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Abstract

We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural

generalization of sphere packing and is defined as follows. Let N ą 0 and L P Zě2. A multiple packing is a set

C of points in R
n such that any point in R

n lies in the intersection of at most L ´ 1 balls of radius
?
nN around

points in C. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean

analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower

bounds on the optimal density of list-decodable infinite constellations for constant L under a stronger notion called

average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation

theory.

I. INTRODUCTION

We study the problem of multiple packing in Euclidean space, a natural generalization of the sphere packing

problem [CS13]. Let N ą 0 and L P Zě2. We say that a point set C in R
n forms a pN,L ´ 1q-multiple packing1

if any point in R
n lies in the intersection of at most L ´ 1 balls of radius

?
nN around points in C. Equivalently,

the radius of the smallest ball containing any size-L subset of C is larger than
?
nN . This radius is known as the

Chebyshev radius of the L-sized subset. If L “ 2, then C forms a sphere packing, i.e., a point set such that balls

of radius
?
nN around points in C are disjoint, or equivalently, the pairwise distance of points in C is larger than

2
?
nN . The density of C is measured by rate (a.k.a. the normalized logarithmic density (NLD)) defined as2

RpCq :“ lim sup
KÑ8

1

n
ln

|C X r´K,Ksn|
|r´K,Ksn| , (1)

i.e., the (normalized) number of points per volume. Denote by CL´1pNq the largest rate of a pN,L ´ 1q-multiple

packing as n Ñ 8. The goal of this paper is to advance the understanding of CL´1pNq.

The problem of multiple packing is closely related to the list-decoding problem [Eli57], [Woz58] in coding

theory. Indeed, a multiple packing can be seen exactly as the Euclidean analog of a list-decodable code. We will

interchangeably use the terms “packing” and “code” to refer to the point set of interest. To see the connection, note

that if any point in a multiple packing is transmitted through an adversarial channel that can inflict an arbitrary

additive noise of length at most
?
nN , then given the distorted transmission, one can decode to a list of the

nearest L ´ 1 points which is guaranteed to contain the transmitted one. The quantity CL´1pNq can therefore be

interpreted as the capacity of this channel (in the sense of Poltyrev [Pol94]). Moreover, list-decodable codes can be

turned into unique-decodable codes with the aid of side information such as common randomness shared between

the transmitter and receiver [Lan04], [Sar08], [BBJ19]. List-decoding also serves as a proof technique towards

unique-decoding in various communication scenarios; see, e.g., [ZVJS22], [ZVJ20].

For L “ 2, the sphere packing problem has a long history since at least the Kepler conjecture [Kep11] in 1611.

The best known lower bound is due to Minkowski [Min10] using a straightforward volume packing argument.

The best known upper bound is obtained by reducing it to the bounded case (i.e., packing points in a ball rather

than in R
n) for which we have the Kabatiansky–Levenshtein linear programming-type bound [KL78]. For L ą 2,

Blinovsky [Bli05b] claimed a lower bound by analyzing an (expurgated) Poisson Point Process (PPP). However,

we noticed some gaps in the proof (see Section X-F). In this work we use a different approach to construct an

1We choose to stick with L ´ 1 rather than L for notational convenience. This is because in the proof, we need to examine the violation

of pL ´ 1q-packing, i.e., the existence of an L-sized subset that lies in a ball of radius
?
nN .

2Logarithms to the base e are denoted by lnp¨q.
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unbounded packing which achieves the same lower bound as claimed in [Bli05b]. The paper [Bli05b] also presented

an Elias–Bassalygo-type bound without a proof. A complete proof of it can be found in [ZV22c].

For the multiple packing problem with L ą 2, many existing lower bounds are obtained under a stronger notion

known as the average-radius multiple packing (see Definition 4 for the exact definition). A set C of R
n-valued

points is called an average-radius multiple packing if for any pL´ 1q-subset of C, the maximum distance from any

point in the subset to the centroid of the subset is less than
?
nN . Here the centroid of a subset is defined as the

average of the points in the subset. Denote by CL´1pNq the largest density of average-radius multiple packings. In

fact, we study this stronger notion of multiple packing in the present paper. For any finite L P Zě2, it is unknown

whether the largest multiple packing density under the regular notion is the same as that under the average-radius

variant.

For L Ñ 8, Zhang and Vatedka [ZV22b] determined the limiting value of CL´1pNq. It follows from results in

this paper that CL´1pNq converges to the same value as L Ñ 8.

Very little is known about structured packings. Grigorescu and Peikert [GP12] initiated the study of list-

decodability of lattices. See also the recent work [MP22] by Mook and Peikert. Zhang and Vatedka [ZV22b]

had results on list-decodability of random lattices.

Relation to conference version

This work was presented in part at the 2022 IEEE International Symposium on Information Theory [ZV22a].

[ZV22a] only contains the proof of Equation (2) using PPPs. In the current paper, the same result is obtained

via infinite constellations whose analysis is simpler and more transparent. Furthermore, results on fundamental

properties of different notions of packing density and radius are presented.

II. RELATED WORKS

For L “ 2, the problem of sphere packing has a long history and has been extensively studied, especially for

small dimensions. The largest packing density is open for almost every dimension, except for n “ 1 (trivial), 2

([Thu11], [Tót40]), 3 (the Kepler conjecture, [HF11], [HAB`17]), 8 ([Via17]) and 24 ([CKM`17]). For n Ñ 8,

the best lower and upper bounds remain the trivial sphere packing bound [Min10] and Kabatiansky–Levenshtein’s

linear programming bound [KL78]. This paper is only concerned with (multiple) packings in high dimensions and

we measure the density in the normalized way as mentioned in Section I.

There is a parallel line of research in combinatorial coding theory. Specifically, a uniquely-decodable code (resp.

list-decodable code) is nothing but a sphere packing (resp. multiple packing) which has been extensively studied

for Fn
q equipped with the Hamming metric. Empirically, it seems that the problem is harder for smaller field sizes

q.

We first list the best known results for sphere packing (i.e., L “ 2) in Hamming spaces. For q “ 2, the best lower

and upper bounds are the Gilbert–Varshamov bound [Gil52], [Var57] proved using a trivial volume packing argument

and the second MRRW bound [MRRW77] proved using the seminal Delsarte’s linear programming framework

[Del73], respectively. Surprisingly, the Gilbert–Varshamov bound can be improved using algebraic geometry codes

[Gop77], [TVZ82] for q ě 49. Note that such a phenomenon is absent in R
n; as far as we know, no algebraic

constructions of Euclidean sphere packings are known to beat the greedy/random constructions. For q ě n, the

largest packing density is known to exactly equal the Singleton bound [Kom53], [Jos58], [Sin64] which is met by,

for instance, the Reed–Solomon code [RS60].

Less is known for multiple packing in Hamming spaces. We first discuss the binary case (i.e., q “ 2). For every

L P Zě2, the best lower bound appears to be Blinovsky’s bound [Bli12, Theorem 2, Chapter 2] proved under the

stronger notion of average-radius list-decoding. The best upper bound for L “ 3 is due to Ashikhmin, Barg and

Litsyn [ABL00] who combined the MRRW bound [MRRW77] and Litsyn’s bound [Lit99] on distance distribution.

For any L ě 4, the best upper bound is essentially due to Blinovsky again [Bli86], [Bli12, Theorem 3, Chapter 2],

though there are some partial improvements. In particular, the idea in [ABL00] was recently generalized to larger L

by Polyanskiy [Pol16] who improved Blinovsky’s upper bound for even L (i.e., odd L´1) and sufficiently large R.

Similar to [ABL00], the proof also makes use of a bound on distance distribution due to Kalai and Linial [KL95]
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which in turn relies on Delsarte’s linear programming bound. For larger q, Blinovsky’s lower and upper bounds3

[Bli05a], [Bli08], [AB08, Chapter III, Lecture 9, §1 and 2] remain the best known.

As L Ñ 8, the limiting value of the largest multiple packing density is a folklore in the literature known as the

“list-decoding capacity” theorem4. Moreover, the limiting value remains the same under the average-radius notion.

The problem of list-decoding was also studied for settings beyond the Hamming errors, e.g., list-decoding against

erasures [Gur06], [BADTS20], insertions/deletions [GHS20], asymmetric errors [PZ21], etc. Zhang et al. considered

list-decoding over general adversarial channels [ZBJ20]. List-decoding against other types of adversaries with limited

knowledge such as oblivious or myopic adversaries were also considered in the literature [Hug97], [SG12], [ZJB20],

[HK19], [ZVJS22]. The current paper can be viewed as a collection of results for list-decodable codes for adversarial

channels over R with ℓ2 constraints.

III. OUR RESULTS

We derive the best known lower bound on the largest multiple packing density. Let CL´1pNq and CL´1pNq
denote the largest density of multiple packings under the standard and the average-radius notions, respectively.

We juxtapose our bound with various existing bounds for the pN,L´1q-multiple packing problem. In Theorem 8,

we prove the following lower bound on the optimal density for pN,L ´ 1q-average-radius list-decoding (which is

stronger than pN,L ´ 1q-list-decoding):

CL´1pNq ě 1

2
ln

L ´ 1

2πeNL
´ lnL

2pL ´ 1q . (2)

This bound turns out to be the largest known lower bound on both CL´1pNq and CL´1pNq for all N ě 0 and

L P Zě2. In [Bli05b], Blinovsky considered PPPs and arrived at the same bound. See Section X-F for a discussion.

Curiously, the above bound can also be obtained under pN,L´ 1q-list-decoding (which is weaker than pN,L´ 1q-

average-radius list-decoding) via a connection with error exponents [ZV22d]. The techniques for bounded packings

(in which all points lie5 either in Bnp0,
?
nP q or on Sn´1p0,

?
nP q for some P ą 0) in [BF63] can be adapted to

the unbounded setting (where points can lie anywhere in R
n) considered in this paper and be strengthened to work

for the stronger notion of average-radius multiple packing. They yield the following lower bound on CL´1pNq:

CL´1pNq ě 1

2
ln

L ´ 1

4πeNL
. (3)

As for upper bound, the techniques in [BF63], [Bli99], [Bli05b] can be adapted to the unbounded setting as well

which yield the following upper bound on CL´1pNq:

CL´1pNq ď 1

2
ln

L ´ 1

2πeNL
. (4)

Finally, it is known (see, e.g., [ZV22b]) that as L Ñ 8, CL´1pNq converges to the following expression:

CLDpNq “ 1

2
ln

1

2πeN
. (5)

Note that, by the lower and upper bounds (Equations (2) and (4)) on CL´1pNq for finite L, the limiting value of

CL´1pNq as L Ñ 8 is also the above expression.

All the above bounds for pN,L ´ 1q-multiple packing are plotted in Figure 1 with L “ 5. The horizontal axis

is N and the vertical axis is the value of various bounds. The largest lower bound turns out to be Equation (2)

(for all N ě 0 and L P Zě2). This bound together with the Elias–Bassalygo-type upper bound in Equation (4) are

plotted in Figure 2 for L “ 3, 4, 5. They both converge from below to Equation (5) as L increases.

3Some gaps in the proof of the upper bound in [Bli05a], [Bli08] are recently observed. These gaps are closed in [RYZ22] and the results

therein are extended to the list-recovery setting which is a generalization of q-ary list-decoding.
4It is an abuse of terminology to use “list-decoding capacity” here to refer to the large L limit of the pL ´ 1q-list-decoding capacity.
5Here we use B

npx, rq and S
n´1px, rq to denote the n-dimensional Euclidean ball and pn ´ 1q-dimensional Euclidean sphere of radius

r centered at the x, respectively.
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Fig. 1: Comparison of different bounds for the pN,L´ 1q-list-decoding problem. The horizontal axis is N and the

vertical axis is the value of bounds. We plot bounds for L “ 5. Recall that the rate (Equation (1)) of a multiple

packing is defined as the (normalized) number of points per volume which can be negative. The expressions for

all bounds can be found in Equations (2) to (5).
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Fig. 2: Plots of the best known lower bound (Equation (2)) on CL´1pNq and the Elias–Bassalygo-type upper bound

for L “ 3, 4, 5. As L increases, they both converge from below to CLDpNq (Equation (5)). The lower bound

Equation (2) derived in this paper is under the average-radius notion of multiple packing. Moreover, it can be

obtained using a connection with error exponents [ZV22d] under the standard notion of multiple packing.

IV. LIST-DECODING CAPACITY FOR LARGE L

All bounds in this paper hold for any fixed L. In this section, we discuss the impact of our finite-L bounds on

the understanding of the limiting values of the largest multiple packing density as L Ñ 8. Some of these results

were known previously and others follow from the bounds in the current paper.

Characterizing CL´1pNq or CL´1pNq is a difficult task that is out of reach given the current techniques. However,

if the list-size L is allowed to grow, we can actually characterize

CLDpNq :“ lim
LÑ8

CL´1pNq, CLDpNq :“ lim
LÑ8

CL´1pNq,

where the subscript LD denotes List-Decoding.

The value of CLDpNq is characterized in [ZV22b] which equals 1
2
ln 1

2πeN
.

Theorem 1 ([ZV22b]). Let N ą 0. Then for any ε ą 0,

1) There exist pN,L ´ 1q-multiple packings of rate 1
2
ln 1

2πeN
´ ε for some L “ O

`

1
ε
ln 1

ε

˘

;
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2) Any pN,L ´ 1q-multiple packing of rate 1
2
ln 1

2πeN
` ε must satisfy L “ eΩpnεq.

Therefore, CLDpNq “ 1
2
ln 1

2πeN
.

Moreover, we claim CLDpNq “ 1
2
ln 1

2πeN
. For an upper bound, recall that average-radius list-decodability

implies (regular) list-decodability. Therefore, any upper bound on CL´1pNq is also an upper bound on CL´1pNq.

We already saw an upper bound on CL´1pNq in Equation (4) that approaches 1
2
ln 1

2πeN
as L Ñ 8. Indeed,

according to Theorem 8, for sufficiently large L, our construction achieves 1
2
ln 1

2πeN
under average-radius multiple

packing.

Theorem 2. For any N ą 0, CLDpNq “ 1
2
ln 1

2πeN
.

V. OUR TECHNIQUES

We summarize our techniques below.

To obtain lower bounds on the largest multiple packing density, our basic strategy is random coding with

expurgation, a standard tool from information theory. To show the existence of a list-decodable code of rate R,

we simply randomly sample enR points independently each according to a certain distribution. There might be bad

lists of size L that violates the multiple packing condition. We then throw away (a.k.a. expurgate) one point from

each of the bad lists. By carefully analyzing the error event and choosing a proper rate, we can guarantee that the

remaining code has essentially the same rate after the removal process. We then get a list-decodable code of rate

R by noting that the remaining code contains no bad lists.

In the above framework, the key ingredient is a good estimate on the probability of the error event, i.e., the

probability that the list-decoding radius of a size-L list is smaller than
?
nN . Under the standard notion of multiple

packing, the list-decoding radius is the Chebyshev radius of the list, i.e., the radius of the smallest ball containing

the list. Under the average-radius notion of multiple packing, the (squared) list-decoding radius is the average

squared radius of the list, i.e., the average squared distance from each point in the list to the centroid of the list.

Using the above idea, we first construct a finite codebook with minimum average squared radius nN and supported

over the hypercube r´K,Ksn for a suitably chosen K. This is obtained by expurgating a random codebook obtained

by choosing points independently and uniformly from r´K,Ksn. The finite codebook is then tiled across R
n to

obtain an infinite constellation with the aforementioned density and minimum average squared radius nN . This

construction is loosely inspired by the infinite constellations [Pol94] which was originally studied in the context of

coding for the additive white Gaussian noise channel. A similar construction was used by [ZV22b] to derive lower

bounds on CLDpNq for large L.

The exact exponents of the probability of the error event are obtained using Cramér’s large deviation principle

and the Laplace’s method.

As a technical contribution, we discover several new representations of the average radius and the Chebyshev

radius. They play crucial roles in facilitating the analyses and the applications of some of these representations go

beyond the scope of this paper. To name a few, the average squared radius of a list can be written as a quadratic

form associated with the list. This representation is used to analyze Gaussian codes and spherical codes in [ZV22c]

and infinite constellations in this paper. The average squared radius can also be written as the difference between the

average (squared) norm of points in the list and the (squared) norm of the centroid of the list. This representation

is used to analyze spherical codes and ball codes in [ZV22c]. The average squared radius can be further written as

the average pairwise distance of the list. This allows us to give a one-line proof of the Blachman–Few reduction

and its strengthened version [ZV22c]. Yet another way of writing the average squared radius using the average

norm and the average pairwise correlation turns out to be useful for the proof of the Plotkin-type bound [ZV22c].

VI. ORGANIZATION OF THE PAPER

This paper derives a lower bound on the largest multiple packing density which turns out to be the best known so

far. The rest of the paper is organized as follows. Notational conventions and preliminary definitions/facts are listed

in Sections VII and VIII, respectively. After that, we present in Section IX the formal definitions of multiple packing

and pertaining notions. We also discuss different notions of density of codes used in the literature. Furthermore, we

obtain several novel representations of the Chebyshev radius and the average squared radius which are crucial for

estimating their tail probabilities. In Section X, we formally introduce our construction and prove the main result.

We end the paper with several open questions in Section XI.
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VII. NOTATION

Conventions. Sets are denoted by capital letters in calligraphic typeface, e.g., C,B, etc. Random variables are

denoted by lower case letters in boldface or capital letters in plain typeface, e.g., x, S, etc. Their realizations are

denoted by corresponding lower case letters in plain typeface, e.g., x, s, etc. Vectors (random or fixed) of length

n, where n is the blocklength without further specification, are denoted by lower case letters with underlines, e.g.,

x,g, x, g, etc. Vectors of length different from n are denoted by an arrow on top and the length will be specified

whenever used, e.g., ~t, ~α, etc. The i-th entry of a vector x P X n is denoted by xpiq since we can alternatively

think of x as a function from rns to X . Same for a random vector x. Matrices are denoted by capital letters, e.g.,

A,Σ, etc. Similarly, the pi, jq-th entry of a matrix G P F
nˆm is denoted by Gpi, jq. We sometimes write Gnˆm to

explicitly specify its dimension. For square matrices, we write Gn for short. Letter I is reserved for identity matrix.

Functions. We use the standard Bachmann–Landau (Big-Oh) notation for asymptotics of real-valued functions in

positive integers.

For two real-valued functions fpnq, gpnq of positive integers, we say that fpnq asymptotically equals gpnq,

denoted fpnq — gpnq, if

lim
nÑ8

fpnq
gpnq “ 1.

For instance, 2n`logn — 2n`logn ` 2n, 2n`logn ffi 2n. We write fpnq .“ gpnq (read fpnq dot equals gpnq) if the

coefficients of the dominant terms in the exponents of fpnq and gpnq match,

lim
nÑ8

log fpnq
log gpnq “ 1.

For instance, 23n
.“ 23n`n1{4

, 22
n  .“ 22

n`log n

. Note that fpnq — gpnq implies fpnq .“ gpnq, but the converse is not

true.

For any q P Rą0, we write logqp¨q for the logarithm to the base q. In particular, let logp¨q and lnp¨q denote

logarithms to the base 2 and e, respectively.

For any A Ď Ω, the indicator function of A is defined as, for any x P Ω,

1Apxq :“
#

1, x P A

0, x R A
.

At times, we will slightly abuse notation by saying that 1A is 1 when event A happens and 0 otherwise. Note that

1Ap¨q “ 1t¨ P Au.

Sets. For any two nonempty sets A and B with addition and multiplication by a real scalar, let A ` B denote the

Minkowski sum of them which is defined as A ` B :“ ta ` b : a P A, b P Bu. If A “ txu is a singleton set, we

write x ` B and for txu ` B. For any r P R, the r-dilation of A is defined as rA :“ tra : a P Au. In particular,

´A :“ p´1qA.

For M P Zą0, we let rM s denote the set of first M positive integers t1, 2, ¨ ¨ ¨ ,Mu.

Geometry. Let }¨}2 denote the Euclidean/ℓ2-norm. Specifically, for any x P R
n,

}x}2 :“
˜

n
ÿ

i“1

xpiq2
¸1{2

.

With slight abuse of notation, we let | ¨ | denote the “volume” of a set w.r.t. a measure that is obvious from the

context. If A is a finite set, then |A| denotes the cardinality of A w.r.t. the counting measure. For a set A Ă R
n,

let

affpAq :“
#

k
ÿ

i“1

λiai : k P Zě1; @i P rks, ai P A, λi P R,

k
ÿ

i“1

λi “ 1

+

denote the affine hull of A, i.e., the smallest affine subspace containing A. If A is a connected compact set in R
n

with nonempty interior and affpAq “ R
n, then |A| denotes the volume of A w.r.t. the n-dimensional Lebesgue

measure. If affpAq is a k-dimensional affine subspace for 1 ď k ă n, then |A| denotes the k-dimensional Lebesgue

volume of A.
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The closed n-dimensional Euclidean unit ball is defined as

Bn :“
!

y P R
n :

›

›y
›

›

2
ď 1

)

.

The pn ´ 1q-dimensional Euclidean unit sphere is defined as

Sn´1 :“
!

y P R
n :

›

›y
›

›

2
“ 1

)

.

For any x P R
n and r P Rą0, let Bnprq :“ rBn,Sn´1prq :“ rSn´1 and Bnpx, rq :“ x ` rBn,Sn´1px, rq :“

x ` rSn´1.

Let Vn :“ |Bn|.

VIII. PRELIMINARIES

Lemma 3 (Change of variable). Let U Ă R
n be an open set and ϕ : U Ñ R

n be an injective differentiable function

with continuous partial derivatives, the Jacobian of which is nonzero for every x P U . Then for any compactly

supported, continuous function f : ϕpUq Ñ R, the substitution v “ ϕpuq yields the following formula
ż

ϕpUq
fpvqdv “

ż

U

fpϕpuqq|detp∇ϕqpuq|du,

where ∇ϕ P R
nˆn denotes the Jacobian matrix of ϕ.

Theorem 4 (Laplace’s method). Suppose f : Rd Ñ R is a twice continuously differentiable function on A Ă R
d,

and there exists a unique point ~t˚ P intpAq (where intp¨q denotes the interior of a set) such that

fp~t˚q “ min
~tPA

fp~tq, pHess fqp~t˚q ą 0,

where Hess f P R
dˆd denotes the Hessian matrix of f . Suppose gp~tq is positive. Then

ż

A

gp~tqe´Mfp~tqd~t
MÑ8— e´Mfp~t˚q

ˆ

2π

M

˙d{2
gp~t˚q

b

detppHess fqp~t˚qq
.

Theorem 5 (Cramér). Let txiuni“1 be a sequence of i.i.d. real-valued random variables. Let sn –
1
n

řn
i“1 xi. Then

for any closed F Ă R,

lim sup
nÑ8

1

n
ln Prrsn P Fs ď ´ inf

xPF
sup
λPR

!

λx ´ lnE
”

eλx1

ı)

;

and for any open G Ă R,

lim inf
nÑ8

1

n
ln Prrsn P Gs ě ´ inf

xPG
sup
λPR

!

λx ´ lnE
”

eλx1

ı)

.

Furthermore, when F or G corresponds to the upper (resp. lower) tail of sn, the maximizer λ ě 0 (resp. λ ď 0).

IX. BASIC DEFINITIONS AND FACTS

Given the intimate connection between packing and error-correcting codes, we will interchangeably use the terms

“multiple packing” and “list-decodable code”. The parameter L P Zě2 is called the multiplicity of overlap or the

list-size. The parameter N is called the noise power constraints. Elements of a packing are called either points or

codewords. We will call a size-L subset of a packing an L-list. This paper is only concerned with the fundamental

limits of multiple packing for asymptotically large dimension n Ñ 8. When we say “a” code C, we always mean

an infinite sequence of codes tCiuiě1 where Ci Ă R
ni and tniuiě1 is an increasing sequence of positive integers.

In the rest of this section, we list a sequence of formal definitions and some facts associated with these definitions.

Definition 1 (Multiple packing). Let N ą 0 and L P Zě2. A subset C Ď R
n is called a pN,L ´ 1q-list-decodable

code (a.k.a. an pN,L ´ 1q-multiple packing) if for every y P R
n,

ˇ

ˇ

ˇ
C X Bnpy,

?
nNq

ˇ

ˇ

ˇ
ď L ´ 1. (6)
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The rate (a.k.a. density) of C is defined as

RpCq :“ lim sup
KÑ8

1

n
ln

|C X pKBq|
|KB| , (7)

where B is an arbitrary centrally symmetric connected compact set in R
n with nonempty interior.

Remark 1. Common choices of B include the unit ball Bn, the unit cube r´1, 1sn, the fundamental Voronoi region

VΛ of a (full-rank) lattice Λ Ă R
n, etc. Some choices of B may be more convenient than the others for analyzing

certain ensembles of packings. Therefore, we do not fix the choice of B in Definition 1.

Remark 2. The rate of a packing (as per Equation (7)) is also called the normalized logarithmic density in the

literature. It measures the the normalized number of points per unit volume.

Note that the condition given by Equation (6) is equivalent to that for any px1, ¨ ¨ ¨ , xLq P
`

C

L

˘

,

L
č

i“1

Bnpxi,
?
nNq “ H. (8)

Definition 2 (Chebyshev radius and average squared radius of a list). Let x1, ¨ ¨ ¨ , xL be L points in R
n. Then the

squared Chebyshev radius rad2px1, ¨ ¨ ¨ , xLq of x1, ¨ ¨ ¨ , xL is defined as the (squared) radius of the smallest ball

containing x1, ¨ ¨ ¨ , xL, i.e.,

rad2px1, ¨ ¨ ¨ , xLq :“ min
yPRn

max
iPrLs

›

›xi ´ y
›

›

2

2
. (9)

The average squared radius rad
2px1, ¨ ¨ ¨ , xLq of x1, ¨ ¨ ¨ , xL is defined as the average squared distance to the

centroid, i.e.,

rad
2px1, ¨ ¨ ¨ , xLq :“ 1

L

L
ÿ

i“1

}xi ´ x}22, (10)

where x :“ 1
L

řL
i“1 xi is the centroid of x1, ¨ ¨ ¨ , xL. We refer to the square root of the average squared radius as

the average radius of the list.

Remark 3. One should note that for an L-list L of points, the smallest ball containing L is not necessarily the same

as the circumscribed ball, i.e., the ball such that all points in L live on the boundary of the ball. The circumscribed

ball of the polytope convtLu spanned by the points in L may not exist. If it does exist, it is not necessarily the

smallest one containing L. However, whenever it exists, the smallest ball containing L must be the circumscribed

ball of a certain subset of L.

Remark 4. We remark that the motivation behind the definition of average squared radius (Equation (10)) is to

replace the maximization in Equation (9) with average.

min
yPRn

E
i„rLs

”

›

›xi ´ y
›

›

2

2

ı

“ min
yPRn

1

L

L
ÿ

i“1

n
ÿ

j“1

`

xipjq ´ ypjq
˘2

“ min
py1,¨¨¨ ,ynqPRn

n
ÿ

j“1

1

L

L
ÿ

i“1

pxipjq ´ yjq2 (11)

“
n

ÿ

j“1

min
yjPR

1

L

L
ÿ

i“1

pxipjq ´ yjq2 (12)

“ 1

L

L
ÿ

i“1

n
ÿ

j“1

`

xipjq ´ y˚
j

˘2
(13)

“ 1

L

L
ÿ

i“1

}xi ´ x}22. (14)
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Equation (12) holds since the inner summation 1
L

řL
i“1

`

xipjq ´ ypjq
˘2

in Equation (11) only depends on yj among

all y1, ¨ ¨ ¨ , yn. Equation (13) follows since for each j, the minimizer of the minimization in Equation (12) is

y˚
j :“ 1

L

řL
i“1 xipjq. In Equation (14), the minimizer y˚ equals x :“ 1

L

řL
i“1 xi.

Definition 3 (Chebyshev radius and average squared radius of a code). Given a code C Ă R
n of rate R, the squared

pL ´ 1q-list-decoding radius of C is defined as

rad2LpCq :“ min
LPpC

L
q
rad2pLq. (15)

The pL ´ 1q-average squared radius of C is defined as

rad
2

LpCq :“ min
LPpC

L
q
rad

2pLq. (16)

Definition 4 (Average-radius multiple packing). A subset C Ă R
n is called an pN,L ´ 1q-average-radius list-

decodable code (a.k.a. an pN,L ´ 1q-average-radius multiple packing) if rad
2

LpCq ą nN . The rate (a.k.a. density)

RpCq of C is given by Equation (7). The pN,L ´ 1q-average-radius list-decoding capacity (a.k.a. pN,L ´ 1q
average-radius multiple packing density) is defined as

CL´1pNq :“ lim sup
nÑ8

lim sup
CĎRn : rad

2

LpCqąnN

RpCq.

The squared pL ´ 1q-average-radius list-decoding radius at rate R (without input constraint) is defined as

rad
2

LpRq :“ lim sup
nÑ8

lim sup
CĎRn : RpCqěR

rad
2

LpCq.

Note that pL ´ 1q-list-decodability defined by Equation (8) is equivalent to rad2LpCq ą nN . We also define the

pN,L´1q-list-decoding capacity (a.k.a. pN,L´1q-multiple packing density) CL´1pNq and the pL´1q-list-decoding

radius rad2LpRq at rate R:

CL´1pNq :“ lim sup
nÑ8

lim sup
CĎRn : rad2

LpCqąnN

RpCq,

rad2LpRq :“ lim sup
nÑ8

lim sup
CĎRn : RpCqěR

rad2LpCq.

Since the average radius is at most the Chebyshev radius, average-radius list-decodability is stronger than regular

list-decodability. Any lower (resp. upper) bound on CL´1pNq (resp. CL´1pNq) is automatically a lower (resp. upper)

bound on CL´1pNq (resp. CL´1pNq). Proving upper/lower bounds on CL´1pNq (resp. CL´1pNq) is equivalent to

proving upper/lower bounds on rad2LpRq (resp. rad
2

LpRq).

A. Different notions of density of packings

We measure the density of a packing using Equation (7). In the literature, there exists another commonly used

notion of density for multiple packings. It counts the fraction of space occupied by the union of the balls of radius?
nN centered around points in the packing. Specifically, for an pN,L ´ 1q-packing C Ă R

n,

∆pCq :“ lim sup
PÑ8

1

n
ln

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

xPC
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L

ˇ

ˇ

ˇ
Bnp

?
nP q

ˇ

ˇ

ˇ

˛

‚. (17)

We prove the following statement.

Theorem 6. Let N ą 0 and L P Zě2. Let C Ă R
n be an pN,L ´ 1q-multiple packing. Then ∆pCq nÑ8— RpCq `

1
2
lnp2πeNq.

Proof. Note that for sufficiently large P ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

xPC
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À
ˇ

ˇ

ˇ
C X Bnp

?
nP q

ˇ

ˇ

ˇ
¨
ˇ

ˇ

ˇ
Bnp

?
nNq

ˇ

ˇ

ˇ
.
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Therefore,

∆pCq ď lim sup
PÑ8

1

n
ln

ˇ

ˇC X Bnp
?
nP q

ˇ

ˇ ¨
ˇ

ˇBnp
?
nNq

ˇ

ˇ

ˇ

ˇBnp
?
nP q

ˇ

ˇ

“ RpCq ` 1

n
ln

ˇ

ˇ

ˇ
Bnp

?
nNq

ˇ

ˇ

ˇ

— RpCq ` 1

n
ln

˜

?
nN

n ¨ 1?
πn

c

2πe

n

n
¸

— RpCq ` 1

2
lnp2πeNq. (18)

On the other hand, we claim that for sufficiently large P ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

xPC
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Á 1

L ´ 1

ˇ

ˇ

ˇ
C X Bnp

?
nP q

ˇ

ˇ

ˇ
¨
ˇ

ˇ

ˇ
Bnp

?
nNq

ˇ

ˇ

ˇ
. (19)

The above claim is justified at the end of this subsection. Then following the same lines of calculations above, we

have

∆pCq ě RpCq ` 1

2
lnp2πeNq ´ op1q. (20)

Combining Equations (18) and (20), we have that for any pN,L ´ 1q-packing C,

∆pCq — RpCq ` 1

2
lnp2πeNq.

To see Equation (19), consider the set of convex sets

D :“
!

Dpxq : x P C, Bnpx,
?
nNq X Bnp

?
nP q ‰ H

)

,

where

Dpxq :“ Bnpx,
?
nNq X Bnp

?
nP q.

Note that some elements in D are balls Bnpx,
?
nNq, while other elements are the intersection of two balls

Bnpx,
?
nNq X Bnp

?
nP q for some x P C.

We now rearrange all Dpxq in D so that they become disjoint. Then the volume induced by the resulting packing

is
ÿ

DPD

|D| “
ÿ

xPC
Bnpx,

?
nNqXBnp

?
nP q‰H

|Dpxq|

«
ÿ

xPCXBnp
?
nP q

|Dpxq|

“
ÿ

xPCXBnp
?
nP q

ˇ

ˇ

ˇ
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ
. (21)

On the other hand, for any y P Ť

DPD

D, it can split into at most L ´ 1 points after the above process since by

pL´1q-list-decodability, each point in a ball is covered by at most L´2 other balls. Therefore, the volume induced

by the rearranged packing is at most

pL ´ 1q
ˇ

ˇ

ˇ

ˇ

ˇ

ď

DPD

D

ˇ

ˇ

ˇ

ˇ

ˇ

“ pL ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

xPC
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. (22)
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Combining Equations (21) and (22), we have, for sufficiently large P ,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

xPC
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Á 1

L ´ 1

ÿ

xPCXBnp
?
nP q

ˇ

ˇ

ˇ
Bnpx,

?
nNq X Bnp

?
nP q

ˇ

ˇ

ˇ

« 1

L ´ 1

ˇ

ˇ

ˇ
C X Bnp

?
nP q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bnp

?
nNq

ˇ

ˇ

ˇ
,

as claimed in Equation (19).

B. Chebyshev radius and average radius

In this section, we present several different representations of the Chebyshev radius and average squared radius.

Some of them will be crucially used in the subsequent sections of this paper. These representations are summarized

in the following theorem which will be proved in the subsequent subsections.

Theorem 7. Let L P Zě2 and x1, ¨ ¨ ¨ , xL P R
n. Then the squared Chebyshev radius of x1, ¨ ¨ ¨ , xL admits the

following alternative representations:

1) rad2px1, ¨ ¨ ¨ , xLq “ max
~zP∆L

L
ÿ

i“1

~zpiq
›

›

›
xi ´ y

~z

›

›

›

2

2
, where y

~z
:“ řL

i“1 ~zpiqxi and ∆L denotes the probability

simplex on rLs;
2) rad2px1, ¨ ¨ ¨ , xLq “ lim

pÑ8
radppqpx1, ¨ ¨ ¨ , xLq, where

radppqpx1, ¨ ¨ ¨ , xLq :“
˜

min
yPRn

1

L

L
ÿ

i“1

›

›xi ´ y
›

›

2p

2

¸1{p

;

3) there exists a unique 1 ď q ď 8 depending on x1, ¨ ¨ ¨ , xL such that

rad2px1, ¨ ¨ ¨ , xLq “
˜

1

L

L
ÿ

i“1

}xi ´ x}2q2

¸1{q

,

and x :“ 1
L

řL
i“1 xi.

The average squared radius of x1, ¨ ¨ ¨ , xL admits the following alternative representations:

1) rad
2px1, ¨ ¨ ¨ , xLq “ 1

L

L
ÿ

i“1

}xi}22 ´ }x}22;

2) rad
2px1, ¨ ¨ ¨ , xLq “ L ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

@

xi, xj
D

;

3) rad
2px1, ¨ ¨ ¨ , xLq “ 1

2L2

ÿ

pi,jqPrLs2:i‰j

›

›xi ´ xj
›

›

2

2
.

1) Another representation of the Chebyshev radius: The Chebyshev radius involves a minimax expression which

is in general tricky to handle. One can use minimax theorem to interchange the min and max and then compute

the inner min explicitly.

rad2px1, ¨ ¨ ¨ , xLq “ min
yPRn

max
iPrLs

›

›xi ´ y
›

›

2

2
“ min

yPRn
max
~zP∆L

L
ÿ

i“1

~zpiq
›

›xi ´ y
›

›

2

2
.

The last equality follows since the maximum is always achieved by a singleton ~z P t0, 1uL. Note that the objective

function on the RHS is linear (hence concave) in ~z and quadratic (hence convex) in y. Therefore the max and min

can be interchanged and we get

max
~zP∆L

min
yPRn

L
ÿ

i“1

~zpiq
›

›xi ´ y
›

›

2

2
“ max

~zP∆L

min
yPRn

n
ÿ

j“1

L
ÿ

i“1

~zpiq
`

xipjq ´ ypjq
˘2 “ max

~zP∆L

n
ÿ

j“1

min
yjPR

L
ÿ

i“1

~zpiqpxipjq ´ yjq2.
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The last equality follows since each inner summation
řL

i“1 ~zpiq
`

xipjq ´ ypjq
˘2

only depends on ypjq among all

yp1q, ¨ ¨ ¨ , ypnq. For each j, the minimizing y˚
j equals

y˚
j :“

řL
i“1 ~zpiqxipjq
řL

i“1 ~zpiq
“

L
ÿ

i“1

~zpiqxipjq,

where the last equality is because ~z P ∆L. Therefore

rad2px1, ¨ ¨ ¨ , xLq “ max
~zP∆L

L
ÿ

i“1

~zpiq
›

›

›
xi ´ y

~z

›

›

›

2

2
, (23)

where y
~z
:“ řL

i“1 ~zpiqxi.
2) Higher-order approximations to the Chebyshev radius: As explained in Remark 4, the average squared radius

is a linear relaxation of the squared Chebyshev radius:

rad
2px1, ¨ ¨ ¨ , xLq “ min

yPRn
E

i„rLs

”

›

›xi ´ y
›

›

2

2

ı

. (24)

One may obtain better and better approximations to the squared Chebyshev radius by taking higher and higher

order relaxations:

radppqpx1, ¨ ¨ ¨ , xLq “ min
yPRn

˜

E
i„rLs

”

›

›xi ´ y
›

›

2p

2

ı

¸1{p

“
˜

min
yPRn

E
i„rLs

”

›

›xi ´ y
›

›

2p

2

ı

¸1{p

, (25)

where p ě 1. The second equality in Equation (25) follows since the fp¨q “ p¨q1{p is monotonically increasing.

Note that radp1qpx1, ¨ ¨ ¨ , xLq “ rad
2px1, ¨ ¨ ¨ , xLq. Moreover, since Erp¨qps1{p

is increasing in p, we have

radppqpx1, ¨ ¨ ¨ , xLq pÑ8ÝÝÝÑ rad2px1, ¨ ¨ ¨ , xLq.

However, we do not know how to analyze radppq. It seems difficulty to get a closed-form solution of the minimization

since the minimizer y˚ cannot be obtained by minimizing over ypjq for different j P rns separately.

3) More representations of the average squared radius: Recall that Equation (24), as a lower bound on rad2px1, ¨ ¨ ¨ , xLq,

admits an explicit formula given by Equation (14):

rad2px1, ¨ ¨ ¨ , xLq ě rad
2px1, ¨ ¨ ¨ , xLq “ 1

L

L
ÿ

i“1

}xi ´ x}22, (26)

where x :“ 1
L

řL
i“1 xi denotes the centroid of x1, ¨ ¨ ¨ , xL. On the other hand, we have

rad2px1, ¨ ¨ ¨ , xLq “ min
yPRn

max
iPrLs

›

›xi ´ y
›

›

2

2
ď max

iPrLs
}xi ´ x}22 “: rad2maxpx1, ¨ ¨ ¨ , xLq. (27)

Contrasting Equations (26) and (27), by monotonicity and continuity of }¨}p in p, we know that there exists

1 ď p ď 8 such that

rad2px1, ¨ ¨ ¨ , xLq “
˜

1

L

L
ÿ

i“1

}xi ´ x}2p2

¸1{p

.

However, we do not know how to use the above observation for the following two reasons. Firstly, the above

expression seems tricky to handle. Secondly and more importantly, the number p depends on x1, ¨ ¨ ¨ , xL and is

typically different for different lists.

Finally, we provide several alternative expressions for rad
2px1, ¨ ¨ ¨ , xLq which will be useful in the proceeding

sections of this paper.

rad
2px1, ¨ ¨ ¨ , xLq “ 1

L

L
ÿ

i“1

}xi ´ x}22

“ 1

L

L
ÿ

i“1

xxi ´ x, xi ´ xy
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“ 1

L

L
ÿ

i“1

´

}xi}22 ´ 2xxi, xy ` }x}22
¯

“ 1

L

L
ÿ

i“1

}xi}22 ´ 2xx, xy ` }x}22

“ 1

L

L
ÿ

i“1

}xi}22 ´ }x}22. (28)

The above expression can be further written as

rad
2px1, ¨ ¨ ¨ , xLq “ 1

L

L
ÿ

i“1

}xi}22 ´ }x}22

“ 1

L

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2

@

xi, xj
D

“ 1

L

L
ÿ

i“1

}xi}22 ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

@

xi, xj
D

“ L ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

@

xi, xj
D

. (29)

At last, Equation (29) can in turn be rewritten as

rad
2px1, ¨ ¨ ¨ , xLq “ L ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

@

xi, xj
D

“ L ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

2L2

ÿ

pi,jqPrLs2:i‰j

´

}xi}22 `
›

›xj
›

›

2

2

¯

` 1

2L2

ÿ

pi,jqPrLs2:i‰j

´

}xi}22 `
›

›xj
›

›

2

2
´ 2

@

xi, xj
D

¯

“ L ´ 1

L2

L
ÿ

i“1

}xi}22 ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

}xi}22 ` 1

2L2

ÿ

pi,jqPrLs2:i‰j

›

›xi ´ xj
›

›

2

2

“ 1

2L2

ÿ

pi,jqPrLs2:i‰j

›

›xi ´ xj
›

›

2

2
. (30)

If all x1, ¨ ¨ ¨ , xL have the same ℓ2 norm
?
nP , then Equation (28)

rad
2px1, ¨ ¨ ¨ , xLq “ nP ´ }x}22. (31)

and Equation (29) becomes

rad
2px1, ¨ ¨ ¨ , xLq “ L ´ 1

L
nP ´ 1

L2

ÿ

pi,jqPrLs2:i‰j

@

xi, xj
D

. (32)

X. LOWER BOUNDS FOR UNBOUNDED PACKINGS

In this section, we analyze average-radius list-decodability of a class of regular infinite constellations obtained

by expurgating and tiling a random code supported over an n-dimensional hypercube. Using this, we prove the

following lower bound on the pN,L ´ 1q-average-radius list-decoding capacity of multiple packings.

Theorem 8. For any N ą 0 and L P Zě2, the pN,L ´ 1q-average-radius list-decoding capacity is at least

CL´1pNq ě 1

2
ln

L ´ 1

2πeNL
´ 1

2pL ´ 1q lnL. (33)
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Remark 5. Note that the above bound (Equation (33)) approaches 1
2
ln 1

2πeN
as L Ñ 8. The latter quantity is

known to be the list-decoding capacity for asymptotically large L (see Section IV). On the extreme, when L “ 2,

the above bound becomes 1
2
ln 1

8πeN
which recovers the best known bound due to Minkowski [Min10].

To prove the above theorem, let R ă 1
2
ln L´1

2πeNL
´ 1

2pL´1q lnL and λn
.“ enR. The exact choice of λn is given

by Equation (54).

To analyze average-radius list-decodability of C, we first construct an average-radius list-decodable code CK

supported within A “ In where I :“ r´K,Ks is a sufficiently large interval for some K ą 0. We later tile this

codebook over Rn to obtain an infinite constellation having the same average squared radius as the finite codebook.

The finite codebook CK is obtained by drawing M :“ λn|A| points independently and uniformly at random from

A and expurgating the resulting codebook. Let C1
K :“ tx1, ¨ ¨ ¨ ,xMu denote the M independent points uniformly

distributed over A.

Lemma 9. There exists a finite codebook CK supported over A, having minimum average squared radius at least?
nN and density

1

n
ln

|CK |
|A| ě 1

2
ln

L ´ 1

2πeNL
´ 1

2pL ´ 1q lnL ` op1q.

The first step is to bound

Pr
”

rad
2px1, ¨ ¨ ¨ ,xLq ď nN

ı

. (34)

for every subset of L codewords in C1
K . In fact, we will prove the following lemma.

Lemma 10. For any x1, ¨ ¨ ¨ ,xL drawn independently and uniformly at random from A, we have

Pr
”

rad
2px1, ¨ ¨ ¨ ,xLq ď nN

ı

“ enEpKq`opnq,

where the opnq term is independent of K, and

EpKq :“ L ´ 1

2
ln

L ´ 1

2πeNL
´ 1

2
lnL ` pL ´ 1q lnp2Kq.

First, we note that Equation (34) can be alternatively written as

Pr
”

rad
2px1, ¨ ¨ ¨ ,xLq ď nN

ı

“ Pr

«

1

L

L
ÿ

i“1

}xi}22 ´ }x}22 ď nN

ff

(35)

“ Pr

«

L
ÿ

i“1

}xi}22 ´ L}x}22 ď LnN

ff

“ Pr

»

–

n
ÿ

j“1

L
ÿ

i“1

xipjq2 ´ L

n
ÿ

j“1

˜

1

L

L
ÿ

i“1

xipjq
¸2

ď LnN

fi

fl

“ Pr

»

–

n
ÿ

j“1

¨

˝

L
ÿ

i“1

xipjq2 ´ 1

L

˜

L
ÿ

i“1

xipjq
¸2

˛

‚ď LnN

fi

fl, (36)

where Equation (35) is by Equation (28) and x :“ 1
L

řL
i“1 xi.

Define

gpx1, ¨ ¨ ¨ , xLq :“
L

ÿ

i“1

x2i ´ 1

L

˜

L
ÿ

i“1

xi

¸2

.

The above probability (Equation (36)) can be rewritten as

Pr

«

n
ÿ

j“1

gpx1pjq, ¨ ¨ ¨ ,xLpjqq ď LnN

ff

(37)
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where xipjq i.i.d.„ UnifpIq for each i P rLs and j P rns.
We note that the function gp~tq is a quadratic form of ~t P R

L. Indeed,

gp~tq “
L

ÿ

i“1

~tpiq2 ´ 1

L

˜

L
ÿ

i“1

~tpiq
¸2

“
ˆ

1 ´ 1

L

˙ L
ÿ

i“1

~tpiq2 ´ 2

L

ÿ

i,jPrLs:iăj

~tpiq~tpjq “ ~tJA~t, (38)

where

A :“IL ´ 1

L
JL P R

LˆL

and IL denotes the L ˆ L identity matrix and JL denotes the L ˆ L all-one matrix. Therefore we can write

Equation (34) as

Pr

«

n
ÿ

j“1

~xJ
j A~xj ď LnN

ff

, (39)

where ~xj :“ rx1pjq, ¨ ¨ ¨ ,xLpjqs P R
L and xipjq i.i.d.„ UnifpIq for each 1 ď i ď L and 1 ď j ď n.

A. Large deviation principle

Since ~xJ
j A~xj is independent for each 1 ď j ď n, we can apply the large deviation principle (Theorem 5) to get

the asymptotic behaviour of Equation (39). Specifically,

1

n
lnEquation (39)

nÑ8ÝÝÝÑ ´max
λď0

!

λLN ´ lnE
”

eλ~x
JA~x

ı)

“ ´max
λě0

!

´λLN ´ lnE
”

e´λ~xJA~x
ı)

, (40)

where ~x „ UnifbLpIq.

We need to compute the following integral:

E

”

e´λ~xJA~x
ı

“ 1

p2KqL
ż

IL

e´λ~xJA~xd~x

“ 1

p2KqL
ż

r´1,1sL
e´λK2~tJA~tKLd~t

“ 1

2L

ż

r´1,1sL
e´K2λ~tJA~td~t, (41)

where λ ě 0.

Note that A P R
LˆL has rank L ´ 1 and therefore is singular, unfortunately. In fact, A has eigendecomposition

A “ PDP´1 where

P :“

»

—

—

—

—

—

–

´1 ´1 ¨ ¨ ¨ ´1 1

1 1

. .
. ...

1 1

1 1

fi

ffi

ffi

ffi

ffi

ffi

fl

P R
LˆL

consists of the eigenvectors of A as its columns and

D :“

»

—

—

—

–

1

. . .

1

0

fi

ffi

ffi

ffi

fl

P R
LˆL
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consists of the eigenvalues of A as its diagonal entries. However, P is not orthogonal. One can orthogonalize it

using the Gram–Schmidt process which gives us an orthogonal matrix U P R
LˆL. We claim that

U “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´ 1?
1ˆ2

´ 1?
2ˆ3

´ 1?
3ˆ4

´ 1?
4ˆ5

¨ ¨ ¨ ´ 1?
pL´2qˆpL´1q

´ 1?
pL´1qˆL

1?
L

b

L´1
L

1?
L

b

L´2
L´1

´ 1?
pL´1qˆL

...

. .
. ´ 1?

pL´2qˆpL´1q
...

...

b

4
5

...
...

...
...

b

3
4

´ 1?
4ˆ5

...
...

...
...

b

2
3

´ 1?
3ˆ4

...
...

...
...

...
b

1
2

´ 1?
2ˆ3

´ 1?
3ˆ4

´ 1?
4ˆ5

... ´ 1?
pL´2qˆpL´1q

´ 1?
pL´1qˆL

1?
L

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P R
LˆL. (42)

The above U gives us the Singular Value Decomposition of A which is A “ UDUJ. Note that UJ “ U´1 by

orthogonality of U and the diagonalization of A is given by D “ U´1AU´J “ UJAU . Under the change of

variable ~t “ U~y, the quadratic form ~tJA~t becomes a diagonal form ~yJD~y and the RHS of Equation (41) becomes

1

2L

ż

r´1,1sL
exp

`

´K2λ~tJA~t
˘

d~t

“ 1

2L

ż

U´1r´1,1sL
exp

`

´K2λpU~yqJApU~yq
˘

¨ | detpUq|d~y (43)

“ 1

2L

ż

UJr´1,1sL
exp

`

´K2λ~yJpUJAUq~y
˘

d~y (44)

“ 1

2L

ż

UJr´1,1sL
exp

`

´K2λ~yJD~y
˘

d~y

“ 1

2L

ż

UJr´1,1sL
exp

˜

´K2λ

L´1
ÿ

i“1

~tpiq2
¸

d~t. (45)

Equation (43) is by Lemma 3. In Equation (44), we use the facts that U´1 “ UJ and |detpUq| “ 1.

B. Laplace’s method and proof of Lemma 10

To compute Equation (45), we note that the integral is degenerate along the direction of the last coordinate ~tpLq.

Since the integral domain is bounded, the integral is still finite. We first integrate out ~tpLq and get an pL ´ 1q-

dimensional integral w.r.t. ~tp1q, ¨ ¨ ¨ ,~tpL´ 1q. To this end, observe that for ~t P U r´1, 1sL, the last component ~tpLq
is a function of ~tp1q, ¨ ¨ ¨ ,~tpL ´ 1q and it can take any value of the last coordinate of UJr´1, 1sL. Therefore the

range of ~tpLq can be written as rg1p~tp1q, ¨ ¨ ¨ ,~tpL´1qq, g2p~tp1q, ¨ ¨ ¨ ,~tpL´1qqs where g1p¨q and g2p¨q are piecewise

linear continuous functions given by U . We now integrate out ~tpLq and get
ż

pUJr´1,1sLq|rt1,¨¨¨ ,tL´1s

e´K2λ
ř

L´1

i“1
t2i pg2pt1, ¨ ¨ ¨ , tL´1q ´ g1pt1, ¨ ¨ ¨ , tL´1qqdpt1, ¨ ¨ ¨ , tL´1q, (46)

where pUJr´1, 1sLq|rt1,¨¨¨ ,tL´1s Ă R
L´1 denotes the set obtained by restricting each vector in UJr´1, 1sL Ă R

L

to the first L ´ 1 coordinates pt1, ¨ ¨ ¨ , tL´1q.

Note that the quadratic function fpt1, ¨ ¨ ¨ , tL´1q :“ λ
řL´1

i“1 t2i is nonnegative and attains its unique minimum

(which is zero) at rt1, ¨ ¨ ¨ , tL´1s “ r0, ¨ ¨ ¨ , 0s which is in the interior of UJr´1, 1sL. Therefore, by Laplace’s

method (Theorem 4), Equation (46) converges to

ˆ

2π

K2

˙
L´1

2 g2p0, ¨ ¨ ¨ , 0q ´ g1p0, ¨ ¨ ¨ , 0q
a

detppHess fqp0, ¨ ¨ ¨ , 0qq
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as K Ñ 8. Since Hess f “ 2λIL´1 ą 0, we have

ˆ

2π

K2

˙
L´1

2 g2p0, ¨ ¨ ¨ , 0q ´ g1p0, ¨ ¨ ¨ , 0q
a

p2λqL´1

“
´ π

K2λ

¯
L´1

2 pg2p0, ¨ ¨ ¨ , 0q ´ g1p0, ¨ ¨ ¨ , 0qq.

Note that g2p0, ¨ ¨ ¨ , 0q ´ g1p0, ¨ ¨ ¨ , 0q is nothing but the length of the range of the last coordinate tL´1 of vectors

in UJr´1, 1sL. Since any vector ~t P UJr´1, 1sL can be written as UJ~u for some ~u P r´1, 1sL, the length of

the range of the last coordinate of ~t is twice the ℓ1-norm of the last row of UJ, i.e., the last column of U . From

Equation (42), it is not hard to see that

g2p0, ¨ ¨ ¨ , 0q ´ g1p0, ¨ ¨ ¨ , 0q “ 2 ¨ L ¨ 1?
L

“ 2
?
L. (47)

Finally, we get that Equation (46) (asymptotically) equals

´ π

K2λ

¯
L´1

2 ¨ 2
?
L. (48)

Recall that EpKq is the error exponent corresponding to Equation (34). Plugging Equation (48) back to Equa-

tion (45) and then back to Equation (40), we have

EpKq “ max
λě0

"

´λLN ´ ln

ˆ

1

2L
¨
´ π

K2λ

¯
L´1

2 ¨ 2
?
L

˙*

“ max
λě0

#

´λLN ´ ln

˜

ˆ

π

p2Kq2λ

˙
L´1

2 ?
L

¸+

“ max
λě0

"

´LNλ ` L ´ 1

2
lnλ ` pL ´ 1q lnp2Kq

´L ´ 1

2
lnπ ´ 1

2
lnL

*

“ max
λě0

"

´LNλ ` L ´ 1

2
lnλ

*

` pL ´ 1q lnp2Kq

´ L ´ 1

2
lnπ ´ 1

2
lnL (49)

“ ´L ´ 1

2
` L ´ 1

2
ln

L ´ 1

2LN
´ L ´ 1

2
lnπ

` pL ´ 1q lnp2Kq ´ 1

2
lnL (50)

“ L ´ 1

2
ln

L ´ 1

2πeNL
´ 1

2
lnL ` pL ´ 1q lnp2Kq. (51)

Equation (50) follows since the function of λ in the maximization in Equation (49) is convex and attains its

maximum at λ “ L´1
2LN

. This completes the proof.

C. Finite codebook with minimum average squared radius nN and proof of Lemma 9

Since the number M of points in A is λn|A| “ λnp2Kqn, the expected number of lists with average squared

radius at most nN is

E

„ˇ

ˇ

ˇ

ˇ

"

L P
ˆ

C1
K

L

˙

: rad
2pLq ď nN

*ˇ

ˇ

ˇ

ˇ



“ E
x

1
,¨¨¨ ,x

M

„ˇ

ˇ

ˇ

ˇ

"

L P
ˆrM s

L

˙

: rad
2ptxiuiPLq ď nN

*ˇ

ˇ

ˇ

ˇ



(52)

“
ˆ

M

L

˙

e´nEpKq
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“ MLeopnq

L!
e´nEpKq

“ λL
np2KqnLe´nEpKq`opnq

L!
. (53)

We now set λn in such a way that Equation (53) is at most 1
2
ErM s “ 1

2
λn|A| “ 1

2
λnp2Kqn. That is,

1

2
λnp2Kqn ě λL

np2KqnLe´nEpKq`opnq

L!

ðù L!{2 ě λL´1
n p2KqpL´1qne´nEpKq`opnq

ðù λn ď pL!{2q
1

L´1
enEpKq{pL´1q`opnq

p2Kqn

“ pL!{2q
1

L´1 e
npEpKq

L´1
´lnp2Kqq`opnq

“ pL!{2q
1

L´1 exp

ˆ

n

ˆ

1

2
ln

L ´ 1

2πeNL
´ 1

2pL ´ 1q lnL
˙

` opnq
˙

. (54)

After expurgating out one codeword from each bad list, we get an pN,L ´ 1q-average-radius multiple packing CK

of size at least 1
2
ErM s and the density 1

n
ln

|CK |
|A| is therefore at least

1

n
ln

1
2
ErM s
|A| “ 1

n
ln

1
2
λn|A|
|A| “ 1

n
ln

λn

2
. (55)

Substituting Equation (54) here, we get the following lower bound on the density

1

2
ln

L ´ 1

2πeNL
´ 1

2pL ´ 1q lnL ` op1q, (56)

as promised in Lemma 9.

D. Unbounded packing and proof of Theorem 8

The above derivation shows the existence of a finite codebook C X r´K,Ksn in which all L-tuple of points have

radius at least
?
nN . To obtain an unbounded pN,L´1q-packing, let us take K “ n2 and define Cn :“ CXr´n2, n2sn

and

C8 :“ Cn ` pn2 ` n0.6qZn.

In words, C8 is obtained by tiling R
n using translations of Cn and leaving a gap of width 2 ¨n0.6 between adjacent

copies of Cn. The NLD of C8 is essentially the same as that of C X r´n2, n2sn which is given by Equation (56).

Indeed, since C8 is periodic, we have

RpC8q “ 1

n
ln

|Cn|
|r´pn2 ` n0.6q, pn2 ` n0.6qsn| “ 1

n
ln

|Cn|
|r´n2, n2sn| ` 1

n
ln

p2n2qn
p2pn2 ` n0.6qqn

nÑ8ÝÝÝÑ RpCnq.

Moreover, we claim that C8 is an pN,L ´ 1q-packing. To see this, take any L Ă
`

C8

L

˘

. If L Ă Cn ` z for some

z P pn2 ` n0.6qZn, then radpLq ě
?
nN by the guarantee of Cn. Otherwise, there exist two points x1, x2 P L such

that x1 P Cn ` z1 and x2 P Cn ` z2 for two distinct z1 ‰ z2 P pn2 ` n0.6qZn. Then

radpLq ě 1

2
}x1 ´ x2}2 ě n0.6 ě

?
nN.

Therefore, we obtain an pN,L ´ 1q-packing C8 of NLD asymptotically equal to Equation (56). The proof of

Theorem 8 is complete.
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E. Alternate approaches for bounding Equation (39)

We managed to compute the exact asymptotics (up to lower order terms in the exponent) of the tail probability

given by Equation (39). The way we did so is by applying the large deviation principle and performing ad hoc

calculations on the moment generating function of the random quadratic form of interest. From the perspective of

concentration of measure, the tail probability we computed can be cast from several different angles:

1) Gaussian integral w.r.t. a general (non-identity) degenerate covariance matrix A;

2) Concentration of the uniform measure on a solid cube (a useful trick for which is to push it forward to the

Gaussian measure and apply Lipschitz concentration [Bob10]);

3) The (standard) Gaussian measure of a parallelepiped defined by the linear transformation U ;

4) The probability that a Gaussian (with zero mean and general covariance matrix) lies in a cube;

5) Hanson–Wright inequality for quadratic forms in subgaussian random vectors [Ver18] which, in our case, are

uniform vectors in a solid cube.

We tried all the above techniques. However, they do not seem to yield the correct exponent, at least in their vanilla

forms, though they may give certain exponentially decaying bounds. Therefore, we feel that Equation (39) is a cute

example for which standard concentration tools are not able to produce the optimal bound.

F. Connections to [Bli05b]

The paper [Bli05b] analyzed the list-decodability of expurgated PPPs and arrived at the same bound (Equa-

tion (33)) as ours, and in fact the current paper was inspired by [Bli05b].

However, there were some gaps in the proof of [Bli05b] that we were not able to resolve. In the paper, it was

shown that for every sufficiently large K ą 0, there exists an (infinite) codebook C obtained by expurgating a PPP

such that every L-tuple of points in C X r´K,Ksn has radius at least
?
nN . However, we could not find a rigorous

way to pass to the limit as K Ñ 8 and argue that C itself as an infinite point set is an pN,L´1q-multiple packing.

Indeed, it is claimed in [ST01, Note 5] that C X r´K,Ksn may not converge as K Ñ 8.

Although our proof also involves analyzing the tail probability of the average squared radius (Equation (34)),

our techniques are different, as outlined below.

Let C be a PPP (without expurgation yet) and K P R. Let x1, ¨ ¨ ¨ ,xL P C X r´K,Ksn be an L-list. Recall that

they are independent and uniformly distributed in r´K,Ksn. Let x “ 1
L

řL
i“1 xi denote the centroid of the list. To

compute Equation (34), [Bli05b] claimed that we could use an orthogonal transformation xi ÞÑ ui (1 ď i ď L) to

the list so that 1
L

}u1}2 “ }u}2 where u :“ 1
L

řL
i“1}ui}2. This is in contrast to our approach. However, it should

be noted that an orthogonal transformation only reflects and/or rotates the list, but does not translate it.

From our understanding of the paper [Bli05b], the ideas can be interpreted as follows. Since the average squared

radius is invariant under rigid transformations (i.e., translations, rotations, reflections and their combination) and a

homogeneous PPP is stationary and isotropic, [Bli05b] attempts to transform the list rigidly so that the resulting

average squared radius admits a simpler expression and the list is still independent and uniformly distributed in

the cube. However, it appears that such a rigid transformation does not exist. We instead use a different, much

simpler approach by first constructing a finite codebook and then tiling this. The high-level construction is similar

to [Pol94] which was originally studied for the problem of reliable communication over additive-white Gaussian

noise channels.

XI. OPEN QUESTIONS

We end the paper with several intriguing open questions.

1) The problem of packing spheres in ℓp space was also addressed in the literature [Ran55], [Spe70], [Bal87],

[Sam13]. Recently, there was an exponential improvement on the optimal packing density in ℓp space [SSSZ20]

relying on the Kabatiansky–Levenshtein bound [KL78]. It is worth exploring the ℓp version of the multiple

packing problem. One obstacle here is that the ℓp average radius does not admit a closed form expression

unlike the p “ 2 case.

2) In this paper, we treat (regular) list-decoding and average-radius list-decoding as two different notions and

obtain bounds for the latter (which automatically lower bounds the former). It follows from our bounds that

the largest multiple packing density under these two notions coincide as L Ñ 8. However, as far as we know,

it is unknown whether the largest multiple packing density under standard and average-radius list-decoding is

the same for any finite L.
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