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The dynamics of a gas bubble in a square channel with a linearly increasing temperature
at the walls in the vertical direction is investigated via three-dimensional (3D) numerical
simulations. The channel contains a so-called “self-rewetting” fluid whose surface tension
exhibits a parabolic dependence on temperature with a well-defined minimum. The main
objectives of the present study are to investigate the effect of Marangoni stresses on
bubble rise in a “self-rewetting” fluid using a consistent model fully accounting for the
tangential surface tension forces, and to highlight the effects of three-dimensionality on
the bubble rise dynamics. In case of isothermal and non-isothermal systems filled with
a “linear” fluid, the bubble moves in the upward direction in an almost vertical path.
In the contrary, strikingly different behaviours are observed when the channel is filled
with a “self-rewetting” fluid. In this case, as the bubble crosses the location of minimum
surface tension, the buoyancy-induced upward motion of the bubble is retarded by a
thermocapillary-driven flow acting in the opposite direction, which in some situations,
when thermocapillarity outweighs buoyancy, results in the migration of the bubble in the
downward direction. In the later stages of this downward motion, as the bubble reaches
the position of arrest, its vertical motion decelerates and the bubble encounters regions of
horizontal temperature gradients, which ultimately lead to the bubble migration towards
one of the channel walls. These phenomena are observed at sufficiently small Bond
numbers (high surface tension). For stronger influence self-rewetting nature, the bubble
undergoes spiralling motion. The mechanisms underlying these three-dimensional effects
are elucidated by considering how the surface tension dependence on temperature affects
the thermocapillary stresses in the flow. The effects of other dimensionless numbers, such
as Reynolds and Froude numbers are also investigated.

1. Introduction

Marangoni stresses due to the variation in surface tension at the interface separating
two immiscible fluids play a vital role in many technological applications. The surface
tension gradient at the interface can occur either due to the variation in temperature or
concentration of surfactants. A characteristic problem of this nature is the thermocap-
illary migration of a drop/bubble. An extensive review on this subject can be found in
Subramanian (1992) and Subramanian et al. (2002). In the present work, we numerically
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investigate the thermocapillary migration of a bubble inside a three-dimensional channel
filled with a so-called “self-rewetting” fluid that exhibits a non-monotonic dependence of
the surface tension on temperature. This behaviour is in contrast with that of common
fluids (hereafter termed as “linear” fluid), such as water and various oils, whose interfacial
tension with air typically decreases almost linearly with increasing temperature. A typical
example of “self-rewetting” fluids are non-azeotropic, high carbon alcohol solutions,
which have quasi parabolic surface tension-temperature curves with well-defined minima;
increasing alcohol concentration increases the parabolicity of these curves (Vochten &
Petre 1973; Petre & Azouni 1984; Limbourgfontaine et al. 1986; Villers & Platten 1988;
Savino et al. 2009, 2013). This unusual surface tension dependence on temperature
was first observed by Vochten & Petre (1973), and such fluids were later termed “self-
rewetting” by Abe et al. (2004). It has been shown that the properties of these fluids
can be exploited to accomplish substantially higher critical heat fluxes in heat pipes
compared to water (Suzuki et al. 2005; Mcgillis & Carey 1996; Ahmed & Carey 1999)
or may even give rise to some very interesting phenomena, such as thermally induced
‘superspreading’ behaviour of a droplet on a surface (Karapetsas et al. 2014).
The thermal migration of bubbles in a “linear” viscous fluid heated from below was first

reported in the pioneering work of Young et al. (1959), who experimentally demonstrated
that due to the Marangoni stresses, induced by the temperature gradient, small bubbles
move in the downward direction, whereas larger bubbles move in the upward direction.
In the latter case, the buoyancy overcomes the effect of thermocapillarity. Assuming a
spherical-shaped bubble and creeping flow conditions, they also derived an analytical
expression for the terminal velocity of the bubble. Later, in the context of microgravity
applications, Balasubramaniam & Chai (1987) neglected buoyancy and extended the an-
alytical solution to bubbles with small deformation from a spherical shape. By conducting
an asymptotic analysis in the limit of large Reynolds and Marangoni numbers, Balasub-
ramaniam (1998) reported that the steady migration velocity is a linear combination of
the velocity for purely thermocapillary motion and the buoyancy-driven rising velocity.
Later, Zhang et al. (2001) performed a theoretical analysis and showed that for small
Marangoni numbers the inclusion of inertia is crucial in the development of an asymptotic
solution for the temperature field. Recently, by conducting numerical simulations of a
droplet inside a rectangular box, Brady et al. (2011) showed that for low Marangoni
numbers a drop rapidly reached to a quasi steady state, but for high Marangoni numbers
the initial conditions affect the behaviour of the droplet significantly. The thermocapillary
migration of a bubble for high Marangoni numbers was also investigated by Liu et al.

(2012). They showed that the terminal velocity of the bubble decreases with increasing
the value of the Marangoni number.
Merritt et al. (1993) studied the migration of bubbles in the presence of buoyancy and

thermocapillarity via direct numerical simulations. Since then, several kinds of numerical
methods ranging from boundary-fitted grids (Chen & Lee 1992; Welch 1998), to the
level-set method (Haj-Hariri et al. 1997; Zhao et al. 2010), the volume of fluid (VoF)
method (Ma & Bothe 2011; Tripathi et al. 2015b), diffuse-interface methods (Borcia &
Bestehorn 2007) and hybrid schemes of the Lattice-Boltzmann and the finite difference
method (Liu et al. 2013) have been proposed in order to obtain the surface deformation
accurately. Some of the main findings from these studies are highlighted below. Chen &
Lee (1992) and Haj-Hariri et al. (1997) showed that the deformation considerably reduces
the terminal velocity of both gas bubbles and liquid drops. Welch (1998) demonstrated
that for higher capillary numbers bubble deformation becomes important and the bubble
continues to deform at later times, failing to reach a steady state. Herrmann et al. (2008a)
and Wu & Hu (2012, 2013) also reached to the same conclusion for the case of large
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Marangoni numbers. Keh et al. (2002) numerically studied the motion of a spherical
drop between two parallel plane walls and found that the droplet migration speed can be
controlled by varying the thermal conductivity of the droplet and changing the imposed
boundary conditions at the wall. Chen et al. (1991) found that inside an insulated tube
with an imposed axial temperature gradient, which in turn develops the hydrodynamic
retarding forces, the thermocapillary migration velocity of a spherical drop is always less
than that in an infinite medium. This work was extended by Mahesri et al. (2014) to
take into account the effect of interfacial deformation. All these studies considered the
migration of bubbles and drops in “linear” fluids.
Tripathi et al. (2015c) conducted axisymmetric simulations by considering a quadratic

dependence of surface tension on temperature, and investigated the buoyancy-driven rise
of a bubble inside a tube imposing a constant temperature gradient along the wall using
the VoF method. They found that for “self-rewetting” fluids, the bubble motion becomes
complex as the bubble crosses the position of minimum surface tension. It has been
shown that for sufficiently small Bond and large Galileo numbers, the bubble motion
could be reversed and eventually arrested near the position of minimum surface tension.
Even though in their numerical simulations, Tripathi et al. (2015c) have neglected the
contribution of the surface tension gradient term (∇sσ) in the interfacial stress balance,
the predicted position of bubble entrapment was found to be in very good agreement with
an analytical expression that has been derived in the Stokes flow limit by these authors,
fully accounting for this term. Here, ∇s represents the surface gradient operator and σ
the surface tension. Nevertheless, the missing Marangoni term from the numerical model
is actually quite significant for the correct representation of the physics of the present
problem since it is expected to have a significant impact in the nonlinear dynamics of the
bubble motion. It should be noted that the calculation of this term in the VoF formulation
is very challenging. An efficient way to accurately calculate the surface tension gradient
has been proposed by Seric et al. (2018) very recently. Using a similar approach, Tripathi
& Sahu (2018) developed a robust numerical solver to handle Marangoni stresses for
“linear” fluids, and implemented the module to calculate the Marangoni term in an
open source code, Basilisk, developed by Popinet and co-workers (Popinet 2003, 2009,
2018). Extensive validation exercises were performed by comparing with the previous
experimental, theoretical and computational studies (see Tripathi & Sahu (2018)). This
solver has been used in the present study.
The objectives of the present study are twofold: (i) to investigate the effect of

Marangoni stresses on bubble rise in a “self-rewetting” fluid using a consistent model
fully accounting for the tangential surface tension forces. It is to be noted that there
are only few previous studies (e.g. Ma & Bothe (2011); Seric et al. (2018)) involving
Marangoni stresses in the VoF framework. (ii) To study the effects of three-dimensionality,
which has been shown to be very important even in isothermal systems (Tripathi et al.
2015a). To the best of our knowledge, three-dimensional dynamics of an air bubble rising
in a “self-rewetting” fluid has not been investigated so far. To this end, we examine the
motion of a gas bubble in a square channel with linearly increasing temperature in the
vertical direction via 3D numerical simulations. Our results indicate that in the case of
“self-rewetting” fluids, as the bubble crosses the location of minimum surface tension, the
buoyancy-induced upward motion of the bubble is retarded by a thermocapillary-driven
flow acting in the opposite direction, which may even result in the migration of the
bubble in the downward direction when thermocapillarity outweighs buoyancy. In the
later stages of this downward motion, as the bubble reaches the position of arrest, its
vertical motion decelerates and the bubble encounters region of horizontal temperature
gradients, appearing due to instability, which makes the Marangoni convection along the
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Figure 1. (a) Schematic diagram showing the initial configuration of a gas bubble (fluid ‘B’)
rising inside a liquid medium (fluid ‘A’). Initially, the bubble is placed at z = zi inside the cubic
computational domain. The acceleration due to gravity, g acts in the negative z direction. A
linear temperature variation is imposed at the walls in the vertical direction with a constant
gradient, γ. (b) Typical variations of surface tension, σ of a self-rewetting fluid along the vertical
direction for different values of M1 and M2.

interface asymmetrical. This ultimately leads to the bubble migration towards one of the
channel walls. These phenomena are observed at sufficiently small Bond numbers and
have no analogue for “linear” fluids. The mechanisms underlying these three-dimensional
effects are elucidated by considering how the surface tension dependence on temperature
affects the thermocapillary stresses in the flow.
The rest of the paper is organized as follows. The problem is formulated in Section

2 and the equations governing the flow dynamics are discussed. The present numerical
method and the validation of the solver are also presented section 3. The numerical results
and the underlying physics are discussed in Section 4. Finally, concluding remarks are
given in Section 5.

2. Formulation

2.1. Set-up

We investigate the motion of a gas bubble (fluid ‘B’) of initial radius R inside a cubic
channel (with H = 20R, as shown in Fig. 1a) filled with an incompressible, Newtonian
liquid ‘A’ via 3D numerical simulations. The dynamics is due to the simultaneous action of
buoyancy and surface tension variation resulting due to an imposed temperature gradient
via the viscous force. The surrounding fluid ‘A’ is a “self-rewetting” fluid whose surface
tension exhibits a parabolic dependence on temperature with a well-defined minimum at
zm (see Fig. 1b). A Cartesian coordinate system (x, y, z) is used to describe the bubble
dynamics. Initially, the bubble is located at z = zi. The rigid and impermeable walls
are located at x = ±H/2 and y = ±H/2. The acceleration due to gravity, g acts in the
negative z direction, as shown in Fig. 1a. A linear temperature variation with a constant
gradient, γ is imposed at the walls in the vertical direction, given by T = Tm+γ(z−zm),
such that Tm is the temperature at the location where the surface tension is minimum,
i.e, z = zm.

In order to determine the flow characteristics, we solve the equations of conservation
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of mass, momentum and energy, which are given by

∇ · u = 0, (2.1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇ ·

[
µ(∇u+∇uT )

]
+ F, (2.2)

∂T

∂t
+ u · ∇T = ∇ · (α∇T ), (2.3)

where ρ, µ and α denote the density, viscosity and thermal diffusivity, respectively; u, p
and T denote the velocity, pressure, and temperature fields of the fluid, respectively; t
represents time. The continuum surface force formulation (Brackbill et al. 1992) is used
to include the surface tension force in the Navier-Stokes equations. F is the combination
of gravitational force per unit volume (−ρg~ez) and surface tension force per unit volume
(δ(x − xf )σκn + δ(x − xf )∇sσ). Here, δ(x − xf ) is a delta distribution (denoted by δ
hereafter) that is zero everywhere except at the interface, where x = xf is the position
vector of a point at the interface; κ = ∇ · n is the curvature, n is the unit normal to the
interface pointing towards fluid ‘A’; ~ez represents the unit vector in the vertically upward
direction; ∇s(≡ ∇ − (∇ · n)n) represents the surface gradient operator; σ represents
the interfacial tension coefficient of the liquid-gas interface. The following functional
dependence of the surface tension on temperature is used to model the behaviour of a
“self-rewetting” fluid:

σ = σ0 − β1(T − T1) + β2(T − T1)
2, (2.4)

where β1 ≡ − dσ
dT |T1

and β2 ≡ 1

2

d2σ
dT 2 |T1

, T1 = Tm − γzm denotes the temperature
at the bottom of the physical domain (z = 0) and σ0 denotes the surface tension at
that temperature. This parabolic dependency of the surface tension on temperature is
expected to alter the type of Marangoni flow observed in case of simple “linear” fluids
that exhibit a linear variation of σ with T .
The following advection equation of the volume fraction of the liquid phase, c, which

takes on values between 0 and 1 for the gas and liquid phases, respectively, is solved
using a VoF framework in order to track the interface separating the liquid and gaseous
phases:

∂c

∂t
+∇ · (uc) = 0. (2.5)

As shown by Popinet (2009), this equation is equivalent to the advection equation for
the density. The viscosity dependence on the temperature and the volume fraction of the
liquid phase is given by (Nahme 1940; Tripathi et al. 2015c):

µ = cµAe
−

(

T−T1

Tm−T1

)

+ (1− c)µB

{
1 +

(
T − T1

Tm − T1

)3/2
}
, (2.6)

where µA and µB are the viscosity of the liquid and gaseous phases at the reference
temperature, T1.
The density and thermal diffusivity are assumed to be constants for each phase, which

are given by

ρ = ρAc+ ρB(1− c), (2.7)

α = αAc+ αB(1− c), (2.8)

respectively. Here, ρA and ρB denote the density, and αA and αB represent the thermal
diffusivity of the liquid and gaseous phases, respectively.
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2.2. Scaling

We employ the following scaling in order to render the governing equations dimension-
less:

(x, y, z, zi, zm) = R (x̃, ỹ, z̃, z̃i, z̃m) , t = tst̃, u = V ũ, p = ρAV
2p̃,

µ = µAµ̃, ρ = ρAρ̃, α = αAα̃, T = T̃ (Tm − T1) + T1,

σ = σ0σ̃, β1 =
σ0

Tm − T1

M1, β2 =
σ0

(Tm − T1)2
M2, γ =

Γ (Tm − T1)

R
, (2.9)

where tildes designate dimensionless quantities. The velocity scale, V is β1γR/µA and
the time scale, ts is µA/β1γ. Here, M1, M2 and Γ represent the dimensionless β1, β2

and imposed temperature gradient at the side walls in the z direction (γ), respectively.
We drop the tilde notations from all the dimensionless quantities, given in Eq. (2.9).
Therefore, the variables presented hereafter in the manuscript are all dimensionless.
The governing dimensionless equations are given by

∇ · u = 0, (2.10)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+

1

Re
∇ ·

[
µ(∇u+∇uT )

]
+

1

Fr
F, (2.11)

∂T

∂t
+ u · ∇T =

1

Ma
∇ · (α∇T ), (2.12)

whereRe ≡ ρAV R/µA denotes the Reynolds number, Fr ≡ V 2/gR is the Froude number,
Ma ≡ V R/αA(≡ RePr) is the Marangoni number and Pr (≡ µA/ρAαA) is the Prandtl
number.
The dimensionless F in Eq. (2.11) is given by

F =
δ

Bo
[σκn+∇sσ]− ρ~ez, (2.13)

where σ = 1−M1T +M2T
2 and Bo = ρAgR

2/σ0(≡ ReCa/Fr); Ca ≡ V µA/σ0 denotes
the capillary number. The first and second terms on the right-hand-side of Eq. (2.13)
correspond to the capillary and gravitational contributions, respectively.

The dimensionless viscosity, µ is given by:

µ = ce−T + (1− c)µr

(
1 + T 3/2

)
, (2.14)

where µr ≡ µB/µA is the viscosity ratio. The dimensionless density (ρ) and thermal
diffusivity (α) are given by (Haj-Hariri et al. 1997):

ρ = c+ ρr(1− c), (2.15)

α = c+ αr(1− c), (2.16)

respectively, where ρr ≡ ρB/ρA and αr ≡ αB/αA.

3. Numerical method

For the purposes of the present work, we have used, as a starting point, an open source
finite-volume VoF based multiphase flow solver, Basilisk (Popinet 2003, 2009). As already
pointed identifying the exact values of the surface tension coefficient and evaluating its
gradient along the interface is quite challenging for interface capturing techniques and was
not included in the original Basilisk solver. Following a similar methodology to Tripathi
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& Sahu (2018), we have fully taken into account the tangential gradient of surface tension
force (Marangoni force) in our calculations. The reader is referred to Tripathi & Sahu
(2018) for detailed description of the numerical method used in the present study.
The VoF advection algorithm employed is non-diffusive and conservative in nature

(Weymouth & Yue 2010). The calculation of surface tension force is balanced by pres-
sure gradient with a height-function based interface curvature estimation. An adaptive
refinement of the mesh near the interfacial and regions with vortical flow is used in the
present study.
The following boundary conditions (in the dimensionless form) are used in our nu-

merical simulations. The no-slip and no penetration boundary conditions are imposed
at all the side walls and the Neumann boundary conditions for temperature and for the
velocity components are used at the top and bottom of the computational domain. A
constant temperature (T = 1+Γ (z− zm)) is imposed at all the side walls. However, the
boundary conditions used in section 3.1 only are different. They are prescribed in the
same way as considered by the previous studies, which are explicitly discussed below.

3.1. Validations

In order to validate the present solver, first we compare the terminal velocity of a
bubble migrating in a ‘linear’ fluid (M2 = 0) due to an imposed temperature gradient in
the creeping flow regime and zero Marangoni number with the corresponding theoretical
prediction of Young et al. (1959). This test case is performed in the zero gravity condition,
as Young et al. (1959) theoretically derived the terminal velocity of a neutrally buoyant
spherical bubble inside another infinitely unbounded fluid at rest.

The dimensionless theoretical terminal velocity of the bubble is (Young et al. 1959):

wY GB =
2

(2 + αr) + (2 + 3µr/ρr)
. (3.1)

Herrmann et al. (2008b) also performed numerical simulations to validate their result
against the theoretical prediction of Young et al. (1959). Based on the configuration used
by Herrmann et al. (2008b), in our simulation, a time-invariant linear temperature field
(T = 1 + Γ (z − 15)) is imposed, which drives a bubble from the low temperature to
the high temperature region, and the case of a linear fluid is also considered. Initially,
the bubble is kept at the center of a computational domain of size 15 × 15 × 15. The
values of dimensionless parameters are Γ = Ca = Re = 1/15. The rest of the parameters
considered in the numerical simulation are αr = 1, ρr = 1, µr = 1. For this set of
parameters, wY GB ≈ 0.133. In our 3D numerical simulation, we found that the terminal
velocity of the bubble (wrise) is 0.131. Thus, the percentage of error, (1−wrise/wY GB)×
100 is less than 1.7 %.
Next, we compare the rise velocity of a neutrally buoyant spherical bubble obtained

from our numerical simulation with that reported by the previous studies in Fig. 2. The
parameter values considered for this test case are Re = Ma = 0.72 and Ca = 0.0576. The
ratio of the fluid properties of the ambient fluid with those of the drop is fixed at 2. This
test case was originally taken by Nas & Tryggvason (2003) and subsequently used by other
researchers (see e.g. Ma & Bothe (2011); Seric et al. (2018)) to validate their numerical
solvers. A square computational domain of size 4 × 4 is considered. As considered by
the previous studies, two dimensional simulation is performed for this exercise. No-slip
and no-penetration boundary conditions are used at the top and bottom walls, whereas
Neumann boundary conditions for the velocity components and temperature are used
at the size boundaries. A grid convergence test is performed and converged solution is
obtained using a grid size (dimensionless), ∆ = 0.0312. It can be seen in Fig. 2 that
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Figure 2. Drop migration velocity for Re = Ma = 0.72 and Ca = 0.0576 in the absence of
gravitational effects.
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Figure 3. The temporal variations of the normalised velocity of the bubble, wrise/wY GB for
Ma = 1 and 10. The rest of the parameters are Re = 1, Ca = 0.1 and Γ ≈ 0.133. The symbols
are the results of Liu et al. (2012) and the solid lines represent our results.

the terminal rise velocity obtained from our simulation agrees well that of Seric et al.

(2018). However, in the accelerating regime (t < 0.4), our result is closer to that of Nas
& Tryggvason (2003) and Ma & Bothe (2011).
We have also performed a validation exercise by comparing the thermocapillary migra-

tion of a bubble obtained from the present simulation with that of Liu et al. (2012). They
conducted lattice Boltzmann method based simulations for the thermocapillary migration
of a bubble placed at the centre of a computational domain of size 15R×15R×15R with
the top and bottom walls maintained at temperatures 0 and 24 (lattice unit), respectively.
They used R = 16, ρA = ρB = 1.0, µA = µB = 0.2, σ0 = 0.025 and Tref = 12; all the
variables are in the lattice units. This gives Re = 1, Ca = 0.1 and Γ = 0.13333. The
thermal conductivity of the fluids, κA = κB = 0.2 and 0.02 are used to obtain Ma = 1
and 10. We performed numerical simulations for these sets of dimensionless numbers
using ∆ = 0.06 (as also used in their study). The no-slip and no-penetration boundary
conditions are used at the top and bottom walls, and periodic boundary conditions for
the velocity components and temperature are used at the size boundaries. The bubble
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Figure 4. The temporal variation of the difference (in percentage) between the pressure force
+ force due to normal viscous stress difference and surface tension force integrated over the
entire bubble surface. M1 = 0.4 and M2 = 0.2, and the rest of the parameters are Re = 10,
Bo = 10−3, Fr = 50, Pr = 0.7, µr = 10−2, ρr = 10−3, αr = 0.04, zi = 9.5 and Γ = 0.1 (‘base’
parameters).

rise velocity normalised with the theoretical result of Young et al. (1959) versus time for
Ma = 1 and 10 are plotted in Fig. 3. For these parameters, wY GB = 1.667×10−4. It can
be seen that the agreement is quite good.
To generate the results presented in the following section a three-dimensional com-

putation domain of size 20 × 20 × 20 is used. Initially the gas bubble is placed at
zi = zCG(t = 0) = 9.5. A wavelet error based dynamic adaptive grid refinement feature
of Basilisk has been employed to refine the grid at the interface and in the regions of
the domain where the gradients in velocity are large. The refinement level used in our
simulations is 6, which corresponds to 64 computational cells per unit domain width,
and the finest level being 9 near the interface, which amounts to 512 computational
cells per unit domain width. An intermediate refinement of 256 cells per unit domain
width is used in regions with higher velocity gradients. As mentioned in Popinet (2018),
the balanced force method for the calculation of surface tension term in the Navier-
Stokes equations may generate parasitic currents for surface tension dominant flows.
Thus, in Fig. 4, we have performed another test to check whether the capillary pressure
balances the pressure jump across the interface for Re = 10, Bo = 10−3, Fr = 50,
Pr = 0.7, µr = 10−2, ρr = 10−3, αr = 0.04, zi = 9.5 and Γ = 0.1 (hereafter, termed the
‘base’ parameters). Here, the temporal variation of the percentage difference between the
integral pressure jump across the interface and integral value of the capillary pressure
over the bubble surface is plotted for M1 = 0.4 and M2 = 0.2. This is defined as (pressure
force + force due to normal viscous stress difference - surface tension force) / surface
tension force ×100. Note that the surface tension force includes its normal and Marangoni
contributions. It can be seen that it is about 1.5%, which reduces to about 0.5% at later
times.

4. Results and discussion

4.1. Axisymmetric bubble

We begin the discussion of our results by examining the case of an axisymmetric gas
bubble. Tripathi et al. (2015c) have shown that as the bubble crosses the position of
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Figure 5. Temporal variation of the center of gravity of the bubble, zCG rising in an
axisymmetric domain. (a) With Marangoni term (δ∇sσ), and (b) without Marangoni term
(δ∇sσ). The parameter values are Re = 10, Bo = 10−3, Fr = 50, Pr = 0.7, µr = 10−2,
ρr = 10−3, αr = 0.04, zi = 9.5 and Γ = 0.1 (‘base’ parameters). The positions of bubble arrest
for M1 = 0.2, 0.4 and 0.6 obtained from the analytical solution are shown in panel (a) by red
filled circle, triangle and square, respectively.

minimum surface tension the bubble motion could be reversed, for sufficiently small
Bond number and significant inertia, and eventually becomes arrested near the position
of minimum surface tension. It is important to note though that in their numerical
simulations the contribution of the surface tension gradient term in the interfacial stress
balance was neglected, and therefore one of the goals of the present study is to investigate
the impact of this missing term on the nonlinear dynamics of the bubble motion. As it has
been mentioned above, our numerical scheme is able to fully account for the contributions
of the Marangoni force.
Fig. 5(a) and (b) present a comparison between the results obtained from the present

study and the ones predicted by Tripathi et al. (2015c), respectively. In Fig. 5(a) and
(b), we depict the temporal variation of the centre of gravity, zCG, of a bubble rising in
a self-rewetting fluid inside a channel with walls that are heated according to a linear
temperature profile of constant gradient Γ > 0. The evolutions of zCG are shown for three
different values of the parameter M1, while M2 = M1/2; the latter restriction is imposed
to keep the position where the minimum surface tension occurs constant. The remaining
parameters are the same as the ‘base’ parameters). The comparison between the two sets
of simulations reveals that the Marangoni stresses affects significantly the dynamics of
the bubble motion. In Fig. 5b, as described in Tripathi et al. (2015c), the bubble reaches
a maximum height (z ≈ 10.7) before it reverses its motion and equilibrates at z ≈ 10.24,
for all values of M1. On the other hand, in Fig. 5a, where we have included the Marangoni
term in the interfacial stress balance, a significantly different behavior is observed. For
all values of M1 considered, the bubble rises with a constant velocity till t ≈ 6, after a
short accelerating phase initially. At later times (for t > 10 (approximately)), the bubble
attains a terminal location and becomes stationary. It can be seen in Fig. 5(a) that
increasing the value of M1 decreases the location of bubble arrest. We also observe that
the reversal of bubble motion takes place only for the highest value of M1 (M1 = 0.6) for
which the effect of Marangoni stresses act in the downward direction become maximized
and overcome the effect of buoyancy before the bubble reaches its terminal position.
Tripathi et al. (2015c) derived an analytical expression for the position of bubble

entrapment based on the assumption of Stokes flow (see their Eq. (4.1)) which in our
case gives z = 10.09. Besides the fact that the analytical solution, takes fully into
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Figure 6. Streamlines at t = 20 for M1 = 0.6 fully accounting for the Marangoni term (δ∇sσ).
The background color shows the temperature field. The rest of the parameters are the same as
those used to generate Fig. 5a.

account the presence of Marangoni contribution, the predicted value appears to be much
closer to the predictions of the numerical simulation shown in Fig. 5b. This seemingly
puzzling situation can be explained by looking more carefully at the flow field of the
liquid that surrounds the bubble in both cases. According to the Stokes limit solution, in
the case of a motionless bubble there is no flow of the surrounding liquid (see Eq. (3.13)
in Tripathi et al. (2015c)). In the numerical simulations of Fig. 5b, when the bubble
reaches a motionless state, we find (not shown) that the velocity field is indeed very
close to zero which explains the good agreement with the Stokes limit solution. However,
when the Marangoni term is taken into account and for finite values of Re, the liquid is
never entirely motionless since thermocapillarity drives a steady recirculation around the
bubble. This is shown very clearly in Fig. 6 where we depict the streamlines associated
with the bubble for M1 = 0.6 at t = 20; similar streamlines patterns are observed for
other values of M1 as well. The presence of liquid motion, even at times that the bubble
has reached its equilibrium position, clearly renders the analytical solution invalid.

4.2. Effects of three-dimensional flow

We now turn our attention to the three-dimensional flow which is the main focus the
present work. In Fig. 7, we present the temporal variation of the centre of gravity, zCG,
of a rising bubble inside a rectangular channel for three different cases: the case of a
bubble rising in an isothermal liquid, and the cases where the channel is filled with either
a linear (M1 = 0.4 & M2 = 0) or a self-rewetting fluid (M1 = 0.4 & M2 = 0.2). The
remaining parameters are the same as the ‘base’ parameters. It can be seen that the
bubble undergoes a relatively short acceleration phase, after which the bubble attains
a constant terminal speed for both the isothermal and the linear fluid (non-isothermal)
cases. For the linear fluid, the terminal speed is higher due to the presence of Marangoni
stresses, which drive liquid towards the cold region of the channel, i.e, Marangoni stresses
acts in the same direction as that of buoyancy, thereby enhancing the upward motion
of the bubble. For the self-rewetting fluid case, the surface tension decreases and then
increases (see Eq. (2.4) and Fig. 1b) with a minimum at zm = 10. Thus in region z > zm,
the bubble experiences a pull in the downward direction due to Marangoni stresses, but
buoyancy tries to push the bubble in the upward direction. Due to this competition
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Figure 7. Temporal variation of the center of gravity of the bubble for an isothermal system
(M1 = 0 and M2 = 0), a self-rewetting fluid (M1 = 0.4 & M2 = 0.2) and a linear fluid (M1 = 0.4
& M2 = 0) and zi = 9.5. The remaining parameter values are the same as the ‘base’ parameters.

(a) (b)

Figure 8. Trajectories of the bubble moving in channel containing the (a) linear fluid (M1 = 0.4
& M2 = 0) and (b) self-rewetting fluid (M1 = 0.4 & M2 = 0.2). The remaining parameter values
are the same as the ‘base’ parameters.

between Marangoni stresses and buoyancy, the bubble moves with a considerably lower
speed until at later times (t > 8), these forces counter-balance each other and the bubble
at t ≈ 18 has become entrapped at z ≈ 10.33 for this set of parameters.
It is well known that in isothermal systems, the three-dimensionality of the flow can

be expressed under conditions through a zig-zag motion of the bubble (Tripathi et al.

2015a). However, the mechanism of the zig-zagging motion of a bubble in an isothermal
system is different from that in the present case. In case of an isothermal system, the
three-dimensional motion is associated with a symmetric pair of rotating vortices in the
wake of the bubble (Magnaudet & Mougin 2007). As expected for the specific parameter
values used in Fig. 7, the bubble in the isothermal liquid rises in a perfectly straight path
(Tripathi et al. 2015a). In Fig. 8a, we plot the trajectory of a bubble rising in a linear fluid
(non-isothermal case). Like in the isothermal case, the bubble in a linear fluid also moves
in the upward direction in almost vertical path. On the other hand, a striking difference
is observed in the case of the self-rewetting fluid (see Fig. 8b) where the bubble initially
moves vertically but after its upward motion decelerates and reaches at z ≈ 10.33, the
bubble migrates away from the axis of symmetry. This can be explained as follows. In the
returning path (after the bubble has reached its maximum height) and when the bubble
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Figure 9. Temporal variation of (a) zCG, (b) xCG, (c) yCG and (d) the distance of the center of

gravity of the bubble from the axis, d =
√

x2

CG + y2

CG, for different values of M1. The parameter
values are the same as those used in Fig. 7 while M2 = M1/2.

reaches to a stationary position, any perturbation in the position of the bubble will lead
to interfacial thermal gradients. The bubble has a relatively low/high temperature fluid
in its wake due to the Marangoni convection when the bubble is rising/on the return
path. This builds up a radial gradient of temperature in the vicinity of the bubble. Any
perturbation in the flow may cause the bubble to experience asymmetrical temperature
distribution, which leads to an unbalanced force in the horizontal direction due to the
asymmetrical Marangoni stresses. The onset of this horizontal migration may be studied
in detail with the help of a linear stability analysis, which is out of the scope of the
present study.
The lateral migration of the bubble is quantified in Fig. 9, where we plot the evolution

of the z, x and y components of the position of the bubble center of gravity along
with its distance from the axis, d =

√
x2

CG + y2CG, for three different values of M1

and M2 = M1/2. It can be seen that at early times, the bubble rises approximately
vertically, i.e along (x, y) = (0, 0) and continues to do so even after the bubble has
crossed the location where the surface tension is minimum, i.e, z = zm; in this region
the thermocapillary stresses act to decelerate its upward motion (see Fig. 9a). Increasing
the value of M1, and thus M2 as well, the rise velocity of the bubble decreases due
to the fact that the self-rewetting character of the fluid becomes more pronounced and
the bubble retardation due to the induced thermocapillary stresses increases. Thus, as
it is shown in Fig. 9a, the bubble is eventually arrested at lower heights. Interestingly,
the first signs of bubble migration away from the axis of the channel appear when its
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Figure 10. Trajectory of the bubble. (a) Three-dimensional view, and (b) top view (projection
on the x-y plane) for M1 = 0.6. The remaining parameter values are the same as the ‘base’
parameters.

motion in the vertical direction decelerates. In particular, for M1 = 0.2 we find that the
bubble begins its lateral motion at t ≈ 11 which coincides with the time that the bubble
has reached its maximum elevation (see Fig. 9a and 9d). Similarly, for M1 = 0.4 the
bubble initiates its lateral motion at t ≈ 7, although in this case the bubble temporarily
revolves around the axis of the channel, as it moves downwards. Eventually, though, as
the bubble decelerates its vertical motion it sets off moving in the lateral direction (for
t > 12). Another strikingly different behaviour is observed in the trajectory of the bubble
for M1 = 0.6 (see Fig. 10a,b) from the cases with lower values of M1. For M1 = 0.6, the
bubble undergoes spiralling motion (albeit of small amplitude), in contrast to the bubble
for lower values of M1, which migrates away from the axis of symmetry in the lateral
direction after rising in the vertical path in the early times (see Fig. 8b).

The lateral migration of buoyant drops and bubbles has also been observed in the
case of isothermal systems (e.g. see Tripathi et al. (2015a) and references therein). In
these systems, it has been established that the migration and non-axisymmetric motion
typically take place due to the combined effect of inertia and interfacial deformation. In
our case, however, interfacial deformation cannot be held responsible since it is negligible
at all times for the parameter values that are examined in the present work (for instance,
see the bubble shapes at different times in Fig. 11).

In order to rationalise this behaviour and gain further insight into the bubble dynamics,
we analyse the velocity and temperature fields at various stages of the flow development
for the surface tension-dominated case, characterised by Bo = 10−3. In Fig. 11a-d, we
show contour plots of u, v, w and T , respectively, in the x-y plane corresponding to z =
zCG and for t = 3, 7.8, 11 and 20, which span the vertical rise and lateral migration stages
(see Fig. 9). It can be clearly seen that during the early stages of the flow (t = 3), motion
in the vertical direction dominates the dynamics as evidenced by the magnitude of the
vertical velocity component, w, which greatly exceeds that of u and v; the corresponding
temperature field also appears to be axisymmetric. In Fig. 12, we also depict the flow
field in the x-z plane. The variation of σ on the bubble surface and temperature contours
in the x-z plane at zCG of the bubble are shown in Fig. 13(a) and (b), respectively. As
shown in Fig. 13(a), at t = 3 the bubble has just crossed z = zm with a symmetric
profile of surface tension exhibiting a maximum at the bottom part of the bubble and a
minimum in the middle. With increasing time (at t = 7.8), the value of w has decreased
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Figure 11. Spatio-temporal variation (bottom to top: t =3, 7.8, 11 and 20 of u, v, w and
T contours (a)-(d) on the x-y plane at zCG for the “self-rewetting” fluid for M1 = 0.4. The
remaining parameter values are the same as the ‘base’ parameters.

considerably due to the Marangoni convection in the opposite direction of bubble motion
as can be clearly deduced by Fig. 12. This is in agreement with the results illustrated in
Fig. 9c, which indicate that the onset of bubble departure takes places at t ≈ 7.8. Because
of instability the axisymmetry of the flow field about z direction breaks at later times
(see Figs. 11 and 12). Since the position of the bubble at t = 11 is above zm, the surface
tension increases with temperature and Marangoni stresses drive fluid surrounding the
bubble towards the hotter regions (where surface tension is higher) pushing the bubble
towards the opposite direction (see Fig. 13). This eventually results in driving the bubble
closer to the axis of the channel which is also reflected in Fig. 9; as shown in this figure,
the distance from the axis decreases for t > 10. At t = 20, as it is shown in Fig. 11d, a
markedly non-axisymmetric profile of T arises with the largest temperatures being in the
top-right quadrant of the bubble projection on the x-y plane. At this point an asymmetry
of the surface tension profile in the vertical direction becomes evident in Fig. 13a. The
variation of surface tension about the z direction on the bubble surface is very small,
and therefore can not be noticed in Fig. 13a at t = 20. Thus, we plot the variation of
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Figure 12. Temporal variations of streamlines in the x-z plane at zCG of the bubble forM1 = 0.4
& M2 = 0.2. The bubble shape is shown in red. The remaining parameter values are the same
as the ‘base’ parameters.

(a) (b)

Figure 13. (a) The surface tension (σ) variation on the bubble surface (the view is in the x-z
plane at zCG of the bubble). (b) The temperature (T ) contours on the x-z plane passing through
center-of-gravity of the bubble. M1 = 0.4, M2 = 0.2 and the remaining parameter values are
the same as the ‘base’ parameters.

(σ−σm)/Bo and T−Tm versus θ along the equator of the bubble in Fig. 14(a) and (b) at
t = 20. Here, θ is defined in the x-y plane and measured from the positive x axis, and σm

is the minimum surface tension. The asymmetry in variations of σ and T can be clearly
seen in this figure; however, the onset of departure of the bubble from the axisymmetry
can be understood by performing a stability analysis.
Having established the mechanism underlying the lateral migration phenomenon, we

investigate next the effect of the initial location of the bubble. In Fig. 15, we show the
evolution of the vertical position of the bubble centre of gravity as a parametric function
of zi, with the remaining parameters fixed at their ‘base values’. In cases where the initial
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Figure 15. Temporal variation of the center of gravity of the bubble for a self-rewetting fluid
(M1 = 0.4 & M2 = 0.2) starting from different initial locations, zi; the location of minimum
surface tension (i.e z = 10) is shown by red dotted line. The remaining parameter values are the
same as the ‘base’ parameters.

location of the bubble is lower than that associated with surface tension minimum, zm,
the surface tension gradient reinforces the buoyancy driven bubble rise. As soon as the
bubble reaches elevations such that z > zm, the surface tension gradient is reversed and
the bubble becomes retarded by the induced Marangoni flow. However, with increasing
distance that the bubble has to cover before it reaches z = zm, it is allowed to gain
its momentum and thus may reach higher elevations before it eventually gets arrested.
For sufficiently large values of zi, i.e. zi > zm, the bubble moves in the negative z-
direction under the action of Marangoni stresses whose magnitude exceeds that of the
buoyancy force. In all cases, however, the terminal value of zCG is identical for all zi
values. Moreover, the bubble even though it reaches a terminal vertical position it does
not remain motionless but moves sideways as shown in Fig. 16.
In Fig. 17, the temporal variation of zCG and distance from the axis, d are depicted

for different values of the Bo number. Moreover, in Fig. 18, the trajectories of the bubble
for two limiting values of Bo are depicted in two different projections. As it is shown
in these figures that the three-dimensional effects on the flow become less pronounced
with increasing the value of Bo, while the onset of lateral migration takes place at later
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(a) (b)

(c)

Figure 16. Trajectories of the bubbles started from different initial locations. (a) zi = 7.5, (b)
zi = 10 and (c) zi = 11.5. The rest of the parameter values are the same as those used to
generate Fig. 15.

times, e.g. see Fig. 18c. This is indeed a striking difference with the case of a bubble rising
under isothermal conditions for which it is believed that asymmetrical deformation of the
bubble is associated with path instability (Tripathi et al. 2015a; Sharaf et al. 2017). This
is clearly not the case for the present system where the path instability is actually due
to the interplay of inertia and thermocapillarity, and appears to be favoured by bubbles
that retain their spherical shape. The aspect ratio of the bubble (ratio of the dimeters
of the bubble along any two axes) for the parameters considered is approximately one
all the times, i.e. the bubbles remain mostly spherical. In addition to the mechanism
of the lateral migration discussed above (see Fig. 11), a stability analysis similar to the
ones performed by Magnaudet & Mougin (2007); Zenit & Magnaudet (2008); Yang &
Prosperetti (2007); Cano-Lozano et al. (2016) for isothermal systems may also provide
further insight to this phenomenon.
The temporal variations of zCG for different values of Reynolds number and Froude

number are plotted in Fig. 19a and 19b, respectively. It can be seen in Fig. 19a that
with the increase in the value of Reynolds number and keeping the Froude number fixed
at Fr = 50, the bubble reaches higher maximum elevations due to the increased effect
of inertia. The latter also has an important implication on the level of thermocapillary
stresses that the bubble experiences. Due to our assumption of quadratic dependence of
surface tension on temperature, the induced Marangoni stresses become stronger as we
move further away from the location associated with surface tension minimum, zm; this
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Figure 18. Trajectories of the bubble. (a,b) Three-dimensional view, and (c,d) top view
(projection on the x-y plane) for (a) Bo = 6 × 10−4 and (b) Bo = 2 × 10−3. The rest of
the parameter values are the same as those used to generate Fig. 17.

can be clearly seen in Fig. 1b. According to the previous discussion, since Marangoni
stresses can be held responsible for the break of symmetry, it is reasonable to expect
that if the bubble is allowed to reach higher elevations then it should be more susceptible
to three-dimensional effects. Our simulations indicate that this is indeed the case and
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Figure 19. Effect of (a) Reynolds number for Fr = 50 and (b) Froude number for Re = 10 on
the temporal variation of the center of gravity of the bubble. The remaining parameter values
are the same as the ‘base’ parameters.
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Figure 20. Trajectories of the bubble for (a) Re = 5 and (b) Re = 50 for Fr = 50; (c) Fr = 20
and (d) Fr = 60 for Re = 10. The rest of the parameter values are the same as those used to
generate Fig. 19.

inspection of Figs. 20a and b reveals that increasing Re for a fixed Fr leads to enhanced
lateral migration. On the other hand, increasing Froude number by keeping the Reynolds
number fixed at Re = 10, thereby reducing the of effect of buoyancy as compared to
Marangoni stresses, decreases the rise speed of the bubble and brings down the location
of the bubble arrest. For low values of Fr the bubble has not reached a terminal vertical
position even at late times, due to the stronger effect of buoyancy, and exhibits a low
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amplitude zig-zag motion as it rises slowly (see Fig. 20c). For higher values of Fr,
correspond to effect of Marangoni stresses becomes more important (the characteristic
velocity is based on Marangoni scaling) and lateral migration of the bubble is enhanced
(see Fig. 20d).

5. Concluding remarks

The rise dynamics of a gas bubble in a square channel filled with a “self-rewetting” fluid
whose surface tension exhibits a parabolic dependence on temperature with a well-defined
minimum is investigated numerically. A linearly increasing temperature in the vertical
direction is imposed at the side walls of the channel. A modified open source finite-
volume VoF based multiphase flow solver, Basilisk (originally developed by Popinet and
co-workers), wherein we include the tangential gradient of surface tension force (known
as Marangoni or thermocapillary force) has been used in the present study. It is very
challenging to accurately calculate the tangential force term operating at the interface in
the VoF framework. Thus, extensive validation exercises were performed by comparing
the results obtained using the present solver with the previous experimental, theoretical
and computational studies.
The main objectives of the present study are as follows: (i) to investigate the effect of

Marangoni stresses on bubble rise dynamics in a “self-rewetting” fluid using a consistent
model fully accounting for the the tangential surface tension forces, and (ii) to highlight
the effects of three-dimensionality on the bubble rise dynamics. In case of isothermal
and non-isothermal systems with “linear” fluid (whose surface tension decreases linearly
with increasing temperature), the bubble moves in the upward direction in an almost
vertical path as shown in Fig. 8a. On the other hand, the behaviour observed in the
case of the “self-rewetting” fluid is strikingly different. Our results indicate that in a
“self-rewetting” fluid, as the bubble crosses the location of minimum surface tension, the
buoyancy-induced upward motion of the bubble is retarded by a thermocapillary-driven
flow acting in the opposite direction, which in some situations outweighs buoyancy, which
in turn leads to the migration of the bubble in the downward direction. In the later stages
of this downward motion, as the bubble reaches its position of arrest, the vertical motion
decelerates. In the presence of small disturbances, which in our simulations can be simply
be introduced due to the presence of small numerical errors, the flow becomes unstable
and the bubble experiences an asymmetrical temperature distribution as it moves away
from the axis of symmetry, which ultimately leads to the bubble migration towards one of
the channel walls as shown in Fig. 8b. These phenomena are observed at sufficiently small
Bond numbers. In case of stronger self-rewetting behaviour (M1 = 0.6; see Fig. 10), the
bubble undergoes spiralling motion. The mechanisms underlying these three-dimensional
effects are elucidated by considering how the surface tension dependence on temperature
affects the thermocapillary stresses in the flow. It is shown that the Marangoni stresses
can be held responsible for the break of symmetry, and it is reasonable to expect that
if the bubble is allowed to reach higher elevations then it should be more susceptible to
three-dimensional effects. This is indeed a striking difference with the case of a bubble
rising under an isothermal condition, for which it is known that bubble deformability is
actually a necessary condition for path instability (Tripathi et al. 2015a). This is clearly
not the case for the present system where the path instability is actually due to the
interplay of inertia and thermocapillarity, and appears to be favoured by bubbles that
retain their spherical shape.

Our study on the effect of the initial location of the bubble rising in a “self-rewetting”
for low inertia also shows that irrespective of the different starting vertical positions
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(i.e., above or below the location of minimum surface tension), for the same set of
the rest of the dimensionless parameters, the bubble gets arrested at a particular z
location, which almost coincides with the prediction from the theoretical analysis in the
Stokes flow regime. The effects of other dimensionless numbers, such as Reynolds and
Froude numbers are also investigated. It is observed that increasing Reynolds number
or decreasing Froude number, keeping the other parameters fixed, has a similar effect.
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