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Abstract. Non-unique solutions of flow and temperature field are reported here

for the first time for non-similar flows given by the laminar boundary layer equa-

tions for combined-convection flow past a vertical flat plate. The solution of the

boundary layer equation for natural convection constitutes the self-similar solu-

tion whose perturbation with respect to the small parameter (ε), which is inversely

proportional to the square root of the Richardson number (Gx), provides the non-

similar solution. Solutions obtained by the shooting method indicate two sets for

the self-similar solution (ε = 0) – one of them showing positive velocity every-

where inside the shear layer (well-known oft-reported physical result). The other

self-similar solution shows that recirculation in the outer part of the shear layer may

not be physical – as it has not been experimentally demonstrated so far. In contrast,

the perturbative part of the non-similar solution (ε �= 0) is seen to be either con-

vergent or divergent depending upon the choice of integration domain of the shear

layer equations – bringing forth the question of the validity of such perturbation

procedures and possible stability of the basic solution itself.

Keywords. Combined-convection flow; assisting flow; non-unique solution;

non-similar solution.

1. Introduction

A two-dimensional boundary layer developing over a heated vertical flat plate is an example

of free-convection flow. A buoyancy force is created by density changes due to temperature

variation in the flow. In the present work, we are interested in studying the small modified

effects of forced convection on the natural convection boundary layer. In such cases, the

flow about the plate is a perturbation of free convection by forced convection in assisting or

opposing the buoyancy force, as indicated in figure 1. In case of a heated plate, the buoyancy

force assists mean convection, if the latter is directed from bottom to top and it opposes mean

convection when the latter is from top to bottom.

There are references that report the numerical solution of the combined convection problem

over horizontal and vertical plates. While Schneider (1979) provided the similarity solution
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Figure 1. Mixed convection flow over a vertical flat plate.

past a horizontal cooled plate, in later work Schneider & Wasel (1985) reported finding a

singularity with a finite wall shear stress. Steinrück (1994) related this problem with unbound-

edness of the evolution operator of the linearized equations. It was shown that near the lead-

ing edge of the plate, an asymptotic expansion of the solution is not unique. In contrast,

for the boundary layer flow above a heated vertical or an inclined heated or cooled plate no

such difficulties have been reported so far. In this paper, we investigate the case of a vertical

heated plate for the assisting flow case shown in figure 1, to show the existence of non-unique

solutions and possible breakdown of the asymptotic expansion of such combined convection

flows.

Here, we are interested in obtaining the solution of the governing equation in a

region where the forced convection effects on free convection are small. It is well

known (as discussed in Cebeci & Bradshaw (1984) and Oosthuizen & Naylor (1999))

that such flows do not yield self-similar solutions and the small departure from self-

similarity can be expressed by using a perturbative technique under the boundary layer

and Boussinesq assumption. This can be assessed in the manner given in the next

section.
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2. Governing equations

With the boundary layer approximations, the governing equations are expressed in terms of

the conservation equations for mass, momentum and energy, which are given respectively by

(for more details see Ooshtuizen & Naylor 1999),

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂v
+ v

∂u
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∂2u

∂y2
± βg(T − T∞), (2)

u
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∂2T

∂y2
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The (+) and (−) signs on the buoyancy term in the momentum conservation equation refer

to assisting and opposing flows respectively. For the present study, we consider the case when

the buoyancy assists the flow and when the natural convection dominates over the forced

convection. The physical boundary conditions for solving (1)–(3) is given later following (10).

Irrespective of the fact whether a similarity solution exists or not, one can introduce the

similarity variable used in free convection (for which similarity solution exists) as given by,

η =
y

x
Gr1/4

x = y

[

βg(Tw − T∞)

υ2x

]1/4

, (4)

where Grx is the local Grashof number.

One can define the non-similar velocity and temperature profiles by non-dimensional veloc-

ity as,

u/[βg(Tw − T∞)x]1/2 = F ′(η, x) (5)

where [βg(Tw − T∞)x]1/2 is the reference velocity that is used for the free convection problem

and the prime indicates differentiation with respect to η. The non-dimensional temperature

field is similarly defined by,

(T − T∞)/(Tw − T∞) = H(η, x), (6)

where Tw and T∞ are the temperatures at the wall of the vertical plate and the free stream

respectively. Substituting (4)–(6) in (2) and (3), we get the boundary layer equations as,

F ′′′ + (3FF ′′/4) − (F ′2/2) + H = 0, (7)

H ′′ + (3/4) Pr FH ′ = 0. (8)

Although these equations suggest the possibility of obtaining self-similar solutions, as there

are no explicit x dependent terms, the boundary condition at large η indicates dependence on

G
−1/2
x . For large η: F ′ → u∞/[βg(Tw − T∞)x]1/2 = Rex/Gr1/2

x = G
−1/2
x , where the

Reynolds number (Rex) is defined with u∞ as u∞x/ν. While this rules out the possibility of

having a self-similar solution, it also suggests that the following perturbation series for the

non-dimensional velocity and temperature fields as,

F = F0(η) + εF1(η), (9)

H = H0(η) + εH1(η), (10)

where the small parameter is defined as ε = Rex/Gr1/2
x = G

−1/2
x .



712 K Venkatasubbaiah et al

For the solution of (7) and (8), the other required boundary conditions are given as:

at y = 0: u = 0, i.e., at η = 0: F ′ = 0,

at y = 0: v = 0, i.e., at η = 0: F = 0,

at y = 0: T = TW , i.e., at η = 0: H = 1,

for large y: u → u∞, i.e., for large η: F → G−1/2
x

for large y: T → T∞, i.e., for largeη: H → 0.

For the perturbation expansion of (9) and (10), F0 and H0 are the components that apply

to purely free convection problem. Substituting these into (7) and ignoring o(ε2) terms we

get:

F ′′′
0 + εF ′′′

1 +
3

4
F0F

′′
0 + ε

3

4
F0F

′′
1 + ε

3

4
F1F

′′
0 −

F ′2
0

2
− εF ′

0F
′
1 + H0 + εH1 = 0.

Thus, it follows for free convection that the following governing equation defines the self-

similar solution,

F ′′′
0 + (3/4)F0F

′′
0 − (F ′2

0 /2) + H0 = 0. (11)

Departure from the self-similar solution is given by the solution of the following,

F ′′′
1 + (3/4)F0F

′′ + (3/4)F1F
′′
0 − F ′

0F
′
1 + H1 = 0. (12)

Boundary conditions for (11) and (12) are given by,

η = 0, F ′
0 = 0, F ′

1 = 0,

η = 0, F0 = 0, F1 = 0,

η = 0, H0 = 1, H1 = 0.

For very large

η: F ′
0 → 0, F ′

1 → 1,

and:

H0 → 0, H1 → 0.

Boundary condition on F ′, at large η, is obtained by noting that for large η: F ′
0 + εF ′

1 → ε.

The free convective flow solution however requires that F ′
0 → 0 at large η, so the above

equation requires: F ′
1 → 1

Similarly, (9) and (10) are substituted in (8) to yield up to first-order accuracy in ε as,

H ′′
0 + εH ′′

1 +
3

4
Pr F0H

′
1 +

3

4
ε Pr F0H

′
1 +

3

4
ε Pr F1H

′
0 = 0. (13)

Thus, the free convective flow solution is obtained from,

H ′′
0 + (3/4) Pr F0H

′
0 = 0, (14)

and the perturbation component is obtained from the solution of,

H ′′
1 + (3/4) Pr F0H

′
1 + (3/4) Pr F1H

′
0 = 0. (15)
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Figure 2. Grid search method val-
ues for F ′′

0 (0) and H ′
0(0) to solve

(11) and (13) using the shooting
technique.

3. Non-unique solution for assisting free convection flows

The free convection problem is now defined in terms of the solution of (11) and (13) for

the velocity and temperature fields respectively. Such solutions were obtained in Cebeci

& Bradshaw (1984) by using the Keller box method. This is essentially a matrix method

that solves the discretized equations applied at all the nodes simultaneously, satisfying the

boundary conditions as given above for F0 and H0.

From the numerical solution (as reported in Cebeci & Bradshaw 1984), the dimensionless

shear stress and heat transfer values at the surface of the plate are: F ′′
0 (η = 0) = 0·95578

and H ′
0(η = 0) = −0·35674, for Pr = 1. Other values for wall shear stress and heat transfer

rates are also tabulated for different values of Prandtl numbers in the same reference.

There is also an alternative method for solving (11) to (14) by the shooting technique (see

Oosthuizen & Naylor 1999), in which the problem is converted to an initial value problem

by guessing the wall shear stress and heat transfer rates and iteratively improving the guess

by the Newton–Raphson procedure. For the success of the latter procedure, we require very

good initial guesses. To avoid this problem, we adopt instead the grid-search method, where

we compute initial guesses at the nodes of the rectangular region discretized uniformly in the

ranges: 0·94 ≤ F ′′
0 (η = 0) ≤ 0·99 and −0·38 ≤ H ′

0(η = 0) ≤ −0·28 with (400 × 1000)

points, for the case of Pr = 0·7. All calculations are done here using double precision and the

error criterion in the shooting method converges to less than 10−10 with 8000 points in the

η-direction for 0(1) equations. For 0(ε) equations, there are 4000 points in the η-direction.

In figure 2, two contour lines are identified along which the far-field boundary conditions on

F ′
0(η∞) and H0(η∞) are satisfied separately while solving (11) and (13). Therefore, in this

figure the points 1 and 2 indicate combinations of F ′′
0 (0) and H ′

0(0) for which the far-field

conditions on F ′
0(η∞) and H0(η∞) are simultaneously satisfied and these values can be used

while solving (11) and (13) as an initial value problem. We refine the above values of wall

shear and heat transfer rates using the Newton–Raphson search procedure, before actually

using them for solving (11) to (14).

Equations (11) and (13) are solved as initial value problems by using the four-stage

Runge–Kutta method from the wall up to η = ηmax, where the far-field boundary conditions
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are checked. Typical results are shown in figure 2, for the choice of ηmax = 10, by draw-

ing the contours along which the far-field boundary conditions: F ′
0(η = ηmax) = 0 and

H0(η = ηmax) = 0 are satisfied separately. It can be shown that there are only two contour lines

in the region of interest. Intersection of these two lines occurs at only two points as marked

in the figure for which: [F ′′
0 (η = 0)(1) = 0·959917049, H ′

0(η = 0)(1) = −0·353183959]

and [F ′′
0 (η = 0)(2) = 0·973500712, H ′

0(η = 0)(2) = −0·303573182] in the shown range

for which (11) and (13) provide two self-similar solutions for free convection (ε = 0). To

our knowledge, for vertical plates, such results of multiple solutions have not been reported

before. However, for horizontal plates Schneider (1979) has shown that for a plate temper-

ature distribution of the form Tw = kx−0·5, for k ≥ k0 < 0, a unique solution exists for a

heated plate (k ≥ 0), while for a cooled plate (k0 < k < 0) two self-similar solutions exist.

For different choices of η = ηmax in the present exercise, a pair of such values has always

been obtained.

Results obtained from the grid- search method are used as initial guesses for the Newton–

Raphson method in the shooting technique. For all the cases investigated here for different

ηmax, we have tabulated the wall values of F ′′
o (0), F ′′

1 (0), H ′
0(0) and H ′

1(0) in table 1. In this

table, plausible wall values of shear stress and heat transfer rates have been reported for

Table 1. Wall boundary conditions for (11) to (14) for different lengths of the domain (Pr = 0·7).

ηmax Solution F ′′
0 (0) H ′

0(0) F ′′
1 (0) H ′

1(0)

7·0 1 0·957133366 −0·35342305 0·045321213 −0·046027359
2 0·973659973 −0·20078645 0·021917066 0·0416641735

8·0 1 0·958912741 −0·353214913 0·03788334 −0·044968878
2 0·981593498 −0·251083577 0·033831512 0·0476564158

9·0 1 0·959626375 −0·353179568 0·036765896 −0·044165686
2 0·978468418 −0·283205262 0·040213285 0·0493605548

10·0 1 0·959917049 −0·353183959 0·031304859 −0·0436021452
2 0·973500730 −0·303573162 0·043822799 0·04897131347

10·05 1 0·959925933 −0·353184440 0·031218684 −0·0435793147
2 0·9732593180 −0·3043720230 0·0439375046 0·0489209246

10·06 1 0·959927634 −0·353184512 0·031201725 −0·043574917
2 0·973211345 −0·304529703 0·0439596353 0·048910330

10·07 1 0·959929361 −0·353183429 —- —-
2 0·973163355 −0·304686645 0·0439818087 0·04890019269

10·073 1 0·959930053 −0·353184585 —- —-
2 0·973148973 −0·304733546 0·0439882583 0·04889680566

10·50 1 0·959990263 −0·353188671 —- —-
2 0·971180556 −0·310828785 0·0447314874 0·0483844416

11·0 1 0·960037497 −0·353193080 —- —-
2 0·969100784 −0·316683330 0·0451570320 0·0476581477
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Figure 3. (a) Similarity solutions of (11) and (13) for ηmax = 10 obtained by shooting method, using
wall conditions obtained from figure 2 as initial guesses. (b) & (c) The perturbative solution of (12)
and (14) corresponding to 0(1) solutions of figure 3a.

different choices of η = ηmax. The wall values are provided for both the self-similar solution

(ε = 0) and its perturbation – the 0(ε) solution. Thus, this exercise shows the existence of

two solutions for all free convection cases with different ηmax. In figure 3a, these two self-

similar solutions are shown for ηmax = 10 having the following nature. The first solution

shows the velocity (F ′
01) to be positive everywhere in the investigated domain, while the non-

dimensional temperature (H01) drops monotonically with height starting from the plate. The

second solution also shows the temperature (H02) to drop monotonically with height, but the

velocity field (F ′
02) shows the flow to be recirculating in the outer part of the domain. It is for

this attribute, we term the second solution as non-physical – one which has not been recorded

experimentally. The first solution is noted experimentally and reported in the literature, as

in Brewster & Gebhart (1991). Both the self-similar solutions indicate correct heat transfer

from the plate to the surrounding fluid – as expected for assisting flows.
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4. Breakdown of asymptotic expansion

Of the pair of self-similar solutions obtained in the previous section, not all admit valid

perturbation expansion given by (9) and (10). This is explained next. Having obtained the

values of F0 and H0, we use these in (12) and (14) to solve for F1(η) and H1(η) using the

“shooting technique”. In figures 3b and c the perturbative component of these two solutions

are shown. The perturbed velocity field shows the desired monotonic growth to its free stream

value in figure 3b, as given by the solution of (12). The perturbed temperature field is as shown

in Brewster & Gebhart (1991). The second perturbed solution shown in 3c indicates that the

velocity field is mostly in the reverse direction except near the upper edge of the domain.

Also, the perturbed temperature field is of opposite type to that shown in figure 3b. Brewster

& Gebhart (1991) did not identify this solution or report its mathematical existence.

In figure 4, the similarity solutions and its perturbation components are shown for the case

where ηmax = 7, obtained by solving (11) to (14) in the prescribed domain. This domain

Figure 4. (a) Similarity solutions of (11) and (13) for ηmax obtained by shooting method, using wall
conditions obtained from table 1 as initial guesses. (b) & (c) The perturbative solution of (12) and (14)
corresponding to 0(1) solution of figure 4a.
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Figure 5. (a) Similarity solutions of (11) and (13) for ηmax = 10.07 obtained by shooting method,
using wall conditions obtained from table 1 as initial guesses. (b) The perturbative solution of (12) and
(14) corresponding to 0(1) solution of ‘2’ in figure 5a.

was also used in Cebeci & Bradshaw (1984) and Brewster & Gebhart (1991). Therefore, the

present results can be compared with these solutions. The qualitative nature of the solutions

remains the same, as that was found for ηmax = 10 and shown in figure 3. In fact, for any

values of ηmax between 7 and 10·06, the qualitative nature of the solution remains the same.

Furthermore, the solutions for F ′
01, H01 are the same that is reported in Cebeci & Bradshaw

(1984) and Brewster & Gebhart (1991). The perturbative solution shown in figure 4b also

matches with the solution given in Brewster & Gebhart (1991).

When ηmax is increased to 10·07, both the similarity solutions are shown in figure 5a,

having similar properties as discussed above. However, the perturbative components F ′
11 and

H11 did not converge following the shooting technique, when a solution was sought for (12)

and (14) using the 0(1) solution given by (11) and (13). The other solution, given by F ′
12 and

H12, provided a converged solution and shown in figure 5b, similar to the solution obtained

before for lower ηmax. Thus, the perturbed solution exists only for the non-physical similarity
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Figure 6. (a) Similarity solutions of (11) and (13) for ηmax = 11 obtained by shooting method, using
wall conditions obtained from table 1 as initial guesses. (b) The perturbative solution of (12) and (14)
corresponding to 0(1) solution of ‘2’ in figure 6a.

solution, indicating a breakdown of the perturbation process for ηmax greater than 10·06. This

type of breakdown of asymptotic solution for one set of 0(1) solution continued for higher

values of ηmax. In figures 6a and b the corresponding 0(1) and the converged 0(ε) solutions

are shown for ηmax equal to 11.

5. Conclusions

Non-unique, non-convergent solutions (by the shooting technique), are reported here for the

first time, for non-similar assisting flow past vertical flat plates. The non-similar solution

is obtained in terms of perturbation series, whose 0(1) solution is nothing but the solution

for natural convection past a vertical plate. The perturbed solution is obtained in terms of

the small parameter, ε = G−0·5
x . It is found that the 0(1) part has two solutions, one that is
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indicated in the literature having the proper monotonically growing feature, as in Cebeci &

Bradshaw (1984) and Brewster & Gebhart (1991). The second solution is not physical, as the

flow exhibits recirculation in the outer part of the boundary layer. This is true for any choice

of integration domain for the wall-normal distance (ηmax).

However, 0(ε) solution for the above two branches of 0(1) solution may or may not exist,

depending upon the choice of ηmax. For ηmax ≤ 10·06, we have two 0(ε) solutions. For

ηmax greater than this value, only one solution exists, corresponding to the non-physical 0(1)

solution. Thus, we see that ηmax is the limiting factor in obtaining a proper physical solution

for this case of assisting flow past vertical flat plates.

References

Brewster R A, Gebhart B 1991 Instability and disturbance amplification in a mixed-convection bound-

ary layer. J. Fluid Mech. 229: 115–133

Cebeci T, Bradshaw P 1984 Physical and computational aspects of convective heat transfer (New

York: Springer-Verlag)

Oosthuizen P H, Naylor D 1999 An introduction to convective heat transfer analysis (Singapore:

WCB/McGraw-Hill)

Schneider W 1979 A similarity solution for combined forced and free convection flow over a horizontal

plate. Int. J. Heat Transfer 22: 1401–1406

Schneider W, Wasel M G 1985 Breakdown of the boundary-layer approximation for mixed convection

above a horizontal plate. Int. J. Heat Transfer 28: 2307–2313

Steinrück H 1994 Mixed convection over a cooled horizontal plate: non-uniqueness and numerical

instabilities of the boundary-layer equations. J. Fluid Mech. 278: 251–265


