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Abstract

We investigate the sources of neutrino mass generation in Little Higgs theories, by confining

ourselves to the “Littlest Higgs” scenario. Our conclusion is that the most satisfactory way of

incorporating neutrino masses is to include a lepton-number violating interaction between the scalar

triplet and lepton doublets. The tree-level neutrino masses generated by the vacuum expectation

value of the triplet are found to dominate over contributions from dimension-five operators so long

as no additional large lepton-number violating physics exists at the cut-off scale of the effective

theory. We also calculate the various decay branching ratios of the charged and neutral scalar

triplet states, in regions of the parameter space consistent with the observed neutrino masses,

hoping to search for signals of lepton-number violating interactions in collider experiments.
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I. INTRODUCTION

Little Higgs theories [1, 2, 3] represent a new attempt to address the problem of quadratic

divergence in the mass of the Higgs boson responsible for electroweak symmetry breaking.

This approach treats the Higgs boson as part of an assortment of pseudo-Goldstone bosons,

arising from a global symmetry spontaneously broken at an energy scale Λ, typically on

the order of 10 TeV. There is also an explicit breakdown of the overseeing global sym-

metry via gauge and Yukawa interactions, thereby endowing the Goldstone bosons with a

Coleman-Weinberg potential and making them massive. The Higgs mass is thus protected

by the global symmetries of the theory and only arises radiatively due to the gauge and

Yukawa interactions. As an effective theory valid up to the scale Λ, the model is rather

economical in terms of the new fields introduced in order to fulfill the necessary cancellation

for the quadratic divergence at the one-loop level. The model requires, in addition to new

gauge bosons and vectorlike fermions, the existence of additional scalars belonging to certain

representations of the Standard Model (SM) gauge group.

Aside from the crucial vector-like T -quark, the fermionic sector can essentially have the

same appearance as in the SM. There is no attempt made to address the origin of fermion

masses and mixing. In fact, the theory would encounter extremely stringent constraints

from the absence of excessively large flavor-changing neutral currents and CP violation in

the fermionic sector [4] if the scale responsible for flavor physics is at the order of the cutoff

scale Λ. Flavor issues are thus ostensibly left out as problems awaiting the more fundamental

theory at higher energies, the so-called UV completion of the theory, that would hopefully

lead to the SM structure or similar as an effective low-energy realization.

However, one may like to remember that the only area where experimental hints of new

physics have been found so far is the neutrino sector [5]. It is therefore both interesting

and important to see if little Higgs theories can accommodate neutrino masses and mixing

as suggested by the observed data. It is even not unreasonable to say that it will be a

vindication of little Higgs theories if they at least suggest a mechanism for the generation

of neutrino masses. The present work aims to buttress this attempt. Are the neutrinos

acquiring their masses through interaction with new particles already postulated in the

theory? What can be the detectable signatures of the model carrying imprints of the fact

that its low-energy Lagrangian and particle spectrum address the issue of neutrino masses?
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We examine these questions by adopting the “Littlest Higgs” (LtH) model [2], which has

been extensively studied in recent literature.

We explore the most economic extension of the basic model that is required to accommo-

date neutrino masses and is consistent with the demand that it does not affect the cancella-

tion of quadratic divergences in the SM Higgs mass. In particular, we make use of the fact

that the LtH scenario contains, in addition to the usual Higgs doublet, an additional set of

scalars that form a complex triplet [6] under the SU(2) gauge group of the Standard Model

with hypercharge Y = 1 (Q = I3 + Y ). This complex triplet forms part of the assortment of

Goldstone bosons when a global SU(5) breaks down to SO(5) at the scale Λ in this model.

There is an additional gauged SU(2)×U(1) beyond that of the SM, which is also sponta-

neously broken at scale Λ; some of the aforementioned Goldstone bosons are absorbed as

longitudinal components of the extra gauge bosons. Ten scalar degrees of freedom remain

after this, and are found to consist of a doublet (H) and a complex triplet (φ) under the

electroweak SU(2). The complex triplet offers a chance to introduce lepton number violating

interactions into the theory. We find that the most satisfactory way of incorporating neu-

trino masses is to exploit such an interaction of the lepton doublets, leading to a Majorana

mass for neutrinos and lepton number violation by two units. Then we proceed to examine

the parameter range of this model consistent with the observed neutrino masses, and look

at the consequence it has on the phenomenology of the model. In particular, we focus on

the decays of the additional SU(2) triplet scalar states introduced in this scenario, which

can have masses of order a TeV. We present calculations of the decay branching ratios of the

triplet states, discuss the complementary roles of different decay channels to test the sce-

nario, and comment on their potential collider signatures within the region of the parameter

space that is consistent with the observed neutrino masses.

Our paper is organized as follows. In Section II, the status of neutrino mass generation

with a heavy right-handed neutrino is first briefly reviewed. We then take up the case of

neutrino masses without any right-handed neutrino, and show that the LtH construction

can accommodate the observed neutrino mass and mixing patterns. In particular, with

the help of the complex triplet, one obtains dimension-4 lepton-number violating operators

(∆L = 2). The Majorana neutrino masses and their mixing can be generated by these

operators consistent with current observations without necessarily pushing the couplings to

tiny values; instead, the smallness of the neutrino masses can be driven in part by a tiny
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triplet vev. We also discuss the ∆L = 2 operators with the full gauge symmetry of the

model and find that in such a scenario the couplings would have to be of order 10−11 to

accommodate the observed neutrino masses. In Section III, we study the decay channels

of the triplets. These, we emphasize, constitute the characteristic signals of the triplet and

allow a test of the mechanism of neutrino mass generation. We summarize and conclude

in Section IV. The features of the LtH scenario and the interactions of the triplet that are

relevant for our phenomenological study are summarized in Appendix A. The triplet decay

partial widths are listed in Appendix B.

II. NEUTRINO MASSES

A. Neutrino masses with right-handed neutrinos

In the SM as well as the simplest little Higgs constructions, there are no right-handed

neutrino states that are singlets under SM gauge interactions. By introducing right-handed

neutrinos (NR), one can obtain gauge-invariant Dirac mass terms from the SU(2) doublets

of the leptons L and the Higgs H ,

yDij LLi H
†NRj + h.c., (1)

with i, j being generation indices, as well as Majorana mass terms

−MijN c
RiNRj + h.c. = MijN

T
RiC

−1NRj + h.c., (2)

where C is the charge-conjugation operator in the notation of, e.g., Ref. [7].

The Dirac terms alone lead to a contribution to the neutrino mass of the order mν ∼ yDv.

Since the neutrino masses are known to be at most of order 0.3 eV [8], the Yukawa couplings

would have to be extremely small, yD <∼ 10−12. While technically natural, such tiny Yukawa

couplings are difficult to rationalize.

Including the Majorana terms, light neutrino masses are generated at the order (yDv)2/M

[9] by virtue of the well-known seesaw mechanism [10]. If we assume that the Yukawa

couplings yDij are naturally of the order of unity, then M >∼ 1013 GeV in order to obtain a

neutrino mass less than about 0.3 eV. The problem, however, is that if we take the Majorana

mass scale to be near the Little Higgs cutoff Λ ≃ 10 TeV, then all of the Yukawa couplings
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would have to be quite small and all roughly equal, yDij
<∼ 10−5 for all three generations.

This is in constrast to the corresponding charged leptons, for which the Yukawa couplings

exhibit a large hierarchy between generations. Of course, the right-handed neutrino mass

that determines the seesaw scale could be much higher than Λ, as in the usual seesaw

scenario within the Standard Model. However, in this work we wish to look for alternative

explanations of the neutrino masses within the context of the LtH scenario with observable

signatures that do not rely upon physics above the cutoff scale Λ.

B. Neutrino masses in the absence of right-handed neutrinos

To us, the solution seems to be in avoiding the introduction of massive right-handed

neutrinos altogether in a little Higgs scenario. One can still construct Majorana mass terms

with the help of the Higgs triplet in the LtH model, obtained from a dimension-four ∆L = 2

coupling,

L = iYijL
T
i φC−1Lj + h.c. (3)

Note that the definition of φ here includes (−i), as evident from Eq. (A3). With the vacuum

expectation value (vev) of φ0 being v′, the induced neutrino masses are of the order of Y v′.

With a sufficiently small v′, as preferred by the precision electroweak data [11], adequate

neutrino masses may be generated. The occurrence of such Majorana masses has already

been discussed in the context of general models with triplet scalars [6, 12].

In the LtH model, however, some additional caution is necessary, since here we have an

effective theory with a rather low cut-off. It can be argued that, if there is lepton-number

violating physics at the scale Λ, then it is practically impossible to prevent the appearance

of dimension-five operators of the form

Y5

(HL)2

Λ
(4)

giving rise to neutrino masses on the order of Y5v
2/Λ. This contribution to the neutrino

masses is inadmissibly large if Y5 is naturally of order unity. Of course, one may suppress the

neutrino mass by requiring that the seesaw scale corresponding to lepton-number violation

is not Λ (∼ 10 TeV) but some higher scale, perhaps corresponding to a grand unification

scenario. However, as we have mentioned above, this solution is somewhat unsatisfying in the
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little Higgs context, since the entire issue of grand unification is unclear in a UV-incomplete

theory.

The way out of the difficulty is to postulate that there is no additional lepton-number

violating physics at the scale Λ, and that the only ∆L = 2 effect comes from the coupling

given by Eq. (3). Such a postulate is plausible in the sense that the operator of Eq. (3)

is renormalizable and independent of the cutoff. Such a postulate also keeps the scenario

minimal in terms of particle content, since right-handed neutrinos, unlike the scalar triplets,

do not arise from any intrinsic requirement of the model. The absence of right-handed

neutrinos at or below the scale Λ prevents the potentially dominant dimension-five operators

of Eq. (4). Such operators can then arise only through loop effects involving the ∆L = 2

couplings of the νL to the scalar triplet. As we demonstrate below in Sec. IIC, the structure

of the Coleman-Weinberg potential ensures that the contributions of these loop-induced

dimension-five operators to the neutrino masses are subleading compared to the tree-level

∆L = 2 interaction given above.

Thus, neutrino masses are perhaps best implemented in the LtH model solely in terms

of the tree-level ∆L = 2 interaction of the scalar triplet. So far there is no need to attribute

the effect to a high scale, since lepton-number conservation is not dictated by any underlying

symmetry of the theory. The relevance of this term is further accentuated by the fact that

the triplet vev in any case has to be quite small compared to the electroweak scale, in order

to be consistent with the limits on the ρ-parameter [11, 13]. Thus, seeds of small neutrino

masses can already be linked to the electroweak precision constraints.

It should be noted that although the LLφ interaction term is invariant under the standard

SU(2)L×U(1)Y symmetry, it breaks the full [SU(2)×U(1)]2 gauge invariance of the LtH

model. The LLφ interaction term is invariant under the two U(1) symmetries so long as

the U(1) charges of the lepton doublet are chosen to cancel anomalies in the full theory

(see Sec. IID for details). On the other hand, this term breaks the [SU(2)]2 part of the full

gauge symmetry because the triplet φ is a Goldstone boson of the full theory and transforms

nonlinearly under the two SU(2)s, while L transforms as a doublet under only SU(2)1. We

note however that the real motivation for this enlarged gauge symmetry is the cancellation

of potentially large quadratically divergent contributions to the Higgs mass. Apart from

that, there is no requirement that such an invariance holds in all sectors of the theory.

It can be seen through explicit calculation that the cancellation of quadratic divergences is
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not affected so long as the non-invariance under [SU(2)×U(1)]2 is confined only to the lepton-

number violating interaction of the triplet. In particular, the global symmetry structure in

the gauge and top-quark sectors that protects the Higgs mass at one-loop level is not affected

by the new LLφ interaction. The only effect of this interaction on the Coleman-Weinberg

potential [14] for the scalars is a contribution to the coefficient of the triplet mass, λφ2 (see

Appendix A for details), for which the modified one-loop expression is

λφ2 =
a

2

[

g2

s2c2
+

g′2

s′2c′2

]

+ 8a′λ2

1 + a′′Tr(Y Y †), (5)

where a′′ is an arbitrary O(1) constant reflecting the UV incomplete nature of the theory.

The overall constraint to be satisfied by the modified expression is that λφ2 should remain

positive, so that the triplet vev, purportedly small, is generated through doublet-triplet

mixing only. If a′′ is positive, it results in a slight enhancement of the triplet scalar mass

compared to that in the minimal LtH scenario. Thus the introduction of the LLφ interac-

tion seems to be consistent with the fundamental spirit of the little Higgs approach. We

lay out the full interaction terms of Eq. (3) in Appendix A for future phenomenological

considerations.

C. Constraints from neutrino masses

Since our first concern is to see the viability of this proposal, we begin by assuming

neutrino masses to be of order 0.1 eV. The left-handed Majorana neutrino mass matrix

resulting from Eq. (3) in this scenario is

Mij = Yijv
′. (6)

We neglect CP-violating phases. Then Y is a (3×3) symmetric matrix with six independent

parameters. The physical neutrino masses are the product of v′ and the eigenvalues of Y .

The elements of Y can in principle be as large as perturbation theory permits; we consider

them to have a natural size of order unity. The triplet vev v′ is restricted to be <∼ 1 GeV

from the constraints on the ρ-parameter [11, 13].

The smallness of the neutrino masses leaves us with two extreme alternatives, as described

below.

7



1. The elements of Y are very small, typically of the order 10−10, and v′ ∼ 1 GeV. This

means that the LLφ interaction term in Eq. (3) supplies the physics responsible for

the smallness of neutrino masses.

2. Y ≃ 1 together with an extremely small v′, arising from a tiny value of the induced

doublet-triplet mixing coefficient λhφh in the Coleman-Weinberg potential. In this

case the Coleman-Weinberg potential provides the physics behind the smallness of

neutruino masses, while the origin of bi-large mixing has to be sought in the relative

values of the different Yij .

The first option leads to very small couplings, which could be argued to be unnatural. One

needs to remember that the physics linked with Yij is not only lepton-number violation but

also lepton-flavor violation. Therefore the coupling in Eq. (3) must have its origin at a

scale much higher than Λ, in order to avoid unacceptable flavor violation in the low-energy

theory and the appearance of large dimension-five operators. Thus the explanation for the

smallness of the neutrino masses is pushed up to scales much higher than Λ.

The second scenario, on the other hand, has a certain advantage. In addition to generating

neutrino masses of the right order, one also has to explain the observed bi-large mixing

pattern in the neutrino sector. A model-independent fit of such mixing requires one to fine-

tune the elements of Y . Having all six elements on the order of 10−10 enhances the degree of

fine-tuning even further. It may therefore be a slightly less disquieting prospect to envision

the “fine-tuned” elements of Y as being close to unity, and have a very small vev for the

triplet. The generation of such a small vev must be accomplished by appropriate values of the

parameters that determine λhφh at the scale Λ. As can be seen from the detailed expressions

listed in Appendix A1, a small triplet vev can arise, for example, from a cancellation of the

gauge and Yukawa contributions to the Coleman-Weinberg potential. While a theoretical

explanation has to await the UV completion of the scenario, this situation is consistent with

all other aspects of the model, and has distinctive phenomenological implications. Thus

we have chosen to explore such implications in detail, remembering all along that the final

explanation for the smallness of the neutrino masses is linked to the UV completion of the

LtH model.

To summarize, we will concentrate only on the operator of Eq. (3), with the requirement

mν ≃ Y v′ ≃ 10−10 GeV. Within this constraint, the ∆L = 2 coupling Y [which is actually
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νc l ν

φ− W−

W−
φ0 h0

(a)

× ×

νc l ν

φ− W−

G−
φ0

h0

h0

(b)

× × ×

νc l ν

φ− W−

G−
h0 h0

(c)

× ×

FIG. 1: Representative one-loop diagrams giving rise to neutrino masses via dimension-five oper-

ators.

a (3×3) matrix] and the triplet vev v′ can vary over a wide range in our formulation. As we

shall see in the next section, the phenomenological consequences are especially interesting

in the parameter ranges

10−5 < Yij
<∼ 1, 0.1 MeV > v′ > 1 eV. (7)

It is important not to overlook other potentially significant contributions to the neutrino

masses through dimension-five operators induced at the one-loop level. Some representative

diagrams leading to such operators are shown in Fig. 1, where we have worked in the ’t Hooft-

Feynman gauge. All of these diagrams give neutrino masses of the form Mijν
T
LiC

−1νLj .

The neutrino mass from Fig. 1(a) is

Mij = ivv′
MW g3Yij√

2

∫

d4p

(2π)4
1

(p2 −m2
φ)(p

2 −M2
W )2

≈ (Yijv
′)

g4 v2

32
√
2π2m2

φ

. (8)
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Clearly this is a subleading contribution compared to Yijv
′, being suppressed by a loop factor

times v2/m2
φ. Similarly, the contribution from Fig. 1(b) is

Mij ≈ −(Yijv
′)
g2λhφφhv

2

32
√
2π2m2

φ

= (Yijv
′)

g2v2

24
√
2π2f 2

, (9)

where we have used the relation λhφφh = −4λφ2/3 = −4m2
φ/3f

2 (see Appendix A for details).

This is again suppressed by a loop factor times v2/f 2.

The contribution from Fig. 1(c) is

Mij = i
g2

4

Yij√
2
λhφhfv

2

∫

d4p

(2π)4
1

(p2 −m2
φ)(p

2 −M2
W )2

≈ (Yijv
′)

g2

32
√
2π2

, (10)

where we have made use of the relation v′ = λhφhv
2/2λφ2f from the minimization conditions

of the Coleman-Weinberg potential and λφ2f 2 ≃ m2
φ (see Appendix A). Unlike the other

diagrams, the neutrino mass contribution from this diagram is suppressed by only a loop

factor. This is bacause the size of the diagram in Fig. 1(c) is controlled by the doublet vev

v. The special relationships among parameters in the Coleman-Weinberg potential enables

one to re-express the contribution in terms of the triplet vev v′. The contribution is larger

than that from Figs. 1(a) and (b), although the loop factor ensures that it is subleading.

Such a contribution can play a potentially important role in determining the precise values

of the neutrino mixing angles.

There is also a diagram in which the vertical W− propagator in Fig. 1(a) is replaced by

the charged Goldstone G−. Since the coupling of G− to ν̄, ℓ is suppressed by mℓ/MW , this

diagram gives only a small contribution. Similarly, diagrams involving a virtual Z boson and

neutrinos are negligible. Finally, the above expressions are subject to additional corrections

due to doublet-triplet mixing, which are further suppressed by v′/v.

D. ∆L = 2 operators with larger symmetry

Thus far, our approach to constructing lepton-number violating operators has been guided

by the SM gauge invariance and naturalness considerations, subject to the experimental con-

straints on the neutrino masses and mixing patterns. The treatment of the scalar triplet

separate from the doublet requires some mechanism to split the interactions of these two

components of the non-linear Σ field, which is beyond the scope of our phenomenologi-

cal considerations in the current work. Nevertheless, it is tempting to ask if one can in-
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Σ∗
αβ L LT

αΣ
∗
αβC

−1Lβ

U(1)1 3/5 3/10 − ye 6/5 − 2ye

U(1)2 2/5 −4/5 + ye −6/5 + 2ye

Hypercharge 1 −1/2 0

TABLE I: Charge assignments of the lepton and scalar fields and of the operator in Eq. (11) under

the two U(1) gauge groups and hypercharge, with α, β = 1, 2.

stead construct operators that respect the full gauge symmetry of the LtH model, namely

[SU(2)×U(1)]2 gauge invariance.

Following the conventions of Refs. [2, 15], in which the third-generation quark doublet is

extended to χT = (bL tL TL), we write the lepton doublets as LT = (ℓL νL). We can then

write down the following lepton flavor violating operator,

LLFV = −1

2
Yijf

(

LT
i

)

α
Σ∗

αβC
−1 (Lj)β + h.c., (11)

where i, j are generation indices and α, β = 1, 2 are SU(5) indices. This operator is gauge

invariant under both the SU(2)1,2 gauge groups and under hypercharge. This operator is

also gauge invariant under both of the U(1)1,2 gauge groups if the lepton charges under

the two U(1) groups are given by Y1(L) = −3/10 and Y2(L) = −1/5. In the notation of

Ref. [15], this corresponds to ye = 3/5, as shown in Table I. This is the same condition that

ensures anomaly cancellation among the SM fermions. This can be understood as follows.

The anomaly cancellation condition is satisfied when the U(1)1,2 charges of the fermions are

proportional to their hypercharges. Since the operator in Eq. (11) conserves hypercharge,

the anomaly-free condition is sufficient to ensure that this operator also conserves the U(1)1,2

charges.

Expanding the upper two-by-two block of the matrix Σ∗
αβ in terms of the scalar fields H

and φ (see Appendix A), we have

Σ∗
αβ = −2

f







φ++ φ+/
√
2

φ+/
√
2 φ0





− 1

f 2







h+h+ h+h0

h+h0 h0h0





+ · · · (12)

Inserting this into Eq. (11), we obtain

LLFV = Yij

[

νT
LiC

−1νLj

(

φ0 +
1

2f
h0h0

)

+
(

νT
LiC

−1ℓLj + ℓTLiC
−1νLj

)

(

1√
2
φ+ +

1

2f
h+h0

)
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+ℓTLiC
−1ℓLj

(

φ++ +
1

2f
h+h+

)]

+ h.c. (13)

Clearly, the nonlinear sigma model has served to relate the dimension-four νc
i νjφ

0 coupling

to the dimension-five νc
i νjh

0h0 coupling. This gives rise to a mass matrix for the neutrinos

involving both v′ and v:

Mij = Yij

(

v′ +
v2

4f

)

. (14)

Equation (13) gives, to the leading order, the following dimension-four couplings of scalars

to left-handed lepton pairs:

Ldim−4

LFV = Yij

{

ℓTLiC
−1ℓLjφ

++ +
1√
2

(

νT
LiC

−1ℓLj + ℓTLiC
−1νLj

)

φ+ + νT
LiC

−1νLjφ
0

}

+ Y ∗
ij

{

ℓLi C ℓLj
T
φ−− +

1√
2

(

νLi C ℓLj
T
+ ℓLiC νLj

T
)

φ− + νLi C νLj
Tφ0∗

}

, (15)

where in the second line we have explicitly written out the Hermitian conjugate piece.

Note that φ0 is a complex field containing real scalar and pseudoscalar degrees of freedom,

φ0 = (φs + iφp)/
√
2.

The expression (11) is invariant under the full [SU(2)×U(1)]2 gauge symmetry and pre-

serves the nonlinear sigma model form for the scalar interactions. However, the price to pay

in such an approach is that one has to include dimension-5 terms proportional to H2 from

the beginning, and thus have contributions to the neutrino masses proportional to v2/f .

Unlike the dimension-5 operators generated by the diagrams in Fig. 1, these contributions

are not proportional to Yijv
′ times a loop suppression factor and cannot in general be made

small, since f ≃ TeV if we have to stabilize the Higgs mass. As a result, this approach

almost invariably ends up requiring values

Yij ∼ 10−11, (16)

for the ∆L = 2 couplings of all i, j. They are indeed unnaturally small. This implies the

need for a more fundamental explanation for neutrino masses beyond the effective theory at

the scale Λ.

On the other hand, in our approach of separating the lepton-number violating couplings

of φ and H , one can avoid extreme fine-tuning of the Yij couplings and at the same time

ensure neutrino masses of a size consistent with experimental data. This is because our

starting point is the dimension-four renormalizable operator of Eq. (3), as opposed to the
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higher dimensional ones discussed in the alternative approach. Thus our formulation by

keeping only the L-violating terms of Eq. (3) is independent of the cut-off. It is admittedly

a phenomenological approach, and assumes that, whatever be the mechanism responsible

for the breakdown of [SU(2)×U(1)]2 in the L-violating sector, any additional induced term

proportional to (v2/f) is suppressed. We nonetheless feel that this approach is quite gen-

eral and model-independent, especially because the cancellation of quadratically divergent

contributions to the SM Higgs mass remains unaffected, as was discussed in Sec. II B.

We take this opportunity to note that an attempt has been recently made in Refs. [16, 17]

similar to the approach of Eq. (11). In Ref. [17], this operator was given in the form

LLFV = zijǫ
αβǫγδf

(

LT
i

)

α
Σ∗

βγC
−1
(

LT
j

)

δ
+ h.c., (17)

which is equivalent to our result if LT = (−ν ℓ) is used in Eq. (17). The authors of

Refs. [16, 17] also found the same conclusion as in Eq. (16), that Yij ∼ 10−11.

III. DECAYS OF THE TRIPLET STATES

We now examine the observable consequences of the scalar triplet having a vev and lepton

number violating interactions compatible with the observed neutrino masses. In particular,

we consider the decays of the scalar triplet into various characteristic final states, and discuss

their observable signals in future collider experiments.

First of all, we note that the mechanism of scalar mass generation through the Coleman-

Weinberg mechanism [14] in the LtH model implies that the members of the triplet, φ++,

φ+, φs, and φp (where φs and φp are the scalar and pseudoscalar components of φ0), are

degenerate at lowest order with a common mass mφ. Their masses are split by electroweak

symmetry breaking effects, leading to masses mφ[1 + O(v2/m2
φ)]. The mass splittings are

thus quite small for mφ ≫ MW , and we will neglect them in what follows. The relevant

interaction terms for the ∆L = 2 processes are given in Table II in Appendix A. The other

φ couplings conserving the lepton number have been given in Ref. [15]. For completeness,

they are also tabulated in Table III in Appendix A. The possible decays of the triplet states

are

φ++ → ℓ+i ℓ
+

j , W+W+,

φ+ → ℓ+i ν̄ℓj , tb̄, T b̄, W+Z, W+h,
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φs → νiνj , ν̄iν̄j , tt̄, bb̄, tT̄ + t̄T, ZZ, hh,

φp → νiνj , ν̄iν̄j , tt̄, bb̄, tT̄ + t̄T, Zh. (18)

The full set of partial decay widths is listed in Appendix B.

To clearly see the interesting physics points, we discuss the partial decay widths for the

doubly-charged Higgs boson for mφ ≫ MW ,

Γ(φ++ → ℓ+i ℓ
+
i ) =

|Yii|2mφ

8π
, Γ(φ++ → W+

L W+
L ) ≈ v′2m3

φ

2πv4
, Γ(φ++ → W+

T W+
T ) ≈ g4v′2

4πmφ
,

where WL (WT ) stands for the longitudinal (transverse) component of the W boson. We

first point out that the ∆L = 2 processes, φ++ → ℓ+i ℓ
+
j , are all driven by the lepton

number violating Yukawa coupling Yij . These decays to the lepton states will constitute

the smoking gun signatures of the scenario proposed by us. The decays into two gauge

bosons, on the other hand, depend directly on v′, the triplet vev. The mφ factors in the

numerator in the decay to the longitudinally-polarized gauge bosons come from the typical

enhancement (m2
φ/M

2
W )2 over the decay to the transversely-polarized gauge bosons, governed

by the Goldstone-boson equivalence theorem. The W±
T W±

T mode with a genuine gauge

coupling thus becomes vanishingly small at higher mφ.

The complementarity between the ℓ±ℓ± and W±W± channels for small and large values

of v′ is clearly seen in Fig. 2: for mφ = 2 TeV, the two channels are comparable when

v′ ≈ 6 × 10−5. In the calculation of the branching ratios of φ decays, we sum over all six

lepton flavor combinations in a flavor-democratic way and we assume

Y v′ ≈ 10−10 GeV = 0.1 eV, (19)

so that neutrino masses lie in the expected range. Note that for v′ ≈ 6 × 10−5 GeV, this

implies that Y ≈ 1.6 × 10−6. While these couplings are still very small, we consider this

parameter freedom to be a strength of our analysis: our approach allows Y ∼ O(1) with a

very small v′ but at the same time includes the possibility of small Y as well, allowing a large

region of parameter space with interesting phenomenology. We also present the branching

ratio as a function of the φ++ mass in Fig. 2(b) for v′ = 6× 10−5 GeV. Here one can see the

effect of the different mφ dependence of the ℓ+ℓ+ and W+W+ final states.

It is interesting to note that the experimental data on neutrino mixing require that at least

some of the off-diagonal terms in Y must be of the same order as the diagonal terms when

14
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FIG. 2: Branching ratios of φ++ (a) versus the triplet vev for Y v′ = 10−10 GeV and mφ = 2 TeV

and (b) versus mφ for v′ = 6× 10−5 GeV.

written in the charged lepton mass basis. Although the details of the structure depend on

the particular neutrino mass matrix, one can, assuming something like a flavor-democratic

scenario, immediately envision flavor violating decays such as φ±± → e±µ±, µ±τ± of sizable

strength. Such lepton flavor violating decays are a striking signal of this scanerio, where

events with two like-sign different-flavor leptons can be observed in a decay final state which

reconstructs to an invariant mass peak at mφ.

The branching ratios of φ+ and φ0 receive additional contributions from decays to heavy

quarks. Of course, an SU(2) triplet has no dimension-four couplings to quarks. However,

in the LtH model such couplings arise from (i) mixing between the triplet and the SU(2)

doublet Higgs at order v′/v, and (ii) a dimension-five operator involving both H and φ that

arises from the expansion of the nonlinear sigma field in the top quark Yukawa Lagrangian,

Eq. (A8); inserting the H vev, this yields couplings of φ to heavy quark pairs suppressed

by v/f . Both of these contributions to the φ couplings to heavy quarks are controlled by

the relevant Yukawa couplings, mq/v. The two contributions, proportional to v′/v and v/f

respectively, can be seen in the couplings given in Table III.

We are interested in the parameter region v/f ≫ v′/v, in which case the couplings of

φ+ and φ0 to heavy quarks are dominated by the dimension-five nonlinear sigma model

operators, yielding an interesting signal of the little Higgs structure in the top sector of the
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FIG. 3: Branching ratio of φ+ (a) versus the triplet vev for Y v′ = 10−10 GeV and mφ = 2 TeV

and (b) versus mφ for v′ = 3× 10−9 GeV.

model. Neglecting final-state masses, the partial decay widths are

Γ(φ+ → ℓ+i ν̄j) =
|Yij|2mφ

8π
, Γ(φ± → tb̄, t̄b) ≈ Γ(φs → tt̄) ≈ Γ(φp → tt̄) ≈ Ncm

2
t

16πf 2
mφ, (20)

where Nc = 3 is the number of colors. The triplet couplings to T b̄ and T t̄ also involve

the top sector parameters λ1 and λ2 (see Appendix A for details) and the decay widths

are proportional to (λ1/λ2)
2. We illustrate our results for λ1 = λ2. Exact formulae for the

partial widths are given in Appendix B. Figures 3 and 4 show that the decays of φ+ and φ0

are dominated, approximately from v′ = 2 × 10−9 GeV upwards, by the heavy quark final

states.

Note that we have treated the triplet mass as a free parameter because of the arbitrary

constants a and a′ in the coefficient of the triplet mass-squared, as explained in Appendix A.

On the other hand, MT is proportional to f for fixed λ1, λ2. Therefore a large value of f in

our approach, while the free parameter mφ is held fixed, will suppress the decays into the

T -quark. Our results are presented for MT =
√
2 TeV.

For φ+, the most interesting parameter range is where the elements of Y range between

0.1 and 1, or equivalently v′ lies between 10−9 and 10−10 GeV. In this case φ+ decays mostly

into SM leptons, with branching fractions controlled by the structure of the Yij matrix,

which of course directly controls the neutrino masses and mixings. The signatures of φ+
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FIG. 4: Branching ratios of φs (a) versus the triplet vev for Y v′ = 10−10 GeV and mφ = 2 TeV,

and (b) versus mφ for v′ = 3× 10−9 GeV. The branching ratios of φp are virtually identical for the

parameter ranges shown.

would then be quite distinct from those of a charged scalar coming from a two-Higgs-doublet

model, such as in supersymmetric theories, in which the charged Higgs couplings to leptons

are directly proportional to the charged lepton masses. It should also be remembered that

this region, with Y ∼ O(1), corresponds to the least number of fine-tuned parameters in the

theory. For larger values of v′, however, the decays of φ+ will be dominated by the heavy

quark final states tb̄ (and T b̄, if kinematically allowed) which are difficult to distinguish from

the decays of the charged Higgs of a two-Higgs-doublet model. For v′ below 10−4 GeV, the

most distinct signals of the triplet will be the φ±± decays directly into like-sign dileptons.

It should be noted that the φ±± does not have any hadronic decay modes to compete with

the ∆L = 2 decays in this range of parameters. For larger values of v′, the most distinct

signals of the triplet will come from φ±± → W±W±, giving rise to like-sign dileptons from

the W decays which can be identified with suitable event selection criteria.

In the same spirit, the neutral triplet states φs, φp are characterized by their invisble

decays into two neutrinos for Y >∼ 0.1, or equivalently v′ <∼ 10−9, as shown in Fig. 4

for φs. The branching ratios of φp are virtually identical in this parameter range. This

makes the neutral scalar φs and the pseudoscalar φp quite different in appearance from their

counterparts in either the SM or a two-Higgs-doublet model. Such invisible decays can lead
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to a detection of the neutral triplet through missing energy signatures or the identification

of an invisible state recoiling against a Z boson at a high-energy linear e+e− collider.

For the φ±, φs and φp, the additional decay modes φ± → W±h, φs → hh, φp → Zh are

available with the same strength as the W±Z and ZZ modes. However, all these channels

are suppressed by v′/v, and they do not stand a chance against either the heavy quark final

states or the ∆L = 2 modes. Therefore, the production of the SM Higgs from triplet decays

will be unobservable in this scenario.

It should be noted that the region of the parameter space that gives rise to these interest-

ing signals involving leptons will not be accessible in the scenario described in Sec. IID and

Refs. [16, 17], in which the LLφ operator is related to the dimension-five (LH)2 operator

through the non-linear sigma model field. Thus the decays of the triplet states can serve to

distinguish between alternative scenarios for neutrino mass generation in the LtH model.

A final comment about the decay length of the triplets is in order here. In the region

where the ℓ±ℓ± channel dominates, the lifetime τ of φ++ (with all flavours summed over) is

given by

τ =
8π

9

v′2

(Yijv′)2

(

1 TeV

mφ

)

× 6.6× 10−28 sec. (21)

For Yij ≈ 1.6×10−6 (or v′ ≈ 6×10−5 GeV), one finds τ ≃ 2.2×10−16 sec for mφ = 2 TeV.

This gives a decay length ℓd <∼ 0.1 µm, which is too short to show up as a displaced vertex

in the decay. Taking a larger value for v′ suppresses the partial width into like-sign lepton

pairs, but the WW mode then grows quickly and the decay length remains small.

IV. SUMMARY AND CONCLUSIONS

We have considered the simplest possible scenario for generating the neutrino masses

within the context of the Littlest Higgs model by coupling the scalar triplet present in the

model to the leptons in a ∆L = 2 interaction. This term then generates neutrino masses

through the triplet vev. Although this term does not obey the overseeing [SU(2)×U(1)]2

gauge invariance, it does not affect the cancellation of quadratic divergences in the Higgs

mass. We also showed that all contributions coming from dimension-five operators remain

subdominant so long as one assumes that there is no lepton-number violating new physics

at the scale Λ. Following the phenomenological requirement of keeping the neutrino masses

in the required range, we are led to a situation where either the lepton number violating
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Yukawa coupling or the triplet vev has to be very small. The second possibility, presumbaly

triggered by some yet-unknown feature of the Coleman-Weinberg effective potential, allows

one to retain the lepton number violating couplings to be O(1), a situation that seems less

fine-tuned from the viewpoint of allowing bi-large mixing in the neutrino sector.

We have also investigated the decays of the triplet scalar states in this scenario and

identified their characteristic features associated with lepton number violation. The most

striking signature comes from the doubly-charged scalar decays. The crucial test is the

complementarity between the final states of W±W± and ℓ±ℓ±: While the triplet vev controls

the W±W± mode and thus the final state branching ratios over a large range, the region

corresponding to Y ≈ 1 leads to significant ∆L = 2 modes, with possibly large lepton-flavor

violation. Different complementarity exists for the other triplet scalar decays: between SM

heavy quarks (independent of v′) and the ∆L = 2modes. Moreover, the singly-charged scalar

may decay to charged leptons with nearly universal couplings, unlike the charged Higgs in

typical two-Higgs-doublet models. Another interesting consequence is the “invisible” decay

of the neutral triplet state into two neutrinos. These decays would allow one to distinguish

models of lepton flavor violation within the Littlest Higgs scenario and directly constrain the

elements of the ∆L = 2 coupling matrix which controls the neutrino masses and mixings.
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APPENDIX A: THE LITTLEST HIGGS MODEL

1. Brief summary of the LtH model

The little Higgs approach conceives the Higgs boson as member of a set of pseudo-

Goldstone bosons. In the original version of the Littlest Higgs (LtH) scenario [2] to be
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discussed here, the pseudo-Goldstone bosons arise when a global SU(5) symmetry is broken

down to SO(5) at a scale Λ ∼ 4πf . These pseudo-Goldstone bosons are described by a

nonlinear sigma model below the scale Λ.

The breakdown of the global symmetry is triggered by a vacuum expectation value (vev)

Σ0 of the sigma-model field,

Σ = eiΠ/fΣ0e
iΠT /f , (A1)

where Π =
∑

aΠ
aXa and Xa correspond to the 14 broken SU(5) generators. Explicitly, we

have

Σ0 =













12×2

1

12×2













, Π =













02×2
H†
√
2

φ†

H∗
√
2

0 H√
2

φ HT
√
2

02×2













, (A2)

where we have suppressed the Goldstone modes that will later be eaten by broken gauge

generators, and we define

H = (h+, h0), φ = −i







φ++ φ+

√
2

φ+

√
2

φ0





 . (A3)

An [SU(2)×U(1)]2 subgroup of the global SU(5) is gauged. The Σ0 vev that is responsible

for the breakdown of the global symmetry also breaks the gauged [SU(2)×U(1)]2 down to

the SM electroweak gauge symmetry SU(2)L×U(1)Y . Under the electroweak gauge group,

H and φ transform as a complex doublet and a complex triplet, respectively.

The gauge interaction of the sigma field is encoded in its covariant derivative:

LΣ =
f 2

8
Tr|DµΣ|2, (A4)

where

DµΣ = ∂µΣ− i
∑

j=1,2

[gjW
a
jµ(Q

a
jΣ+ ΣQaT

j ) + g′jBjµ(YjΣ + ΣY T
j )]. (A5)

Here Qa
j are the SU(2) generators and Yj are the U(1) generators, which explicitly break the

global SU(5) symmetry:

Qa
1 =







σa

2

03×3





 , Qa
2 =







03×3

σa∗

2





 , (A6)

Y1 =
1

10
diag(−3,−3, 2, 2, 2), Y2 =

1

10
diag(−2,−2,−2, 3, 3). (A7)
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Notice that setting g1 = g′1 = 0 leaves unbroken an SU(3) subgroup of the global SU(5)

symmetry; we call this remaining global symmetry SU(3)1. Similarly, setting g2 = g′2 = 0

leaves unbroken a second SU(3) subgroup of the global SU(5) symmetry, which we call

SU(3)2. The Higgs doublet H transforms nonlinearly under both of these global SU(3)

symmetries, and thus remains an exact Goldstone boson so long as these global symmetries

are not explicitly broken. A Higgs mass term can thus be generated only by interactions

involving both g1 and g2 (or both g′1 and g′2); this serves to forbid the diagrams that generate

the quadratic divergence in the Higgs mass at one loop. However, logarithmically divergent

diagrams contributing to the Higgs mass at one loop involve both gauge couplings g1 and

g2 (or both g′1 and g′2) and thus break the global SU(3), thereby leading to contributions to

the Higgs mass.

In order to cancel the quadratic divergence arising through the top quark Yukawa cou-

pling, we have to introduce a heavy vector-like quark pair (T, T c), where T is left-handed

and has charge +2/3. Including this vectorlike pair, the top Yukawa Lagrangian is

Lt =
λ1

2
fǫijkǫxyχiΣjxΣkyt

c + λ2fTT
c + h.c., (A8)

where χT = (bL, tL, T ) and tc is an SU(2) singlet. The indices i, j, k take the values 1,2,3,

whereas x, y take the values 4,5. It should be noted here that the coupling λ1 preserves

the global SU(3)1 and breaks SU(3)2, while λ2 preserves SU(3)2 and breaks SU(3)1. This

ensures that the Higgs mass-squared is protected from quadratic divergences involving the

top quark sector at one loop. Diagonalizing the mass matrix arising from Eq. (A8), we find

the physical top quark t and a heavy isospin-singlet “top-partner” T :

mt ≃
λ1λ2

√

λ2
1 + λ2

2

v, MT ≃ f
√

λ2
1 + λ2

2. (A9)

The gauge and top quark interactions generate a Higgs potential at one loop via the

Coleman-Weinberg mechanism [14], which is given by

VCW = λφ2f 2Tr(φ†φ) + iλhφhf(Hφ†HT −H∗φH†)− µ2HH† + λh4(HH†)2

+λhφφhHφ†φH† + λh2φ2HH†Tr(φ†φ) + λφ2φ2[Tr(φ†φ)]2 + λφ4Tr(φ†φφ†φ), (A10)

with coefficients

λφ2 =
a

2

[

g2

s2c2
+

g′2

s′2c′2

]

+ 8a′λ2
1 (A11)

21



λhφh = −a

4

[

g2
(c2 − s2)

s2c2
+ g′2

(c′2 − s′2)

s′2c′2

]

+ 4a′λ2

1 (A12)

λh4 =
1

4
λφ2 , λhφφh = −4

3
λφ2 , λφ2φ2 = −16a′λ2

1 (A13)

λφ4 = −2a

3

[

g2

s2c2
+

g′2

s′2c′2

]

+
16a′

3
λ2
1. (A14)

where c and s (c′ and s′) are the gauge coupling mixing parameters for the SU(2) (U(1))

gauge groups, respectively [15]. Here a, a′ are parameters of O(1) that encapsulate the

cutoff dependence of the gauge and top sectors, respectively, of the UV-incomplete theory.

The parameters µ2 and λh2φ2 are generated through logarithmic contributions. Electroweak

symmetry breaking is triggered if µ2 > 0, whereby the scalar doublet acquires a vev. The

triplet vev is kept small by keeping λφ2 positive; it originates in mixing with the doublet via

λhφh. The minimization conditions for VCW , in terms of 〈h0〉 = v/
√
2, 〈φ0〉 = v′, are

v2 =
µ2

λh4 − λ2
hφh

λ
φ2

, v′ =
λhφhv

2

2λφ2f
. (A15)

Note that terms of the form H2φ2, φ4 give a subleading contribution to Eq. (A15) and

have been neglected. In order to ensure electroweak symmetry breaking, we should have

λh4 − λ2
hφh

λ
φ2

> 0. The resulting masses for the triplet states φ and the physical Higgs boson

h after electroweak symmetry breaking are

m2

φ ≃ λφ2f 2, m2

h ≃ 2

(

λh4 − λ2
hφh

λφ2

)

v2 ≃ 2µ2. (A16)

It should also be noted that λφ2 , as expressed above, gets modified by an additional term

once ∆L = 2 interactions are switched on, as has been shown in Sec. II B.

2. Lepton number violation

When we introduce the ∆L = 2 interaction of Eq. (3) in order to give rise to neutrino

masses, one of its effects is to add an extra term to the expression of Eq. (A11) for λφ2,

as shown in Eq. (5). This contribution is typically small in the parameter ranges that we

consider.

As for the ∆L = 2 interactions of the triplet φ, expanding Eq. (3) explicitly one can obtain

the full lepton number violating interaction vertices. The dimension-four couplings are given

in Eq. (15). The Feynman rules for the ∆L = 2 interactions are given in Table II. The
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φ−−ℓ+i ℓ
+
j (i ≤ j) 2iY ∗

ijPRC

φ−ℓ+i ν̄j i
√
2Y ∗

ijPRC

φsνiνj (i ≤ j) i
√
2YijC

−1PL

φsν̄iν̄j (i ≤ j) i
√
2Y ∗

ijPRC

φpνiνj (i ≤ j) −
√
2YijC

−1PL

φpν̄iν̄j (i ≤ j)
√
2Y ∗

ijPRC

TABLE II: Feynman rules for ∆L = 2 couplings. All particles and momenta are outgoing. C is the

charge-conjugation operator. Since Yij is symmetric under (i, j) we have combined the symmetric

vertices involving φ−−, φs and φp and written them only for i ≤ j.

relevant lepton number conserving interactions between the triplet state and SM particles

[15] are given as Feynman rules in Table III. For the φshh coupling, we have included the

symmetry factor, Feynman rule = iL × 2, and used the relation in Eq. (A15) to write λhφh

in terms of v′.

APPENDIX B: TRIPLET DECAY PARTIAL WIDTHS

In this Appendix we present the formulas for the triplet decay partial widths. We define

the standard kinematic function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and use the

scaled mass variable ri = mi/mφ. For the doubly-charged scalar φ++, we have

Γ(φ++ → ℓ+i ℓ
+

j ) =











1

8π
|Yij|2mφ, (i = j)

1

4π
|Yij|2mφ, (i < j)

Γ(φ++ → W+

T W+

T ) =
1

4π

g4v′2

mφ

λ
1

2 (1, r2W , r2W )
√

4r2W + λ(1, r2W , r2W )
≈ g4v′2

4πmφ
,

Γ(φ++ → W+

L W+

L ) =
1

4π

g4v′2

2mφ

λ
1

2 (1, r2W , r2W )
√

4r2W + λ(1, r2W , r2W )

(1− 4r2W )2

4r4W
≈ v′2m3

φ

2πv4
, (B1)

where in the last two expressions we have shown the approximate result neglecting final-

state masses compared to mφ. We use the subscripts T and L to denote the transverse and

longitudinal polarizations of the SM gauge bosons.
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φ−−W+
µ W+

ν 2ig2v′gµν

φ−W+
µ Zν −i g2

cW
v′gµν

φ−W+
µ h −ig v′

v (ph − pφ)µ

φ−b̄t − i√
2v
(mtPR +mbPL)(

v
f − 4v′

v )

φ−b̄T − imt√
2v
( vf − 4v′

v )
λ1

λ2
PR

φsZµZν i
√
2 g2

c2
W

v′gµν

φshh i2
√
2m2

φ
v′

v2

φsW+
µ W−

ν 0

φst̄t − imt√
2v
( vf − 4v′

v )

φsb̄b − imb√
2v
( vf − 4v′

v )

φst̄T − imt√
2v
( vf − 4v′

v )
λ1

λ2
PR

φsT̄ t − imt√
2v
( vf − 4v′

v )
λ1

λ2
PL

φpZµh −
√
2 g
cW

v′

v (ph − pφ)µ

φpt̄t − mt√
2v
( vf − 4v′

v )γ
5

φpb̄b mb√
2v
( vf − 4v′

v )γ
5

φpt̄T mt√
2v
( vf − 4v′

v )
λ1

λ2
PR

φpT̄ t mt√
2v
( vf − 4v′

v )
λ1

λ2
PL

TABLE III: Feynman rules for lepton number conserving φ couplings to SM particles, from Ref. [15].

All particles and momenta are outgoing.

For the singly-charged scalar φ+, we have,

Γ(φ+ → ℓ+i ν̄j) =
1

8π
|Yij|2mφ,

Γ(φ+ → W+

T ZT ) =
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For the neutral scalar φs, we have

Γ(φs → νiνj + ν̄iν̄j) =


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Finally, for the neutral pseudoscalar φp, we have

Γ(φp → νiνj + ν̄iν̄j) =


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2. (B4)

In the φ+, φs, φp couplings to quarks, we have neglected v′/v relative to v/f and included

the color factor, Nc = 3.
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