instability under mechanical 
loading. Therefore it is important to understand the nonlinear behaviour of FGM plates 
for their optimum design. 

The principle developments in the field of FGMs capturing diverse areas like 
manufacturing aspects, homogenisation schemes and various modelling aspects were 
reviewed by Birman and Byrd (2007). The fact that the strength and response of an FGM 
also depends on the micromechanical structure embedded inside was reiterated by Emilo 
et al. (2016) and also that such inclusions also affects the response characteristics. A 
critical review of the development’s in the field of FGMs was presented by Jha et al. 
(2013) and laid emphasis on the need to use improved 2D theoretical models in the 
interest of computational cost and efficient analysis. 
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Many researchers have attempted to study the bending behaviour of FGM plates 
based on 3D elasticity solutions (Reddy and Chin, 1998; Reddy, 2000; Reddy and Cheng, 
2001; Vel and Batra, 2002). All these works are limited to simply supported plates under 
transverse mechanical or thermal loading. Reddy (2000) presented Navier’s solutions, 
and finite element models including geometric nonlinearity based on the third-order shear 
deformation theory for the analysis of FGM plates. Cheng and Batra (2000) derived the 
field equations for a functionally graded plate by utilising the FSDT or TSDT and 
simplified them for a simply supported polygonal plate. 

A three dimensional elasticity solution was proposed by Kashtalyan (2004) for a 
simply supported FGM plate under transversely distributed load. This solution was 
extended to a sandwich panel with FG core by Kashtalyan and Menshykova (2008). Qian 
et al. (2004) studied the static and dynamic deformation of thick functionally grade 
elastic plates by using higher order shear and normal deformable plate theories and 
meshless local Petrov–Galerkin method. Ferreira et al. (2005) used a meshless method for 
the static analysis of a simply supported FGM plate by using a third-order shear 
deformation theory. 

Zenkour (2006, 2007) presented the static response of functionally graded plates 
using the generalised shear deformation theory and also investigated the static problem of 
transverse load acting on rectangular plates using 2D trigonometric plate theory (TPT) 
and 3D elasticity solution. Various functions (polynomial and non-polynomial) to capture 
the shear deformations in thick to moderately thick isotropic, laminated and FGM plates 
were considered by Mantari et al. (2011) and Mantari and Soares (2012, 2013). On the 
same lines static and dynamic analysis of laminated sandwich plates and FGM plates 
were also carried using higher order shear deformation theories. The static and free 
vibration analysis of FGM plates by a sinusoidal and quasi 3D sinusoidal shear 
deformation theory was performed by Neves et al. (2012). Stress analysis due to thermal 
and mechanical loads was given by Matsunaga (2009) using a two-dimensional higher-
order theory. (Khabbaz et al., 2009) provided a nonlinear solution of FGM plates using 
the first and third-order shear deformation theories whereas (Wu and Li, 2010) used a 
RMVT-based third-order shear deformation theory of multilayered FGM plates under 
mechanical loads. Talha and Singh (2010) investigated the free vibration and static 
analysis of functionally graded plates using the finite element method by employing a 
higher order shear deformation theory. Carrera et al. (2011) studied the effects of 
thickness stretching in FGM plates and shells. 

From the above literature survey it is observed that a lot of research has been carried 
out it the field of FGM plates using higher order shear deformation theories considering 
linear in-plane strain variation, with an objective of better and accurate approximation of 
the transverse shear strain through the thickness. It is also observed that a very few papers 
are available which have attempted to consider the nonlinear variation of in-plane strain 
while using higher order theories. In the present work a generalised higher order shear 
deformation theory (GHSDT) has been considered for the flexural analysis of the 
functionally graded plate with the formulation accounting for nonlinear (von-Karman 
type) and constant variation of in-plane and transverse displacement respectively through 
the thickness. The formulation also complies with plate surface boundary conditions and 
does not require shear correction factors. The Young’s modulus of the plate is assumed to 
vary with a power law through the thickness, and the Poisson’s ratio is assumed to be 
constant. Dependence of stress and displacement fields in the plate on the power law 
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index, plate thickness, boundary conditions and variation of transverse shear strains is 
examined and discussed. The obtained solutions are validated by comparison with the 
results for a homogeneous isotropic plate. 

2 Theoretical formulations 

Rasoul et al. (2012) reviewed and categorised the different composite laminate plate 
theories. It is explained that CPT and FSDT are unable to accurately compute transverse 
shear stresses of both moderately thick and thick laminated plates. It was summarised that 
to obtain a reasonable transverse shear stresses distribution, the global displacement 
theories with higher order shear deformation should be adopted. Higher order shear 
deformation theory introduces several new shear strain shape functions which are 
polynomial, trigonometric, exponential, and combination of trigonometric and 
exponential for modelling the displacement field for instance see Mantari et al. (2011) 
and Soldatos (1992). Such functions result in better approximations than the polynomial 
ones. The transverse displacement is assumed to be constant through the plate thickness. 
Here we develop equations of motion for a functionally graded plate based on Reddy’s 
third order theory (Reddy, 2000). TSDT considers a quadratic variation of shear stresses 
and requires no shear correction factors. 

2.1 Displacement field and strains 

The displacement field in HSDT can be expressed as 

0
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0
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 (1) 

where (u0, v0, w0) are the mid-plane displacements, ( x, y) denote the rotations of the 
transverse normal about y- and x-axes respectively and g(z) = z and f(z) = c1z

3 (Reddy, 
2000). By changing two functions g(z) and f(z) we can get different higher order theories 

which are also discussed in Mantari and Soares (2012). The value of 1 2
4

3
c

h
 is for the 

current formulation based on TSDT. The nonlinear strains can be expressed in the 
following manner 
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2.2 Constitutive relation 

A through-thickness functionally graded material plate with ceramic on the top face and 
metal on the bottom face is considered in the present study. The variation of the material 
properties like Young’s modulus E and Poisson’s ratio  is governed by a power law 
distribution as given in equation (4), with the co-ordinate z varying between –h/2 to h/2, h 
being the plate thickness. The volume fraction exponent n can take any value between 0 
to ∞ (Reddy, 2000). 

( ) 1c c m cP z PV P V  (4) 

0.5
n

c

z
V

h
 (5) 

where P denotes a generic material property like modulus, Pc and Pm denote the property 
of the ceramic and metal, respectively, h is the total thickness of the plate and n is a 
parameter that dictates the material variation profile through the thickness. Here we 
assume that moduli E and  vary according to equation (4). 

The constitutive relations matrix can be expressed as 

11 12
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where 

11 12 11 44 55 662
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2.3 Equations of motion 

The governing equations of the TSDT can be derived using the principle of virtual 
displacement (Hamilton’s principle). By substituting the stress resultants in terms of 
displacement into the principle of virtual displacement and integrating by parts, the 
equations of motion can be obtained as (Reddy, 2000) 

0xyxx NNδu
x y

 (7) 

0xy yyN N
δv

x y
 (8) 

0 0 0 0

2 2 2
1 2 6

1 2 2
2

yx
xx xy xy yy

QQ w w w wδw N N N N
x y x x y y x y

P P P
c q

x y x y

 (9) 
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y y

M M
δ Q
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The stress resultants are given by 
/2

3
/2

, , 1, ,
h

h
N M P σ z z dz  (12) 

/2
2

/2
, 1,

h

z
h

Q R σ z dz  (13) 

1 1,M M c P Q Q c R  (14) 

3 Finite element formulation 

A C0 continuous, isoparametric, confirming four noded element based on third order 
shear deformation plate theory with eight degrees of freedom u, v, Δ(w, w/ x, w/ y, 

2w/ x y,), x, y and with the Lagrange interpolation functions for u, v, x, y, and 
Hermite interpolation functions for Δ is used in the finite element analysis. 

3.1 Numerical integration 

In the present work, numerical integration technique has been implemented to evaluate 
the integrals for finding the material properties of FGM plate using power law 
distribution. Adopting numerical integration is easier, if we are trying to automate the 
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finite element code. The sum of these integrand values multiplied by appropriate weights 
(called Gauss weights) gives an approximation to the integral. 

1

11
( )

n

f i f i
i

I P z dz w P z  (15) 

where 

zi Gauss points 

n total no. of Gauss points 

wi Gauss weights 

Pf(zi) value of the integrand at the Gauss point zi. 

Using this method it is easy to find the variation of material properties along the 
thickness of the plate at any point. It is simpler to implement and also faster than 
symbolic integration in this case. To have an effective estimate the material property at 
any point, a quadrature rule with more number of integration points needs to be 
employed. 

4 Results 

The bending behaviour of a square FGM plate comprised of aluminium/zirconia under 
distributed transverse load is taken up for investigation. The top surface of the FGM plate 
is ceramic (zirconia) rich and the bottom surface is pure metal (aluminium). A schematic 
model of the FGM plate and its sign convention has been shown if Figure 1. The datum 
has been considered at the mid plane which is also the geometric mid surface of the plate. 
To reduce the problem size and owing to symmetry in geometry and boundary 
conditions, quarter plate has been considered for analysis. 

 Boundary conditions 
1 At x = 0 and x = a for SS1 condition v0 = w0 = y = 0 and for SS3 condition  

u0 = v0 = w0 = 0. 
2 At y = 0 and y = a for SS1 condition u0 = w0 x = 0 and for SS3 condition  

u0 = v0 = w0 = 0. 

The variation of the volume fraction of ceramic Vc through the thickness of the FGM 
plate are obtained from equation (4) is presented in Figure 2 for different values of 
material index n as defined by the power law. The non-dimensionalised central deflection 

is given by ,ww
h

 load parameter: 
4

0
4

m

q a
q

E h
 and thickness coordinate: .zz

h
 

Table 1 Material properties 

a (in) b (in) H (in) E1 (psi) E2 (psi) G12 (psi) G13 (psi) G23 (psi) 12  

12 12 0.138 3e6 1.28e6 0.37e6 0.37e6 0.37e6 0.3 
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Figure 1 Geometric details of the square plate with quarter symmetry and axes convention 
followed (see online version for colours) 

 

Figure 2 Typical variation of volume fraction through the thickness based on power law  
(see online version for colours) 

 

4.1 Example 1 

To validate the nonlinear code a square orthotropic plate under uniformly distributed load 
has been considered and the details are presented below. The results obtained from the 
analysis have been compared with those available in literature and have been tabulated in 
Table 2 and pictorially shown in Figure 3. 
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Figure 3 Nonlinear deflections versus load parameter for different boundary conditions  
(see online version for colours) 

 

Table 2 Comparison of the central deflections obtained with results from literature 

q0 

SS3  SS1 

CPT FSDT 
Reddy 
(2015) 

TSDT 
(present) 

CPT FSDT 
Reddy 
(2015) 

TSDT 
(present) 

0.05 0.0112 0.0114 0.0113 0.0113  0.0113 0.0113 0.0113 0.0113 
0.1 0.0217 0.0222 0.0218 0.0221  0.0224 0.0224 0.0224 0.0223 
0.2 0.0395 0.0418 0.0397 0.0416  0.0438 0.0442 0.0439 0.0439 
0.4 0.0648 0.0700 0.065 0.0697  0.0812 0.0831 0.0815 0.0822 
0.6 0.0823 0.0839 0.0824 0.0835  0.1116 0.1113 0.1122 0.1094 
0.8 0.0957 0.0973 0.0959 0.0969  0.1367 0.1385 0.1377 0.1351 
1 0.1068 0.1078 0.1069 0.1074  0.1581 0.1598 0.1594 0.1551 
1.2 0.1162 0.1169 0.1162 0.1166  0.1767 0.1789 0.1783 0.1729 
1.4 0.1245 0.1250 0.1244 0.1247  0.1932 0.1956 0.1951 0.1885 
1.6 0.1318 0.1323 0.1318 0.1320  0.2081 0.2107 0.2103 0.2025 
1.8 0.1385 0.1389 0.1384 0.1386  0.2217 0.2246 0.2241 0.2153 
2 0.1447 0.1449 0.1445 0.1447  0.2343 0.2373 0.2370 0.2271 

4.2 Example 2 

In the example below, Al/Zr FGM plate is considered and non-dimensionalised linear 
central deflections are tabulated for various load parameters and compared with different 
theories and with results available in literature as shown in Table 3. 
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Table 3 Material properties 

Property Young’s modulus Poisson’s ratio 

Aluminium 70 Gpa 0.3 
Zirconia 151 Gpa 0.3 

4.3 Example 3 

In the example below, Al/Zr FGM plate is considered and non-dimensionalised linear and 
nonlinear central deflections are plotted against various load parameters for different 
power index values as shown below in Figure 4 and Figure 5. 

Figure 4 Non-dimensionalised linear deflection versus load parameter (see online version  
for colours) 

 

Figure 5 Non-dimensionalised nonlinear deflection versus load parameter (see online version  
for colours) 
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From the linear and nonlinear results if we compare the non-dimensionalised deflections 
the linear analysis results are higher than that of nonlinear analysis results. The 
deflections are increasing with the increase in the power index value in all the examples. 
From Figure 3 it is clear that SS3 boundary condition yields higher deflections than in 
SS1 case because of increase in stiffness in SS1 because of constraints. From Table 4 we 
can see the comparison between FSDT and TSDT. In Figure 4 plots of the linear  
non-dimensional centre deflections versus load parameter for different values of the 
power-law index are presented. As metal plate (n = ∞) has lower stiffness compared to 
the ceramic plate (n = 0), it is expected to deflect more than the ceramic plate; and for all 
other intermediate values of n, the deflections increase with increase in n. Figure 5 
contains plots of nonlinear non-dimensional centre deflection versus load parameter for 
different values of the power-law index. To show the effect of nonlinearity the 
deflections are plotted up to a very high value of load ( 200).q  The deflections are 
becoming completely nonlinear for a value of q  greater than 50 for all the power-law 
index values. The non-dimensional deflection increases with increase in the power-law 
index value and percentage difference between extreme values is about 20–40%. 
Table 4 Non-dimensionalised linear deflections versus q  for various n values 

q  Theory 
Power index ‘n’ 

ceramic 0.2 0.5 1 2 metal 

1 TSDT 0.0209 0.0236 0.0267 0.0299 0.0327 0.0452 
FSDT 0.0207 0.0234 0.0265 0.0296 0.0324 0.0447 

Ferreira et al. (2005) 0.0205 - 0.0262 0.0294 0.0323 0.0443 
6 TSDT 0.1257 0.1419 0.1604 0.1796 0.1963 0.2711 

FSDT 0.1244 0.1405 0.1590 0.1778 0.1941 0.2683 
12 TSDT 0.2513 0.2837 0.3208 0.3591 0.3925 0.5421 

FSDT 0.2488 0.2811 0.3179 0.3557 0.3882 0.5367 
18 TSDT 0.3770 0.4256 0.4812 0.5387 0.5888 0.8132 

FSDT 0.3732 0.4216 0.4769 0.5335 0.5823 0.8050 
24 TSDT 0.5026 0.5674 0.6417 0.7183 0.7851 1.0842 

FSDT 0.4976 0.5621 0.6358 0.7114 0.7764 1.0733 
30 TSDT 0.6283 0.7093 0.8021 0.8978 0.9814 1.3553 

FSDT 0.6220 0.7026 0.7948 0.8892 0.9706 1.3417 

5 Conclusions 

The present study is of a generalised higher order shear deformation theory that accounts 
for adequate distribution of the transverse shear strains through the plate thickness which 
accounts for nonlinearity of strains is presented for FGM plates. The behaviour of these 
plates is studied using finite element analysis and numerical integration technique is used 
to find the properties through the thickness. The results produced using this theory are 
validated with literature. Example 1 is presented for validation of the results. From 
example 2 the importance of using HSDT is presented and from example 3 the effect of 
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nonlinearity is shown. A comparison with two different boundary conditions is also 
shown. 
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