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2 Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE),

08034 Barcelona, Spain

∗ Corresponding author; E-mail: irene.arias@upc.edu.

Abstract

This paper develops the equilibrium equations describing the flexoelectric effect in soft

dielectrics under large deformations. Previous works have developed related theories using a

flexoelectric coupling tensor of mixed material-spatial character. Here, we formulate the model

in terms of a flexoelectric tensor completely defined in the material frame, with the same sym-

metries of the small-strain flexocoupling tensor and leading naturally to objective flexoelectric

polarization fields. The energy potential and equilibrium equations are first expressed in terms

of deformation and polarization, and then rewritten in terms of deformation and electric po-

tential, yielding an unconstrained system of fourth order partial differential equations (PDEs).

We further develop a theory of geometrically nonlinear extensible flexoelectric rods under

open and closed circuit conditions, with which we examine analytically cantilever bending

and buckling under mechanical and electrical actuation. Besides being a simple and explicit

model pertinent to slender structures, this rod theory also allows us to test our general theory

and its numerical implementation using B-splines. This numerical implementation is robust as

it handles the electromechanical instabilities in soft flexoelectric materials.

Keywords: Soft dielectrics , Maxwell equations , Flexoelectricity , Electrostriction , Buck-

ling , Special Cosserat Rod

1 Introduction

Flexoelectricity is a two-way coupling between electric polarization and strain gradient, present

in any dielectric material. The direct flexoelectric effect is understood as the material polarization

due to inhomogeneous deformation (e.g. bending, twisting), and the converse flexoelectric effect
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consists on the generation of stress due to the presence of an inhomogeneous electric field. The

flexoelectric effect is size dependent due to its intrinsic scaling with strain-gradients, and therefore

it is only relevant at the micro- and nanoscale.

Flexoelectric effects have been observed and widely studied in hard materials (Tolpygo, 1963,

Kogan, 1964, Hong and Vanderbilt, 2011, Resta, 2010, Maranganti et al., 2006), mainly crystalline

ceramics such as ferroelectric perovskites (Zubko et al., 2007, Ma and Cross, 2001a, 2002, Fu

et al., 2006, Ma and Cross, 2001b, 2003, 2005, 2006). However, they are also present in soft

materials, such as liquid crystals (Meyer, 1969, Petrov, 1975, Prost and Marcerou, 1977, Pikin and

indenbom, 1978, Lagerwall and Dahl, 1984, Barbero et al., 1986, Čepič et al., 2000, Kuczynski and

Hoffmann, 2005, Harden et al., 2006, Trabi et al., 2008), cellular membranes (Petrov et al., 1989,

Todorov et al., 1991, 1994, Sun, 1997, Petrov, 2002, Gao et al., 2008, Jewell, 2011) and polymers

(Breger et al., 1976, Marvan and Havránek, 1998, Baskaran et al., 2011, 2012, Deng et al., 2014c,

Zhang et al., 2016b, Zhou et al., 2017).

The mechanism of flexoelectricity in hard materials can be intuitively understood by the ionic

crystal model under bending, in which a non-zero net dipole moment arises due to a shift between

the centers of gravity of the negative and the positive ions (Zubko et al., 2013). In soft materials

such as liquid crystals or lipid bilayers, flexoelectricity results from the reorientation of irregu-

larly shaped polarized molecules under strain gradients, see e.g. Meyer (1969), Petrov (1999), Rey

(2006), Ahmadpoor et al. (2013), Liu and Sharma (2013), Mohammadi et al. (2014), Ahmadpoor

and Sharma (2015), Morozovska et al. (2018). In these materials, flexoelectricity has been mech-

anistically linked to the arrangement of not only dipolar but also quadrupolar constituents (Prost

and Marcerou, 1977, Marcerou and Prost, 1980, Derzhanski et al., 1990, de Gennes and Prost,

1993), and theories accounting for thermal fluctuations have been proposed (Osipov and Pikin,

1995, Liu and Sharma, 2013). The mechanisms leading to flexoelectricity in polymers, however,

are not known (Krichen and Sharma, 2016), although they likely involve rearrangements of glassy

and crystalline components (Baskaran et al., 2011, 2012). Of note is the conceptual model by Mar-

van and Havránek (1998), in which flexoelectric polarization results from strain gradient-induced

asymmetry of the free-volume of a fluctuating dipole. This or other mechanisms, however, have

not been demonstrated. We refer to Yudin and Tagantsev (2013), Nguyen et al. (2013), Zubko et al.

(2013), Krichen and Sharma (2016), Wang et al. (2019) for excellent and comprehensive reviews

of flexoelectricity in solids.

In recent years, several reasons justify an increasing interest in flexoelectricity in polymer ma-

terials. On the one hand, a large flexoelectric response is expected. Experiments suggest that the

flexoelectric coefficients of polymers are at least the same order of magnitude as those of hard

crystalline materials (Chu and Salem, 2012, Baskaran et al., 2011, 2012), but being much more de-

formable, much larger flexoelectric polarization is possible. On the other hand, electromechanical

actuation of polymers by flexoelectricity overcomes the current limitations of traditional actuation

based on electrostriction, which are: (i) one-way coupling, i.e. mechanical deformation does not

produce an electric field, (ii) very large electric fields are required (which may lead to dielectric

breakdown), and (iii) reversal of electric field does not reverse the direction of the deformation

(Pelrine et al., 1998, O’Halloran et al., 2008, Krichen and Sharma, 2016, Rosset and Shea, 2016).
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Furthermore, only a few polymers exhibit significant piezoelectricity (Bauer and Bauer, 2008).

Thus, quantifying flexoelectricity at large deformations may enable the design of efficient elec-

tromechanical elastomeric devices, such as sensors, actuators and energy harvesters, based on the

flexoelectric effect (Jiang et al., 2013, Huang et al., 2018, Wang et al., 2019).

The literature about continuum theories of flexoelectricity in bulk solids ranges from the early

works by Mashkevich and Tolpygo (1957), Tolpygo (1963), Kogan (1964), Indenbom et al. (1981a,b),

Tagantsev (1985, 1986), Sahin and Dost (1988), Tagantsev (1991) to the more recent developments

by Maranganti et al. (2006), Shen and Hu (2010), Hu and Shen (2010), Hadjesfandiari (2013), Liu

(2014), Anqing et al. (2015), to name a few. However, most of these works assume infinitesimal

deformations, and are therefore suitable to model crystalline ceramics only. Efforts have been re-

cently made to extend the theory to polymers or elastomers undergoing large deformations, but

the literature is still scarce (Liu, 2014, Yvonnet and Liu, 2017, Thai et al., 2018, Poya et al., 2019,

McBride et al., 2019, Zhuang et al., 2019, Nguyen et al., 2019). Some of these works model flexo-

electricity as a linear coupling between strain gradients and the electric displacement (Poya et al.,

2019) or the electric field (McBride et al., 2019, Nguyen et al., 2019, Zhuang et al., 2019) instead

of the electric polarization, which however is the most natural choice (Toupin, 1956, Lifshitz and

Landau, 1951, Devonshire, 1949, 1951, 1954, Lines and Glass, 1979). Furthermore, works mod-

eling flexoelectricity as a coupling between strain gradients and electric polarization consider a

coupling tensor of mixed material-spatial character (Liu, 2014, Yvonnet and Liu, 2017, Thai et al.,

2018), leading in general to a lack of objectivity in the resulting polarization as argued in Section

2.3.

The equations of flexoelectricity can only be solved analytically in very simple settings, such

as simplified Euler-Bernoulli (E-B) (Liang et al., 2014, Deng et al., 2014a) and Timoshenko beam

(Zhang et al., 2016a) models. Such models have been extended to large deformations but mod-

erate rotations à la von Karmann (Baroudi and Najar, 2019). Otherwise, it is necessary to resort

to computational flexoelectricity (Zhuang et al., 2020). The major challenge is to handle the C1

continuity of the state variables required by the fourth-order PDE system. To address this, several

numerical alternatives have been proposed, such as mesh-free approximations (Abdollahi et al.,

2014, 2015a,b, Abdollahi and Arias, 2015, Zhuang et al., 2019), isogeometric analysis (Ghasemi

et al., 2017, Nanthakumar et al., 2017, Thai et al., 2018, Hamdia et al., 2018, Ghasemi et al.,

2018, Nguyen et al., 2019), C1 Argyris triangular element approximation (Yvonnet and Liu, 2017)

and the B-spline-based immersed boundary method (Codony et al., 2019). Another family of nu-

merical methods are those circumventing the C1 continuity requirement by introducing additional

variables, such as mixed formulations (Mao et al., 2016, Deng et al., 2017, 2018), or those based on

micromorphic theories of continua (Poya et al., 2019, McBride et al., 2019). Recently, a few works

report the application of these methods to large deformation flexoelectricity (Thai et al., 2018, Poya

et al., 2019, McBride et al., 2019, Yvonnet and Liu, 2017, Zhuang et al., 2019, Nguyen et al., 2019)

but the continuum formulation at finite deformation is still open, see previous paragraph, and there

is a need for validation of the computational results.

To provide a general tool to assess flexoelectricity under large deformations, we propose a

formulation with a fully material flexoelectric coupling between strain gradient and electric po-
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larization, leading by construction to objective polarization fields. To facilitate the solution of the

associated boundary value problem, we reformulate the balance equations in terms of displace-

ments and electric potential as primal unknowns, yielding an unconstrained system of fourth-order

PDE. We solve this system computationally with open uniform B-spline basis in body-fitted Carte-

sian meshes. We further derive large deformation models for geometrically nonlinear extensible

flexoelectric rods under open and closed circuit conditions and derive closed-form solutions for

cantilever bending and buckling. We report excellent agreement well into the nonlinear regime

between numerical and analytical solutions in conditions mimicking the assumptions of the ana-

lytical models, which serves as validation. We then explore general flexoelectric problems beyond

the simplifying assumptions of the analytical models and analyze the role of the flexoelectric ma-

terial parameters in the electromechanical response of the rod.

The paper is organized as follows. In Section 2 the free energy density and corresponding

balance equations of a flexoelectric body are reviewed, the mathematical expression of the flex-

oelectric coupling is discussed, and the boundary value problem is stated. The numerical imple-

mentation used to solve the boundary value problem is presented in Section 3, and the analytical

solutions for one-dimensional geometrically nonlinear flexoelectric rods are derived in Section 4.

In Section 5 the numerical and analytical results of bending and buckling of rods under open/closed

circuit are shown. The paper is concluded in Section 6.

2 Variational formulation of flexoelectricity in material form

2.1 Background and balance laws in spatial and material forms

Consider a deformable dielectric body described by Ω0 in the reference (or undeformed) config-

uration, and by Ω in the current (or deformed) configuration. The deformation map χ : Ω0 → Ω
maps every material point X ∈ Ω0 to the spatial point x = χ(X) ∈ Ω. Whenever index notations

are used, uppercase and lowercase indexes refer to quantities in the reference and the current con-

figurations, respectively. The deformation gradient F, the Jacobian determinant J, and the right

and left Cauchy-Green deformation tensors C,B are defined as

FiI(X) ≔
∂χi(X)

∂XI

, J ≔ det(F), CIJ ≔ FkIFkJ, Bi j ≔ FiKF jK . (1)

Standard strain measures in the reference and the current configurations are the Green-Lagrangian

E and the Almansi-Eulerian e strain tensors given by

EIJ ≔
1

2
(CIJ − δIJ) , ei j ≔

1

2

(
δi j − B−1

i j

)
= EIJF−1

Ii F−1
J j . (2)

Since the flexoelectricity theory involves high-order derivatives, let us define the gradient of the

deformation gradient F̃, the gradient of the Cauchy-Green deformation tensor C̃ and the Green-
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Lagrangian strain gradient Ẽ as

F̃iJK ≔
∂FiJ

∂XK

=
∂2xi

∂XJ∂XK

, C̃IJK ≔
∂CIJ

∂XK

= 2 symm
IJ

(
F̃kIKFkJ

)
, ẼIJK ≔

∂EIJ

∂XK

=
1

2
C̃IJK; (3)

where symmIJ (AIJ) := (AIJ + AJI) /2. Note that the relation Ẽ( F̃ ) in Eq. (3) is inverted as

F̃iJK =
(
ẼIJK + ẼKIJ − ẼKJI

)
F−1

Ii , (4)

analogously to the relation between second derivative of displacement and strain gradients in the

limit of infinitesimal deformation (Schiaffino et al., 2019).

This body in equilibrium necessarily satisfies mechanical balance laws of linear and angular

momentum, and Maxwell equations. In the absence of a magnetic field, they can be expressed in

an Eulerian frame as

∇·σ + b = 0, (5a)

σ = σT , (5b)

∇ × e = 0, (5c)

∇·d − q = 0; (5d)

where σ is the physical stress, e is the the electric field, d is the electric displacement, and b and q

are the body force and electric charge per unit volume. Equation (5c) implies the existence of an

electric potential φ such that e = −∇φ. The linear constitutive law for d for a dielectric material is

d(p, e) = ǫ0e + p or, equivalently, d(p, φ) = −ǫ0∇φ + p, (6)

where p is the electric polarization, which is work-conjugate to e, and ǫ0 is the electric permittivity

of vacuum.

To formulate the problem in a material frame, the Lagrangian second Piola-Kirchhoff physical

stress tensor S is defined from the work-conjugacy relation

σi jei j =
1

J
S IJEIJ, (7)

where σi jei j is a mechanical work density per unit physical volume and S IJEIJ a mechanical work

density per unit reference volume, leading to

S IJ =JF−1
Ii F−1

J jσi j, (8)

where strictly speaking we should write S IJ ◦χ−1 = JF−1
Ii F−1

J jσi j to account for the fact that some of

these fields are over Ω0 and others are over Ω. To follow an analogous procedure with the electric

displacement (Lax and Nelson, 1976, Dorfmann and Ogden, 2005, Vu et al., 2007, Dorfmann and

Ogden, 2014, 2017, Steinmann and Vu, 2017), we first identify the nominal or material electric
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field. The electric potential can be expressed in the material frame as Φ(X) = φ(χ(X)), and the

nominal electric field E defined as the negative of its material gradient. By the chain rule, we thus

find that

EI = −
∂Φ

∂XI

= − ∂φ
∂xi

∂χi

∂XI

= eiFiI . (9)

Then, from the work-conjugacy relation

diei =
1

J
DIEI , (10)

we identify the nominal electric displacement as

DI =JF−1
Ii di. (11)

Since electric displacement and polarization are physically equivalent quantities, we analogously

find

PI =JF−1
Ii pi. (12)

Using Eq. (1), (8), (9), (11), (12), the balance equations in Eq. (5a)-(5d) and the constitutive law

for dielectrics in Eq. (6) are written in material form as

(FiIS IJ),J + Bi = 0i, (13a)

S IJ = S JI , (13b)

EL + Φ,L = 0, (13c)

DK = ǫ0JC−1
KLEL + PK , (13d)

DK,K − Q = 0, (13e)

with B = Jb and Q = Jq.

2.2 Constitutive relations and thermodynamic potentials in material form

We define the Lagrangian internal energy density per unit reference volume of the flexoelectric

solid as

ΨInt(E, Ẽ, P) = ΨMech(E, Ẽ) + ΨDiele(E, P) + ΨFlexo(P, Ẽ). (14)

We allow ΨMech to depend on Lagrangian strain and strain gradient as required for stability (Liu,

2014). The isotropic dielectric energy per unit reference volume follows by transforming the

spatial expression per unit physical volume ψDiele(p) =
1

2(ǫ − ǫ0)
pi pi (Liu, 2014) by recalling

Eq. (12), resulting in

ΨDiele(E, P) =
1

2J(ǫ − ǫ0)
PICIJPJ, (15)
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where ǫ denotes the electric permittivity of the material. The flexoelectric coupling linking polar-

ization and strain gradient is encoded by ΨFlexo, which for simplicity we assume to be independent

on strain.

The spatial expression of the electrostatic energy density ψElec(e) = 1
2
ǫ0eiei (Liu, 2014) can also

be expressed in the material frame by recalling Eq. (9), resulting in the energy density per unit

reference volume

ΨElec(E, E) =
Jǫ0

2
EIC

−1
IJ EJ. (16)

To formulate a unified potential self-consistently accounting for the material electromechan-

ics and for electrostatics, ΨInt(E, Ẽ, P) and ΨElec(E, E) must be expressed in terms of the same

variables. To accomplish this, we resort to a partial Legendre transform and define the following

internal dual potential

Ψ̄Int(E, Ẽ, E) = min
P

(
ΨInt(E, Ẽ, P) − P · E

)
. (17)

The stationarity condition of the minimization results in

E(E, Ẽ, P) =
∂ΨInt

∂P
. (18)

In principle, this expression can be inverted to find P(E,E, Ẽ), which plugged into ΨInt(E, Ẽ, P) −
P · E results in the dual potential Ψ̄Int(E, Ẽ, E).

If we postulate the following flexoelectric coupling

ΨFlexo(P, Ẽ) = −PL fLIJKẼIJK , (19)

where fLIJK is a purely Lagrangian tensor as further discussed later, this inversion can be made

explicit yielding

EL =
1

J(ǫ − ǫ0)
CLMPM − fLIJKẼIJK ⇒ (20)

PM = J(ǫ − ǫ0)C−1
ML

(
EL + fLIJKẼIJK

)
= J(ǫ − ǫ0)C−1

ML

(
EL + EFlexo

L

)
, (21)

where we have defined EFlexo
L

= fLIJKẼIJK for convenience. Replacing this expression for P in

Eq. (17) and rearranging terms, we find

Ψ̄Int(E, Ẽ, E) = ΨMech(E, Ẽ) − J

2
(ǫ − ǫ0)EFlexo

I C−1
IJ EFlexo

J − J

2
(ǫ − ǫ0)EIC

−1
IJ EJ − J(ǫ − ǫ0)EIC

−1
IJ EFlexo

J .

(22)

Now, the total electromechanical enthalpy accounting for electrostatics Ψ̄Enth = Ψ̄Int − ΨElec (Liu,

2014, Dorfmann and Ogden, 2014, 2017) can be written as

Ψ̄Enth(E, Ẽ, E) = Ψ̄Mech(E, Ẽ) + Ψ̄Diele(E, E) + Ψ̄Flexo(E, Ẽ, E), (23)
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with

Ψ̄Diele(E, E) = − 1

2
JǫEMC−1

MLEL, (24)

Ψ̄Flexo(E, Ẽ, E) = − JC−1
MLEMµLIJKẼIJK; (25)

where µ = (ǫ − ǫ0) f is the flexoelectricity tensor (Zubko et al., 2013, Wang et al., 2019), described

in Eq. (A.3). The effective mechanical energy density of the system (Wang et al., 2019) is

Ψ̄Mech(E, Ẽ) =ΨMech(E, Ẽ) − J

2
(ǫ − ǫ0)EFlexo

M C−1
MLEFlexo

L ,

=ΨMech(E, Ẽ) − 1

2
ẼIJK

(
µAIJK JC−1

ABµBLMN

ǫ − ǫ0

)
ẼLMN . (26)

The standard mechanical contribution accounting for strain gradient elasticity can be written as

ΨMech(E, Ẽ) = ΨElast(E) +
1

2
ẼIJKhIJKLMNẼLMN , (27)

where ΨElast can be any classical hyperelastic potential, e.g. Saint-Venant–Kirchhoff, cf. Eq. (A.1),

or Neo-Hookean, cf. Eq. (A.2), constitutive models, and h is the sixth-order strain gradient elastic-

ity tensor. Upon inspection, it is clear that the second contribution in Eq. (26), i.e. the flexoelectricity-

induced mechanical energy, has the same structure as the strain gradient elasticity potential. For

convenience, we thus define

Ψ̄Mech(E, Ẽ) =ΨElast(E) +
1

2
ẼIJK h̄IJKLMNẼLMN , (28)

where

h̄IJKLMN =hIJKLMN −
µAIJK JC−1

ABµBLMN

ǫ − ǫ0

(29)

is the effective strain gradient elasticity tensor as described in Eq. (A.4). To preserve the positive

definiteness of Ψ̄Mech, it is clear from Eq. (28) that h̄ has to be semidefinite positive and thus a

stability condition can be derived from Eq. (29) depending on both h and µ (Yudin et al., 2014,

2015, Morozovska et al., 2016).

2.3 Variational formulation in material form

The boundary of the reference body, ∂Ω0, is split in several disjoint Dirichlet and Neumann sets as

follows:

∂Ω0 = ∂Ω
χ

0
∪ ∂ΩT

0 = ∂Ω
V
0 ∪ ∂ΩR

0 = ∂Ω
Φ
0 ∪ ∂ΩW

0 . (30)
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On the Dirichlet boundaries ∂Ω
χ

0
, ∂ΩV

0
and ∂ΩΦ

0
, the deformation map χ, normal derivatives of

the deformation map ∂N
0
χ, and electric potential Φ are prescribed, respectively. On the Neumann

boundaries ∂ΩT
0
, ∂ΩR

0
and ∂ΩW

0
, their respective work conjugate quantities (per unit reference vol-

ume) are prescribed, i.e. the surface traction T(χ,Φ) = T, the surface double traction R(χ,Φ) = R

and the surface charge W(χ,Φ) = W. As a result of the strain-gradient elasticity potential (Mindlin,

1964, Mindlin and Eshel, 1968), additional loads arise in non-smooth regions of ∂Ω0, i.e. edges C0

in a three-dimensional domain (Mao and Purohit, 2014, Codony et al., 2019). We also split them

in Dirichlet in Neumann sets as

C0 = C
χ

0
∪CJ

0 , (31)

depending on whether the deformation map χ or edge forces (per unit reference volume) J(χ,Φ) =

J are prescribed. For simplicity, dead loads are considered.

The enthalpy functional governing the physics of a flexoelectric body is written as

Π[χ,Φ] =

∫

Ω0

(
Ψ̄Enth(E, Ẽ,−∇0Φ) − Biχi + QΦ

)
dΩ0

−
∫

∂ΩT
0

T iχi dΓ0 −
∫

∂ΩR
0

Ri∂
N
0 χi dΓ0 −

∫

CJ
0

Jiχi ds0 +

∫

∂ΩW
0

WΦ dΓ0,

(32)

where we have used E = −∇0Φ from Eq. (13c). Equilibrium states {χ∗,Φ∗} are its saddle points

satisfying

{χ∗,Φ∗} = arg min
χ∈X

max
Φ∈P
Π[χ,Φ], (33)

where X and P are the functional spaces for χ and Φ with sufficient regularity fulfilling Dirichlet

boundary conditions.

A necessary condition for equilibrium is the vanishing of the first variation of Π[χ,Φ]

0 = δΠ[χ,Φ; δχ, δΦ] =

∫

Ω0

(
∂Ψ̄Enth

∂EIJ

δEIJ +
∂Ψ̄Enth

∂ẼIJK

δẼIJK +
∂Ψ̄Enth

∂EL

δEL − Biδχi + QδΦ

)
dΩ0

−
∫

∂ΩT
0

T iδχi dΓ0 −
∫

∂ΩR
0

Ri∂
N
0 δχi dΓ0 −

∫

CJ
0

Jiδχi dS0 +

∫

∂ΩΦ
0

WδΦ dΓ0

=

∫

Ω0

(
Ŝ IJδEIJ + S̃ MJKδẼMJK − DLδEL − Biδχi + QδΦ

)
dΩ0

−
∫

∂ΩT
0

T iδχi dΓ0 −
∫

∂ΩR
0

Ri∂
N
0 δχi dΓ0 −

∫

CJ
0

Jiδχi dS0 +

∫

∂ΩΦ
0

WδΦ dΓ0,

(34)
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for all admissible variations δχ and δΦ, and where

δEL ≔ −
∂(δΦ)

∂XL

, δFiI ≔
∂(δχi)

∂XI

, δF̃iIJ ≔
∂2(δχi)

∂XI∂XJ

, (35)

δEIJ =
1

2
δCIJ ≔ symm

IJ

(δFkIFkJ) , δẼIJK =
1

2
δC̃IJK ≔ symm

IJ

(
δFkI F̃kJK + FkIδF̃kJK

)
.

(36)

We have introduced the local second Piola-Kirchhoff stress Ŝ, the second Piola-Kirchhoff double

stress S̃ and the electric displacement D defined as follows:

Ŝ IJ(χ,Φ) =
∂Ψ̄Enth

∂EIJ

= 2
∂ΨElast(C)

∂CIJ

+ JCMLIJEM

(
1

2
ǫEL + µLABKẼABK

)
, (37)

S̃ IJK(χ,Φ) =
∂Ψ̄Enth

∂ẼIJK

= h̄IJKLMNẼLMN − JC−1
LMEMµLIJK , (38)

DL(χ,Φ) = −∂Ψ̄
Enth

∂EL

= JC−1
KL

(
ǫEK + µKIJMẼIJM

)
, (39)

with

CABCD =
2

J

∂
(
−JC−1

AB

)

∂CCD

=
(
C−1

ACC−1
BD +C−1

BCC−1
AD −C−1

ABC−1
CD

)
. (40)

Analogously to the infinitesimal strain theory of flexoelectricity (Mao and Purohit, 2014, Codony

et al., 2019), Eq. (34) can be integrated by parts and, by invoking the divergence and surface di-

vergence theorems, the strong form in Eq. (13) is recovered along with the following definitions

of the physical second Piola-Kirchhoff stress S, the surface traction T, the double traction R, the

surface charge density W and the edge forces J:

S IJ(χ,Φ) ≔Ŝ IJ(χ,Φ) − S̃ IJK,K(χ,Φ)

=2
∂ΨElast(C)

∂CIJ

− h̄IJKLMNẼLMN,K +
J

2
CMLIJEMǫEL + JC−1

LMEM,KµLIJK in Ω0, (41a)

Ti(χ,Φ) ≔FiI

[(
S IJ(χ,Φ) − S̃ IKJ,NPNK

)
NJ + S̃ IJK ÑJK

]
− F̃iINPNK S̃ IKJNJ on ∂Ω0, (41b)

Ri(χ,Φ) ≔FiI S̃ IJKNJNK on ∂Ω0, (41c)

W(χ,Φ) ≔ − DLNL on ∂Ω0, (41d)

Ji(χ,Φ) ≔
�

FiI S̃ IJK MJNK

�

on C0; (41e)

where N is the outward unit normal vector on ∂Ω0, M is the outward unit co-normal vector on

C0, P = I − N × N is the projection operator on ∂Ω0, Ñ = ∇0N : P(N × N) − ∇0N · P is the

second-order geometry tensor on ∂Ω0 and ~ � is the jump operator defined on C as the sum of its

10



argument evaluated at each boundary adjacent to C (we refer to Codony et al. (2019) for a detailed

definition of the quantities involved here).

Upon inspection, the second Piola-Kirchhoff stress tensor S in Eq. (41a) is composed by four

terms. The first two terms correspond to the classical and high-order mechanical stresses, respec-

tively. The third one corresponds to the total second Piola-Maxwell stress tensor SMaxwell. This

becomes evident by expanding it as

S Maxwell
IJ ≔

J

2
CMLIJEMǫEL = JF−1

Ii F−1
J j ǫ

[(
EMF−1

Mi

) (
ELF−1

L j

)
− 1

2

(
EMF−1

Ma

) (
ELF−1

La

)
δi j

]
, (42)

and obtaining its spatial counterpart by using Eq. (8) and (9) as

σ
Maxwell

≔ ǫ

(
e ⊗ e − 1

2
|e|2I

)
. (43)

The last term in Eq. (41a) corresponds to the total flexoelectricity-induced stress, and is analogous

to the term appearing in the linear theory of flexoelectricity, cf. Eqs. (31-33) in Codony et al.

(2019).

Equations (20) and (39) show that the Lagrangian flexoelectric polarization in the present the-

ory is PM = JC−1
ML(ǫ − ǫ0)EL + JC−1

MLµLIJKẼIJK , and hence its spatial counterpart is derived with

Eq. (9) and (12) as

pm = (ǫ − ǫ0)em + F−1
LmµLIJKẼIJK . (44)

In the present formulation, µLIJK is a purely Lagrangian tensor, and hence it is meaningful to view it

as a material constant with the same material symmetries and intrinsic symmetry (µLIJK = µLJIK) as

the small strain flexoelectric tensor (Majdoub et al., 2008, Zubko et al., 2013, Krichen and Sharma,

2016). We note, however, that in previous literature a distinct notion of polarization per unit

undeformed volume is introduced as pr = J p, i.e. a volume-normalized spatial polarization related

to our material or nominal polarization by pr
i = FiIPI (Liu, 2014, Dorfmann and Ogden, 2014,

2017). The polarization pr is not work-conjugate to the Lagrangian electric field E. Furthermore,

when it is used to formulate flexoelectric models it can be problematic. Indeed, the flexoelectric

coupling has been defined in terms of pr (Liu, 2014, Deng et al., 2014b,c, Yvonnet and Liu, 2017,

Thai et al., 2018) as

ΨFlexo(F̃, pr) = −pr
lFliJK F̃iJK , (45)

with F a mixed spatial-material flexoelectric tensor, which unlike the infinitesimal flexoelectric

tensor is intrinsically symmetric with respect to its last two indices (FliJK = FliKJ). By comparing

Eq. (45) and (19), using Eq. (3) and (4), the relation pr
i = FiIPI and the chain rule, we find the

relation between f and F as

FliJK = −
∂2ΨFlexo

∂pr
l∂F̃iJK

= symm
JK

( fLIJK) FiIF
−1
Ll , (46a)

fLIJK = −
∂2ΨFlexo

∂PL∂ẼIJK

=
(
FliJKF−1

Ii +Fl jIKF−1
J j −FlkIJF−1

Kk

)
FlL. (46b)

11



In the limit of infinitesimal deformation, F and f correspond to the so-called type-I ( f I) and

type-II ( f II) flexocoupling tensors, respectively, and choosing one or the other is just a matter of

convenience (Schiaffino et al., 2019). However this equivalence does not hold anymore in a finite

deformation framework, since f is purely Lagrangian whereas F is not.

Equation (46b) clearly shows that taking F as a material constant, as done in Yvonnet and Liu

(2017) and Thai et al. (2018), directly implies a very particular dependence of the Lagrangian flex-

oelectric tensor f on deformation. Thus, formulating flexoelectricity as in Eq. (45) leads implicitly

to a material flexoelectric tensor whose magnitude and symmetry depend on deformation in a way

that is unphysical. To illustrate this assertion, consider a particular case in which χ corresponds to

a rigid body deformation map, and thus F is a rotation matrix R , I. Then, Eq. (46b) leads to

fLIJK =
(
FliJKRIi +Fl jIKRJ j −FlkIJRKk

)
RlL (47)

showing that, if Eq. (45) is used to model flexoelectricity, then the Lagrangian flexoelectric material

tensor, and hence the enthalpy functional Π[χ,Φ], are not invariant with respect to a superimposed

rigid body motion and hence not objective.

3 Numerical implementation

In this Section, we develop a direct numerical approach to solve the boundary value problem in

Section 2.3. We restrict ourselves to 2D rod-like geometries, which can be easily discretized by

Cartesian grids. The state variables {χ,Φ} are approximated by an open uniform B-spline basis

(de Boor, 2001, Rogers, 2001, Piegl and Tiller, 2012) of degree p ≥ 2 in order to provide the

smoothness required by the high-order model (see Fig. 1). Since the basis is interpolant at the

boundaries of the reference domain, Dirichlet boundary conditions are strongly enforced. Domain

and boundary integrals are approximated by standard Gaussian quadrature rules.

ξ
0 1 2 3 4 5 6 7 8

0

1

Figure 1: Univariate open uniform B-spline basis of degree p = 3. Each basis function is a smooth

(Cp−1) piece-wise polynomial on a compact (≤ p + 1) support. Multivariate B-spline bases are

constructed by means of the tensor product of multiple univariate bases.

The discretization of Eq. (34) yields a nonlinear system of equations (for the sake of brevity,

we keep the same notation to denote discretized quantities). In order to solve it, we consider

a modified-step Newton-Raphson algorithm. At the k-th iteration, an increment of the solution

12



{∆χ,∆Φ}(k) is found by vanishing the first order Taylor expansion of the residual R in Eq. (34)

around the previous solution {χ,Φ}(k−1):

R[χ(k),Φ(k); δχ, δΦ] ≈ R[χ(k−1),Φ(k−1); δχ, δΦ] +
∂R[χ(k−1),Φ(k−1); δχ, δΦ]

∂χ
∆χ(k)

+
∂R[χ(k−1),Φ(k−1); δχ, δΦ]

∂Φ
∆Φ(k) = 0, (48)

leading to an algebraic system of equations for {∆χ,∆Φ}(k) of the form

[
Hχχ HχΦ
HΦχ HΦΦ

](k−1)

·
[
∆χ

∆Φ

](k)

= −
[
Rχ
RΦ

](k−1)

, (49)

given {χ,Φ}(k−1) at the previous iteration. The explicit form of the variations of the residual R can

be found in Appendix B.

Once {∆χ,∆Φ}(k) are found, we compute the modified increments of the solution at the k-th

iteration, namely {∆χ,∆Φ}(k), by ensuring that the total increment i) leads to an enthalpy decrease

along χ, ii) leads to an enthalpy increase along Φ, and iii) has a predefined maximum norm γmax ∈
R
+. The first two conditions are required in accordance to the variational principle in Eq. (33),

whereas the latter is just a numerical requirement to avoid too large increments of the solution at

each iteration. To formulate those conditions mathematically, let us recast the variational principle

in Eq. (33) as

Φ̂(χ) := argmax
Φ∈P

(
Π[χ,Φ]

)
; (50a)

χ
∗ = argmin

χ∈X

(
Π̂[χ]

)
, with Π̂[χ] := Π[χ, Φ̂(χ)]; (50b)

Φ∗ = Φ̂(χ∗). (50c)

Numerically, Eq. (50) is equivalent to solving two linear systems consecutively, constructed from

Eq. (48) by writing ∆Φ(k) as a function of ∆χ(k), as follows:

Ĥχχ
(k−1)
· ∆χ(k)

= − R̂χ
(k−1)

with


Ĥχχ

(k−1)
:= Hχχ

(k−1) − HχΦ
(k−1) · H−1

ΦΦ

(k−1) · HΦχ
(k−1)

R̂χ
(k−1)

:= Rχ
(k−1) − HχΦ

(k−1) · H−1
ΦΦ

(k−1) · RΦ
(k−1)

;

(51a)

HΦΦ
(k−1) · ∆Φ(k)

= − R̂Φ
(k−1)

with R̂Φ
(k−1)

:= RΦ
(k−1) + HΦχ

(k−1) · ∆χ(k) . (51b)

From Eq. (51) it is clear that the descent and ascent directions are respectively identified by R̂χ
(k−1)

and R̂Φ
(k−1)

, i.e. the modified residuals which take into account the coupled nature of the enthalpy
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potential. Therefore, the modified increments are computed as follows:

αχ
(k) =


−1 if R̂χ

(k−1)
· ∆χ(k) > 0,

+1 otherwise;
(52a)

αΦ
(k) =


−1 if R̂Φ

(k−1)
· ∆Φ(k) < 0,

+1 otherwise;
(52b)

β(k) = min


+1, γmax/

√∥∥∥∥∥
∆χ(k)

χ0

∥∥∥∥∥
2

+

∥∥∥∥∥
∆Φ(k)

Φ0

∥∥∥∥∥
2


; (52c)

∆χ
(k)
= αχ

(k)β(k)∆χ(k); (52d)

∆Φ
(k)
= αΦ

(k)β(k)∆Φ(k); (52e)

with χ0 and Φ0 characteristic factors of the problem for displacement and potential. In practice,

γmax is treated as an adaptive heuristic parameter, tunable for proper convergence.

Finally, the solution at the k-th iteration is updated with

{χ,Φ}(k) = {χ,Φ}(k−1) + {∆χ,∆Φ}(k). (53)

The external loads are applied incrementally in a sequence of load steps, and the modified-

step Newton-Raphson algorithm presented here is used to obtain converged solutions at every load

step. Once convergence is reached, the stability of the solution is checked by assuring {χ,Φ}(k)

is a saddle point in the enthalpy functional Π[χ,Φ] in accordance to the variational principle in

Eq. (33). By means of Eq. (50), stability of {χ,Φ}(k) is given by

δ2
χ
Π̂[χ(k);∆χ;∆χ] > 0 ∀∆χ ∈ X, (54a)

δ2
φΠ[χ(k),Φ(k);∆Φ;∆Φ] < 0 ∀∆Φ ∈ P. (54b)

Numerically, Eq. (54) is met by checking the sign of the extremal eigenvalues λ of Ĥχχ
(k)

and

HΦΦ
(k) as follows:

λmin

[
Ĥχχ

(k)
]
> 0, λmax

[
HΦΦ

(k)
]
< 0. (55)

We recognize convergence to unstable solutions by the violation of Eq. (55). In such case, the so-

lution {χ,Φ}(k) is slightly perturbed and the iterative algorithm is run again until a stable solution is

found. In practice, we found that λmax

[
HΦΦ

(k)
]

remains always negative, and therefore the encoun-

tered instabilities are given by λmin

[
Ĥχχ

(k)
]

becoming negative only (i.e. geometrical instabilities).

The eigenvector associated to λmin

[
Ĥχχ

(k)
]

is an appropriate direction for numerical perturbations

on χ(k) to reach stable solutions.

14



4 One-dimensional analytical models for flexoelectric rods un-

dergoing large displacements and rotations

In this Section, we derive simplified closed-form solutions for planar bending and buckling of

flexoelectric slender uniform rods undergoing large displacements and rotations under open circuit

and close circuit conditions. A material point in the reference configuration is denoted by X =

X1E1 + X2E3 + S E3, where {E1,E2,E3} is a global right-handed orthonormal basis of R3, (X1, X2)

denotes the coordinates of the undeformed cross-section and X3 = S is the Lagrangian coordinate

along the undeformed arc-length, see Fig. 2. The rod is assumed to be extensible, and thus S

is not arc-length of the deformed centerline, but unshearable, following the special Cosserat rod

kinematics (Antman, 1995). We further assume that the cross-sections of the rod remain plane and

rigid during the deformation. The corresponding deformation map can be defined as χ(X1, X2, S ) =

r(S ) + X1d1 + X2d2, where r(S ) is the deformed position of the centerline at S E3 and (d1,d2) are

the director vectors associated with the cross section. For planar bending (Fig. 2),

d1 = − sin θ E3 + cos θ E1, (56)

d2 = E2, (57)

where θ is the angle of deflection. The deformation gradient FiI =
∂xi

∂XI

is obtained as

∂χ

∂X1

= d1, (58)

∂χ

∂X2

= E2, (59)

∂χ

∂S
= r′ + X1d′1. (60)

where
d

dS
= ()′. Now, following Antman (1995) and Gupta and Kumar (2017) we have

r′ = ν3d3, (61)

d′1 = −θ′d3, (62)

where ν3 is the stretch, and

d3 = d1 × d2 = cos θ E3 + sin θ E1. (63)

Thus, Eq. (60) becomes

∂χ

∂S
= (ν3 − X1θ

′) d3, (64)
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the deformation gradient tensor can written as

F =


cos θ 0 (ν3 − X1θ

′) sin θ

0 1 0

− sin θ 0 (ν3 − X1θ
′) cos θ

 , (65)

and the Green-Lagrange strain tensor as

E =
1

2

(
FT F − I

)
=

1

2


0 0 0

0 0 0

0 0 (ν3 − X1θ
′)2 − 1

 . (66)

We rewrite the only non-vanishing component of E as

2E33 = (ν3 − X1θ
′)2 − 1 ≈ ν2

3 − 2X1ν3θ
′ − 1, (67)

where the term X2
1
θ′2 has been neglected for thin rods. Expanding ν3 around ν3 = 1 in a Taylor

series and neglecting higher order terms, since for a thin rod stretches are expected to be small,

yields

E33 = ζ − X1θ
′, (68)

where ζ = ν3 − 1 is the axial strain. Retaining the above thin rod approximations and further

assuming that the stretch and the curvature vary slowly along S , the dominant strain gradient

component is

Ẽ331 = −θ′. (69)

E1

E3

d3

d1

r(S)

✁

L

H

+

(X1,X2,S)

Figure 2: A typical schematic of deformed planar rod of length L and height H from its reference

straight configuration. For upward bending, θ > 0.

In the absence of body forces, neglecting strain gradient elasticity and the effect of E3, the

equilibrium condition Eq. (34), reduces to
∫ L

0

[∫

A

Ŝ 33δE33 dA +

∫

A

S̃ 331δẼ331 dA −
∫

A

D1δE1 dA

]
dX3 − δT̂ + δŴ = 0. (70)
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N

L

H

(a) A cantilever rod subjected to an endpoint load N

at the right end tip, and electrically grounded at the

mid-point in the right end cross-section.

N
H

L

(b) A clamped-clamped rod subjected to a com-

pressive load N at the right end, and electrically

grounded at the mid-point in the left end cross-

section. However, the right end is allowed to dis-

place horizontally.

L

H

V

(c) A cantilever actuator sandwiched between two

electrodes (blue in color) under voltage V .

V

L

H

(d) A clamped-clamped actuator sandwiched be-

tween two electrodes (blue in color) under voltage

V .

Figure 3: A schematic of flexoelectric rod under external mechanical load or external voltage.

where L is the undeformed length of the rod, A is area of the cross-section, and δT̂ and δŴ are the

variations of the external work done by mechanical tractions and surface charges. Since bending

of slender rods can involve large displacements but typically small Lagrangian strains, all isotropic

constitutive models are very close. For convenience, we consider the isotropic Kirchhoff-Saint-

Venant model, requiring two elastic constants, here Young’s modulus Y and Poisson’s ratio ν, see

Eq. (A.1). The flexoelectric tensor µ is assumed to have cubic symmetry with three independent

constants µL, µT and µS, namely the longitudinal, transversal and shear coefficients (Eq. (A.3)). We

assume that all material properties are homogeneous in the cross-section.

Using Eqs. (68) and (69) in Eq. (70), the corresponding local stress, higher order stress and

electric displacement relations in Eq. (37)-(39) reduce to

Ŝ 33 = Ȳ(ζ − X1θ
′) − (1 − ζ + X1θ

′)

(
−E1µTθ

′ +
1

2
ǫE2

1

)
, (71)

S̃ 331 = −(1 + ζ − X1θ
′) µTE1, (72)

D1 =
(
1 + ζ − X1θ

′) (ǫE1 − µTθ
′) , (73)

with Ȳ = Y(1 − ν)/(1 + ν)(1 − 2ν). Note that in this reduced order theory, only transverse flexo-

electricity is relevant.
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4.1 Flexoelectric rod in open circuit under mechanical load

We consider now a flexoelectric rod in open circuit conditions, i.e. one of the rod end’s is grounded

and all other boundaries are free of surface charges, i.e. they satisfy that D ·n = 0, see Figs. 3a, 3b.

Thus, at the top and bottom surfaces, the vertical electric displacement vanishes, D1 = 0, and for

thin rods it can be assumed to vanish within the cross-section as well (Majdoub et al., 2008, 2009,

Liang et al., 2014). In this case, the vertical electric field can be computed from Eq. (73) as

E1 =
µT

ǫ
θ′, (74)

and then, Eqs. (71) and (72) reduce to

Ŝ 33 = Ȳ(ζ − X1θ
′) + (1 − ζ + X1θ

′)
µ2

T
θ′2

2ǫ
, (75)

S̃ 331 = −(1 − ζ + X1θ
′)
µ2

T

ǫ
θ′. (76)

By substituting Eqs. (75) and (76) into Eq. (70), and using Ŵ = 0 we obtain the following equilib-

rium condition

∫ L

0

{
ȲA

[
ζ +

1

2
(1 − ζ)ℓ2

µθ
′2
]
δζ + Ȳ

[
I

(
1 − 1

2
ℓ2
µθ
′2
)
+ (1 − ζ)ℓ2

µA

]
θ′δθ′

}
dX3 − δT̂ = 0, (77)

where I =
∫

A
X2

1
dA is the moment of inertia of the cross-section and ℓµ = µT/

√
Ȳǫ is a lengthscale

arising from transversal flexoelectricity. Since the stretch in thin rods is expected to be small, even

if deformations are not, we can approximate 1 − ζ ≈ 1 in Eq. (77), which yields

∫ L

0

{
ȲA

[
ζ +

1

2
ℓ2
µθ
′2
]
δζ + Ȳ

[
I

(
1 − 1

2
ℓ2
µθ
′2
)
+ ℓ2

µA

]
θ′δθ′

}
dX3 − δT̂ = 0, (78)

where we identify the axial force and the bending moment as

N = ȲA

[
ζ +

1

2
ℓ2
µθ
′2
]
, (79)

M = Ȳ

[
I − 1

2
ℓ2
µθ
′2I + ℓ2

µA

]
θ′. (80)

Interestingly, Eq. (78) points out the two main size-dependent effects of flexoelectricity. On one

hand, flexoelectricity induces a positive size-dependent axial strain in the rod which depends

quadratically on the flexural strain θ′. On the other hand, flexoelectricity modifies the effective

bending stiffness by two size-dependent contributions of opposite sign. The first is a reduction in

the rod’s stiffness which depends quadratically on the flexural strain while the second makes the

rod stiffer independent of deformation.
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In order to evaluate the relative importance of the different contributions, let us consider a

rectangular cross-section of unit width and thickness H, i.e. I = H3/12 and A = H. The second

and third contribution to the effective bending stiffness are comparable in magnitude for a radius

of curvature R = ν3/θ
′ ≈ H/5, which is unphysically small. For reasonable radii of curvature, we

expect
1

2
ℓ2
µθ
′2I << ℓ2

µA, and thus Eq. (78) reduces to

∫ L

0

[
ȲA

[
ζ +

1

2
ℓ2
µθ
′2
]
δζ + Ȳ Ieffθ′δθ′

]
dX3 − δT̂ = 0, (81)

with

Ieff = I + ℓ2
µA. (82)

Furthermore, the values of ℓµ for typical flexoelectric polymers are in the order of 1 − 10 nm (Chu

and Salem, 2012, Zhang et al., 2015, Zhou et al., 2017). The minimum radius of curvature for a

rectangular cross-section is R = H/2, which implies that the maximum flexoelectrically-induced

axial strain is approximately 2ℓ2
µ/H

2, in the order of 10−3 for a H = 100nm thick rod. Thus, we

expect the flexoelectrically-induced axial strain to be small, as well as ζ. This is later verified in

the numerical examples in Section 5.1, with ζ in the order of 10−4 for a H = 100nm thick rod.

Keeping nevertheless the full axial strain ζ+ℓ2
µθ
′2/2, we consider now a flexoelectric cantilever

rod subjected to a point load N = N1E1 + N3E3 on one of its ends, Figs. 3a, 3b. The work done by

the external force is

T̂ = N · r(L) = N ·
∫ L

0

(1 + ζ) d3(S ) dS =

∫ L

0

(1 + ζ) (N1 sin θ + N3 cos θ) dS , (83)

where we have used Eq. (61). Substituting the first variation of Eq. (83) in Eq. (81), and assuming

that the stretch is small, i.e. 1 + ζ ≈ 1 yields

∫ L

0

[
ȲA

[
ζ +

1

2
ℓ2
µθ
′2
]
δζ + Ȳ Ieffθ′δθ′

]
dS

=

∫ L

0

[
(N1 sin θ + N3 cos θ) δζ + (N1 cos θ − N3 sin θ) δθ

]
dS . (84)

Upon integration by parts, Eq. (84) becomes

∫ L

0

[
ȲAδ

[
ζ +

1

2
ℓ2
µθ
′2
]
− Ȳ Ieffθ′′δθ

]
dS + Ȳ Ieffθ′δθ

∣∣∣L
0

=

∫ L

0

[
(N1 sin θ + N3 cos θ) δζ + (N1 cos θ − N3 sin θ) δθ

]
dS , (85)

from where the Euler-Lagrange equations can be derived for all admissible δζ and δθ as

ȲAζ +
ȲA

2
ℓ2
µθ
′2 − N1 sin θ − N3 cos θ = 0, (86a)

19



Ȳ Ieffθ′′ + N1 cos θ − N3 sin θ = 0, (86b)

where we have assumed that the external force N is known. Equations (86) form a system of two

coupled equations for the two unknowns ζ and θ, where θ can be obtained from Eq. (86b) and used

in Eq. (86a) to compute ζ. Note that Eq. (86b) corresponds to bending moment balance of a purely

mechanical non-linear Kirchhoff rod with modified (larger) bending rigidity Ieff (Antman, 1995).

This effective stiffness coincides with that identified by Majdoub et al. (2008, 2009), Liang et al.

(2014) for linear flexoelectric rods. Equation (86b) can be rewritten in standard form as

θ′′ + β̄2 N · d1 = 0, (87)

with β̄−2 = Ȳ Ieff.

We derive next the solution for bending of a cantilever flexoelectric rod under a vertical point

load, and buckling of a doubly clamped rod under axial compression, see Fig. 3a.

4.1.1 Bending of a flexoelectric cantilever under a vertical point load

We consider a cantilever flexoelectric rod subjected to a vertical force N = −NE1, see Fig. 3a. In

this case, Eq. (87) reduces to

θ′′ − β2 cos θ = 0, (88)

with β2 = β̄2 N and boundary conditions

θ(0) = 0, (89a)

θ′(L) = 0. (89b)

The solution to this problem was obtained by Bisshopp and Drucker (1945). As derived in detail

in Appendix C, the vertical displacement of the tip is

r1(L) = L +
2

β

[
Ẽ(p, ψ0) − Ẽ(p)

]
, (90)

where Ẽ(p) and Ẽ(p, ψ0) are the complete and incomplete elliptical integrals of the second kind,

respectively, see Eq. (C.12), with p =
√

(1 − sin θmax)/2, and 1/ sinψ0 =
√

1 − sin θmax, with

θmax = θ(L). For a given load N, θmax is obtained by the shooting method, using Eq. (C.9). Using

Eqs. (86a) and (C.2), the axial strain can be computed as

ζ(S ) = − N

ȲA
sin θ − β2ℓ2

µ (sin θ − sin θmax) , (91)

which attains its maximum value (in magnitude) at the free end

ζ(L) = − N

ȲA
sin θmax. (92)
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Note that for N > 0, the rod bends downwards (θ < 0) while for N < 0, the rod bends upwards

(θ > 0) and thus in all cases ζ > 0.

The electric field at the fixed end is (see Eq. (C.15))

E1(0) =
µT

ǫ
θ′(0) = −µT

ǫ
β
√

2 sin |θmax| = −ℓµ
√

2N

ǫIeff
sin |θmax|. (93)

In the limit case of small deflections, or small N, we recover the well-known flexoelectric

theory relying on linear Euler-Bernoulli beams (Majdoub et al., 2008, 2009), yielding the vertical

displacement at the free end and the curvature at the fixed end as

r1(L) = − NL3

3Ȳ Ieff
, (94)

θ′(0) ≈ − NL

ȲIeff
, (95)

and thus the electric field at the fixed end for the linear Euler-Bernoulli beam is

E1(0) =
µT

ǫ
θ′(0) ≈ −µTNL

ǫȲ Ieff
. (96)

Interestingly, for a given rod of length L, with cross-section area A and moment of inertia I, the

vertical electric field at the fixed end in Eq. (96) attains a maximum for

µ∗T =

√
ǫȲ

I

A
. (97)

From a physical point of view, this maximum is a result of two competing effects of flexoelectricity.

On one hand, flexoelectricity increases the bending rigidity of the rod by increasing the effective

moment of inertia in ℓ2
µA ∝ µ2

T
, see Eq. (82), and thus reduces the rod deflection, the curvature

and the resulting vertical electric field. On the other hand, for a given curvature, the vertical

electric field is proportional to µT. The maximum electric field at the fixed end for this optimum

flexoelectric coefficient µ∗
T

becomes

Emax
1 (0) = − NL

2
√
ǫȲ IA

. (98)

Similarly, for a given material with properties Y, ǫ, and µT, one can find an optimal design that

maximizes the flexoelectric response. For instance, considering a rod with square/rectangular

cross-section, the optimal thickness is

H∗ = µT

√
12

Ȳǫ
= 2
√

3 ℓµ, (99)

and the corresponding maximum vertical electric field at the fixed end for a rod with a unit width

is

Emax
1 (0) = −

√
ǫȲNL

4
√

3µ2
T

. (100)
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4.1.2 Buckling of a flexoelectric rod under axial compression

We consider next an open-circuit flexoelectric rod clamped at the left end and with vertical dis-

placement and rotation prevented at the right end, subjected to a compressive force N = −NE3,

see Fig. 3b. We examine the buckling critical load Ncr and the post-buckling behavior. In this case,

the vertical reaction at the right end N1 is unknown. Thus, the Euler-Lagrange Eqs. (86) have to be

supplemented with the constraint of vanishing vertical displacements at the right end given by

0 = E1 · r(L) = E1 ·
∫ L

0

(1 + ζ) d3(s) ds =

∫ L

0

(1 + ζ) sin θ ds. (101)

The bending moment balance Eq. (87) is written as

θ′′ + β2 sin θ + N1β̄
2 cos θ = 0, (102)

with β2 = N/Ȳ Ieff, subject to the boundary conditions

θ(0) = 0, (103a)

θ(L) = 0. (103b)

Since the expected lowest buckling mode is symmetric, the constraint in Eq. (101) is fulfilled by

symmetry, and thus the reaction N1 = 0, and Eq. (102) reduces to

θ′′ + β2 sin θ = 0. (104)

The expected lowest mode exhibits inflection points at S = L/4 and S = 3L/4, which require

special attention (Lin and Chiao, 1998). Instead, we invoke symmetry considerations and avoid

the inflection points by solving Eq. (104) over a quarter of the rod and replace Eq. (103b) with

θ′
(
L

4

)
= 0. (105)

After solving the BVP, see Appendix D for a detailed derivation, the vertical displacement and the

vertical electric field at the center of the rod for upward buckling are,

r1

(
L

2

)
=

2

β

√
2 (1 − cos θmax), (106a)

E1

(
L

2

)
= −µT

ǫ

√
2N (1 − cos θmax)

Ȳ Ieff
. (106b)

where θmax = θ (L/4) is computed for a given load N by the shooting method using Eq. (D.6). Since

the right end of the rod is allowed to move horizontally, its length is assumed to remain unchanged

and the stretch is ν3 ≈ 1.

The post buckling load can be determined as

N =
β2

β̄2
= 16F2

(
sin

θmax

2

)
Ȳ Ieff

L2
, (107)
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where F is the complete elliptical integral of first kind, cf. Eq. (C.10), and we have used Eq. (D.6).

By letting θmax → 0 in Eq. (107), the critical load for buckling is obtained as

Ncr = 4π2 Ȳ Ieff

L2
, (108)

which coincides with the buckling load for a linear flexoelectrically-stiffened Euler-Bernoulli beam

with a modified bending stiffness (Timoshenko and Gere, 2009), see Eq. (82).

4.2 Flexoelectric rod actuator in closed circuit

We consider a flexoelectric rod in closed circuit, i.e. electrodes are attached to the top and bottom

surfaces. Under actuation operation mode, i.e. the bottom electrode is grounded (φ = 0), while

a potential φ = V is applied to the top electrode, two setups are studied, bending of a cantilever,

Fig. 3c, and buckling of a doubly clamped rod, Fig. 3d.

In these setups, neglecting the localized boundary effects at the ends of the rod, the non-

vanishing electric field component is

E1 = −
V

H
, (109)

and then, Eqs. (71) – (73) reduce to

Ŝ 33 = Ȳ(ζ − X1θ
′) − (1 − ζ + X1θ

′)

(
V

H
µTθ

′ +
ǫV2

2H2

)
, (110)

S̃ 331 = (1 + ζ − X1θ
′) µT

V

H
, (111)

D1 =
(
1 + ζ − X1θ

′)
(
−ǫ V

H
− µTθ

′
)
. (112)

Hence, the balance law in Eq. (70) becomes

∫ L

0

{ [(
Ȳ + µT

V

H
θ′ +

ǫV2

2H2

)
ζ − µT

V

H
θ′ − ǫV2

2H2

]
Aδζ

+

[(
Ȳ + µT

V

H
θ′ +

ǫV2

2H2

)
Iθ′ − (1 + ζ)µT

V

H
A

]
δθ′

}
ds − δT̂ = 0, (113)

where δT̂ is given by Eq. (83) for an external force N = N1E1 + N3E3 applied at the right end, and

we have used δE1 = 0, δŴ = 0. Assuming again that the strain is small, integration by parts yields,

∫ L

0

{[(
Ỹ + µT

V

H
θ′
)
ζ − µT

V

H
θ′ − ǫV2

2H2

]
Aδζ −

[(
Ỹ + µT

V

H
θ′
)

Iθ′ − (1 + ζ)µT

V

H
A

]′
δθ

}
ds

− δT̂ = −
[(

Ỹ + µT

V

H
θ′
)

Iθ′ − (1 + ζ)µT

V

H
A

]
δθ

∣∣∣∣∣
θ(L)

θ(0)

, (114)

where we have defined an effective Young’s modulus modified by electrostriction as

Ỹ = Ȳ +
ǫV2

2H2
. (115)
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4.2.1 Bending of a flexoelectric cantilever under applied voltage

We consider next a flexoelectric cantilever rod sandwiched between two electrodes as depicted in

Fig. 3c. In this case, there are no applied mechanical loads and there is no kinematical constraint

at the right end, and thus N = 0. The Euler-Lagrange equations are identified as

(
Ỹ + µT

V

H
θ′
)
ζ − µT

V

H
θ′ − ǫV2

2H2
= 0, (116a)

[(
Ỹ + µT

V

H
θ′
)

Iθ′ − (1 + ζ)µT

V

H
A

]′
= 0, (116b)

Equation (116a) yields

ζ =

µT

V

H
θ′ +

ǫV2

2H2

Ỹ + µT

V

H
θ′
≈ ǫV2

2H2Ỹ
+
µTV

ỸH

(
1 − ǫV2

2ỸH2

)
θ′, (117)

where we have expanded ζ in a Taylor series around θ′ = 0 and have neglected the higher order

terms, thereby assuming that the flexural strain is small. Replacing Eq. (117) in Eq. (116b) leads

to [
Ỹ

(
I −

µ2
T
AV2

Ỹ2H2

(
1 − ǫV2

2ỸH2

))
θ′ − µT

V

H
A

(
1 +

ǫV2

2ỸH2

)]′
= 0. (118)

By defining, an effective moment of inertia modified by flexoelectricity and electrostriction as

Ĩ = I −
µ2

T
AV2

Ỹ2H2

(
1 − ǫV2

2ỸH2

)
, (119)

and an effective cross-section area modified by electrostriction as

Ã = A

(
1 +

ǫV2

2ỸH2

)
, (120)

Eq. (118) reduces to [
Ỹ Ĩθ′ − µT

V

H
Ã

]′
= 0. (121)

Equation (121) implies that the flexural strain θ′ is uniform along s. By Eq. (114), the correspond-

ing boundary conditions are

θ(0) = 0, (122)

Ỹ Ĩθ′(L) − µT

V

H
Ã = 0. (123)

The resulting uniform flexural strain in this case is

θ′ = θ′(L) = µT

V

H

Ã

Ỹ Ĩ
, (124)
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which agrees with the expression given in Bursian and Trunov (1974) for a linear flexoelectric rod

by replacing the effective quantities (Ỹ , Ī, Ā) by the nominal ones (Ȳ , I, A). From Eq. (117) the

axial strain is obtained as

ζ = µ2
T

Ã

Ỹ2 Ĩ

V2

H2

(
1 − ǫV2

2ỸH2

)
+

ǫV2

2H2Ỹ
. (125)

We now examine Eqs. (124) and (125) by Taylor expansion of these expressions around V/H = 0

as

θ′ =
(

V

H

)
AµT

IȲ
+

(
V

H

)3 A2µ3
T

I2Ȳ3
+ O

((
V

H

)5
)
, (126a)

ζ =
1

2

(
V

H

)2 ǫ

Ȳ

1 + 2
Aℓ2

µ

I

 −
1

4

(
V

H

)4 (
ǫ

Ȳ

)2
1 + 4

Aℓ2
µ

I
− 4


Aℓ2

µ

I


2
 + O

((
V

H

)6
)

≈ 1

2

(
V

H

)2 ǫ

Ȳ
− 1

4

(
V

H

)4 (
ǫ

Ȳ

)2

+ O
((

V

H

)6
)

(126b)

According to Eq. (126a), under the application of a voltage V , the flexoelectric cantilever bends

upwards for V > 0 and downwards for V < 0 due to the positive flexoelectric coupling, and elon-

gates regardless of the sign of V , due to both flexoelectricity and electrostriction from Eq. (126b).

However, the contribution of the flexoelectric effect on the axial strain is negligible as for typical

flexoelectric elastomers Aℓ2
µ/I ≈ 10−2 ≪ 1 for a H = 100nm thick rod, as previously argued in

Section 4.1.

Finally, keeping only the leading order terms, the curvature of the rod is obtained from Eqs. (126)

as

1

R
=

θ′

(1 + ζ)
≈ µT

A

IỸ

V

H
. (127)

Integrating θ from Eq. (127) and accounting for the clamping condition Eq. (122), we have

θ(S ) = (1 + ζ)µT

A

IỸ

V

H
S . (128)

Finally, the vertical deflection at the free end can be evaluated as

r1(L) =

∫ L

0

(1 + ζ) sin θ dS = (1 + ζ)

∫ L

0

sin

(
(1 + ζ)µT

A

IỸ

V

H
S

)
dS

=
Ỹ I

µTA

H

V

[
1 − cos

(
(1 + ζ)µT

AL

IỸ

V

H

)]
≈ Ỹ I

µTA

H

V

[
1 − cos

(
µT

AL

IỸ

V

H

)]
. (129)

4.2.2 Buckling of a doubly-clamped flexoelectric rod under applied voltage

We consider now a doubly clamped flexoelectric rod in closed circuit conditions subjected to an

external electrical bias V , Fig. 3d. Since as we have seen above, an applied bias leads to an elon-

gation of the rod, if axially constrained this should lead to buckling, and hence here we study the
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critical buckling load Vcr and the post-buckling behavior. Similarly to Section 4.1.2, the kinematic

constraints of vanishing vertical and horizontal displacements at the right end, give rise to a re-

action force at the right end N = N1E1 + N3E3, where now N1 and N3 are unknown quantities.

Since the expected lowest buckling mode is symmetric, the vertical displacement at the right end

vanishes by symmetry and thus N1 = 0. Hence, Eq. (83) reduces to

T̂ =

∫ L

0

(1 + ζ)N3 cos θ dS , (130)

and its variation is

δT̂ =

∫ L

0

[
N3 cos θ δζ − (1 + ζ)N3 sin θ δθ

]
dS . (131)

Replacing Eq. (131) in Eq. (114), the Euler-Lagrange equations are derived as

(
Ỹ + µT

V

H
θ′
)

Aζ − µTA
V

H
θ′ − ǫV2

2H2
A − N3 cos θ = 0, (132a)

[(
Ỹ + µT

V

H
θ′
)

Iθ′ − (1 + ζ)µT

V

H
A

]′
− (1 + ζ)N3 sin θ = 0, (132b)

and the constraint of vanishing horizontal displacement at the right end is

E3 · r(L) − L = E3 ·
∫ L

0

(1 + ζ) d3(S ) dS − L =

∫ L

0

(1 + ζ) cos θ dS − L = 0. (133)

The unknown reaction force magnitude N3 is calculated by evaluating Eq. (132a) at the left end,

with θ(0) = 0, as

N3 =

(
Ỹ + µT

V

H
θ′|0

)
A ζ |0 − µTA

V

H
θ′|0 −

ǫV2

2H2
A. (134)

Furthermore, by assuming that the axial strain and all material parameters are uniform along S and

neglecting the nonlinear term 2µT

V

H
θ′Iθ′′, Eq. (132b) reduces to

Ỹ Iθ′′ − (1 + ζ)N3 sin θ = 0. (135)

Finally, substituting N3 from Eq. (134), Eq. (135) simplifies to

θ′′ + (1 + ζ) β̃ 2 sin θ = 0, (136)

with

β̃ 2 =
A

ỸI

(
−Ỹζ +

ǫV2

2H2
+ (1 − ζ) µT

V

H
θ′|0

)
, (137)
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and subject to the boundary conditions

θ(0) = 0, (138a)

θ(L) = 0. (138b)

Similarly to the problem in Section 4.1.2, the expected lowest mode exhibits inflection points at

S = L/4 and S = 3L/4. To avoid having to deal with them, we consider only a quarter of the rod

and replace Eq. (138b) with

θ′
(
L

4

)
= 0, (139)

After solution of the above BVP, see Appendix E for a detailed derivation, the vertical displacement

at the center of the rod is obtained as

r1

(
L

2

)
= −

4
√

1 + ζ

β̃
sin

θmax

2
, (140)

where θmax = θ(L/4), and β̃ and ζ are computed from Eqs. (E.3) and (E.5) in terms of θmax. The

curvature at the left end is

θ′(0) = β̃
√

2(1 + ζ)(1 − cos θmax). (141)

Finally, using Eq. (137) and (141), the postbuckling voltage can be obtained as

V =
H

√
2Ȳ/ǫ

(1 − ζ) − β̃2I/A

(√(
β̃2(ζ + 1)(ζ − 1)2ℓ2

µ(1 − cos θmax) −
(
(ζ − 1) + β̃2I/A

) (
ζ + β̃2I/A

))

+ (ζ − 1)β̃ℓµ
√

(ζ + 1)(1 − cos θmax)

)
(142)

The critical buckling voltage is determined from Eq. (142) in the limit θmax → 0 as

Vcr =
2πH

L

√√√√√√ 2Ȳ

ǫ

(
A

I
− 4π2

L2

) . (143)

The critical electric field for a rectangular/square cross section becomes:

Ecr =
2π

L

√√√√√√ 2Ȳ

ǫ

(
12

H2
− 4π2

L2

) =
(
H

L

) √√√√√√ 2Ȳ

ǫ

(
3

π2
−

(
H

L

)2
) , (144)

and for slender rods, the Taylor approximation around H/L→ 0 provides

Ecr ≈
(
H

L

)
π

√
2Ȳ

3ǫ
. (145)
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5 Numerical examples for general nonlinear flexoelectric rod

problems

In this Section, we present numerical results of our general nonlinear model of flexoelectricity for

bending and buckling of flexoelectric rods, both in open-circuit and in closed-circuit conditions.

We compare these results with the solutions of the 1D nonlinear analytical model for rods devel-

oped in Section 4 and its linearized Euler-Bernoulli (E-B) counterpart, by considering material

parameters to match the assumptions of these models. This comparison allows us to validate our

computational approach. We then explore more general flexoelectric problems and establish the

limits of the simplified 1D flexoelectric rod models.

To model standard elasticity, we consider isotropic hyperelastic potentials, either Saint-Venant–

Kirchhoff (Eq. (A.1)) or Neo-Hookean (Eq. (A.2)) models, requiring two elastic constants, here

Young’s modulus Y and Poisson’s ratio ν. Strain-gradient elasticity is modeled by the analo-

gous isotropic hyperelastic Saint-Venant–Kirchhoff law (Eq. (A.4)), which additionally depends

on the characteristic length scale ℓ. The flexoelectric tensor µ is assumed to have cubic symmetry

with three independent constants µL, µT and µS, namely the longitudinal, transversal and shear

coefficients (Eq. (A.3)). Isotropic flexoelectricity tensor is just a particular case with only two

independent parameters, with 2µS = µL − µT.

The dielectric strength (i.e. maximum electric field magnitude that a dielectric can sustain be-

fore electric breakdown occurs) is typically around 1−100V/µm (Liu, 2014). Here, for simplicity,

electrical breakdown is neglected, i.e. we assume an infinite dielectric strength in all the examples.

In all simulations, we consider a cubic (p = 3) spline mesh with square cells of size h = H/10,

being H the thickness of the rod.

5.1 Bending of open-circuit flexoelectric cantilever under a vertical point

load

We consider here a flexoelectric cantilever rod under bending by a vertical point load in an open

circuit configuration with the mechanically free end electrically grounded, cf. Fig. 3a. Young’s

modulus is chosen as Y = 1.725GPa and the dielectric permittivity as ǫ = 0.092nJ/V2m, which

correspond to polyvinylidene fluoride (PVDF) (Chu and Salem, 2012, Zhang et al., 2016b, Zhou

et al., 2017).

5.1.1 Validation

We first validate the full computational model in Section 2 and 3 against the 1D nonlinear model

for flexoelectric rods presented in Section 4.1.1, and its linearized Euler-Bernoulli counterpart.

For this, we choose a Saint-Venant–Kirchhoff mechanical constitutive law with ν = 0 and material

parameters consistent with the assumptions of the 1D reduced model, namely µL = µS = 0, ℓ =

0. We consider a thickness H = 100nm and a slenderness of L/H ≥ 20. Fig. 4 collects all

the validation results. Typical computational solutions are shown in Fig. 4a, where the electric
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potential φ is plotted on the deformed configuration. These simulations highlight the very large

deformations attained. In this figure, we show numerical calculations for a given force at the tip,

and for several values of µT. As in the linear case (Majdoub et al., 2008, 2009) and as expected by

the expression Ieff in the reduced theory, cf. Eq. (82), flexoelectricity leads to an effective stiffening

of the system even though the elastic constants are kept fixed. As anticipated in Section 4.1.1 for the

linearized Euler-Bernoulli beam, cf. Eq. (97), we find that also for the non-linear rod the maximum

electric field generated at the clamping cross-section exhibits a maximum for an intermediate value

of the flexoelectric constant. The existence of an optimal value of µT, for which the flexoelectric

response is maximized results from the competition of the two conflicting effects of µT: (1) the

stiffening and (2) the flexoelectric coupling. For small values of µT the structure is very compliant

and larger strain gradients are attained but the generated field is small due to the small coupling,

whereas for very large values of µT the flexoelectric coupling is large but the stiffer beam attains

smaller deformations and thus smaller strain gradients.

To further analyze these effects, we present in Fig. 4b the dependence of the cantilever rod

vertical displacement at the tip on the endpoint load, and the vertical electric field on the clamped

edge, for different values of transversal flexoelectric coefficient µT. The results for the tip dis-

placement show i) the stiffening as µT increases, ii) the nonlinearity in the response of the system

(particularly for the most deformable systems), iii) an excellent quantitative agreement with the

nonlinear flexoelectric rod model given by the analytical expression in Eq. (90), and iv) an agree-

ment with the linearized E-B model for small deformations, i.e. smaller loads or stiffer cantilevers

(large values of µT). Similarly, we find an excellent agreement between the numerical simulations

and the nonlinear rod model in the vertical electric field on the clamped end. Its behavior is nonlin-

ear for large loads since the electric field is directly proportional to the curvature, cf. Eq. (74). The

non-monotonicity in the maximum electric field as a function of µT discussed above is apparent

from this plot. To further examine this point, we represent in Fig. 4c a contour plot showing the

dependence of the vertical electric field at the clamped cross-section on µT and on the load. We

find that the load for maximum electrical output depends on the value of the flexoelectric coupling

in the nonlinear model, whereas it is independent of it according to the linearized E-B model, see

Eq. (98).

Finally, we examine the effect of the slenderness on the load vs. deflection and the load vs. elec-

tric field curves for a given µT, see Fig. 4d. As the slenderness ratio increases, the rod becomes

more flexible and therefore nonlinearity is stronger and manifests for smaller loads, with a larger

overestimation of the vertical displacement by the linear E-B model. In contrast, the nonlinear 1D

rod model closely follows our simulations even deep into the nonlinear regime.

5.1.2 General flexoelectric problem

We investigate now more general flexoelectric conditions beyond the restrictive assumptions of the

reduced model in Section 4.1.1. We consider an L = 2µm by H = 100nm

isotropic Neo-Hookean hyperelastic rod, cf. Eq. (A.2), augmented with strain gradient elastic-

ity, with ν = 0.3, ℓ = 0.1 µm and varying flexoelectric constants.
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(a) Deformed shape and electric potential [V] distribution of cantilever rods of

slenderness L/H = 20 under a point load of 20 nN, for different transversal flex-

oelectric coefficients µT.
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(b) Bending of a cantilever rod of slenderness L/H = 20 with varying transversal

flexoelectric coefficient µT. The left plot shows the vertical displacement at the

loaded end, and the right one shows the vertical electric field at the fixed end.
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(c) Countour plot the vertical electric field E1 at the fixed end of the rod of

L/H = 20 as a function of the applied load and the transversal flexoelectric

coefficient µT.
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(d) Bending of a cantilever rod of µT = 1nJ/Vm with varying slenderness. The

left panel shows the vertical displacement at the loaded end, and the right one

shows the vertical electric field at the fixed end.

Figure 4: Validation results for bending of open-circuit flexoelectric cantilever in sensor mode.

The transversal flexoelectric coefficient µT in the legends is expressed in nJ/Vm = nC/m.
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Figure 5: Electromechanical response of Neo-Hookean cantilever flexoelectric sensor under bend-

ing, with different flexoelectric tensors (expressed in nJ/Vm).

Fig. 5 represents the electromechanical response of the open circuit cantilever rod under point

load for varying flexoelectric constants µL, µT, µS = {−10, 0, 10}nJ/Vm. Fig. 5a shows the deflec-

tion r1 of the loaded end, whereas Fig. 5b shows the vertical electric field E1 at the clamped end.

For the sake of brevity, some combinations of flexoelectric tensors are omitted, since we found that

the responses are analogous to the ones of other combinations as follows:

r1|µ = r1|−µ; (146a)

E1|µ = −E1|−µ. (146b)

From Fig. 5a, it is clear that flexoelectricity is always increasing the bending stiffness of the

rod. The largest stiffening is found with opposite µT and µL, followed by the case of vanishing µL.

On the contrary, the simulations with µL ∼ µT and the ones with vanishing µT present a smaller

stiffening. In all cases, the effect of the shear flexoelectric coefficient µS on bending stiffness is

much smaller, and therefore less relevant.

Fig. 5b shows the electric response of the rod at the clamped tip, revealing that all three flex-

oelectric coefficients are relevant here. Within the studied range, a larger flexoelectricity-induced

bending stiffness leads also to a larger electric field. However, in addition, the shear flexoelectric

effect µS has a large influence on the electric field. In most cases, a non-vanishing µS leads to a

substantial decrease in the reported electric field, which slightly depends also on the sign of µS.

The only case in which a non-vanishing µS increases the electric field is the one where µS is the

only non-vanishing flexoelectric coefficient.
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(a) Buckled rod geometry and resulting elec-

tric potential [V].
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Figure 6: Force-controlled buckling of a flexoelectric rod of L/H = 60. Markers refer to the

numerical implementation and solid lines refer to the analytical nonlinear model for rods. The

transversal flexoelectric coefficient µT is expressed in nJ/Vm.
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5.2 Buckling of open-circuit flexoelectric rod under mechanical load

We now compress a slender flexoelectric rod (L = 6 µm, H = 100 nm ) in open-circuit until

buckling occurs, and also during the post-buckling stage. The left tip is clamped and a uniform

horizontal load is applied on the right cross-section, which can only move uniformly in axial di-

rection, i.e. vertical displacement and rotation of the right end are prevented (see Fig. 3b). We

consider an isotropic Saint-Venant–Kirchhoff model with Young’s modulus Y = 1.725GPa, di-

electric permittivity ǫ = 0.092nJ/V2m and different transversal flexoelectric coefficients: µT =

{0, 1, 5, 10} nJ/Vm. The other material parameters are set to zero (ν = µL = µS = ℓ =0 ).

As shown in Fig. 6, the numerical simulations and the analytical 1D model agree remarkably

well. The highly nonlinear nature of the electromechanical system is clear in the responses re-

ported in the post-buckling regime. Before buckling, the system is uniformly compressed and the

flexoelectric effect is not present yet since the rod is not bent, and hence the electric response is

zero. Once the rod has buckled (see Fig. 6a), the vertical displacement at s = L/2 (Fig. 6c) and the

horizontal displacement at s = L (Fig. 6d) suddenly deviate from zero and evolve nonlinearly with

respect to the applied load. The flexoelectric effect arises due to the curvature induced by buckling,

leading to a measurable electric field at s = L/2, which also evolves nonlinearly with applied load

(Fig. 6e).

The role of the magnitude of the flexoelectric coefficient µT is twofold. On the one hand, the

critical buckling load becomes larger with a larger µT coefficient, as suggested by the nonlinear

rod model, cf. Eq. (108), for an effectively stiffer structure. Numerically, the precise value of the

critical buckling load is identified by the load at which the eigenvalue λmin

[
Ĥχχ

(k)
]

vanishes, as

reported in Fig. 6b. On the other hand, the electric field at the post-buckling stage grows faster

with a larger µT coefficient, which is also predicted by the nonlinear rod model, cf. Eq. (106b).

Thus, the buckling-induced flexoelectric response is delayed but stronger when µT is larger.

We expect the agreement of the simplified rod model and the computational model to dete-

riorate for thicker rods, and thus the assumptions of the rod model loose validity. In Fig. 6f we

show the effect of the finite thickness of the rod on the buckling critical load by plotting the value

predicted by the computational model normalized by that estimated by the nonlinear rod model for

different values of slenderness L/H. For all L/H values, the 1D nonlinear rod model overestimates

the buckling load, as it provides a more constrained model. As expected, Fig. 6f shows that the

buckling critical load computed with the 2D computational model converges towards the approx-

imated value given by the 1D nonlinear rod model as the slenderness L/H increases and thus the

1D assumption is approached.

5.3 Bending of closed-circuit flexoelectric cantilever under electric actua-

tion

We now consider a closed-circuit flexoelectric cantilever rod with Young’s modulus Y = 1.0GPa,

dielectric permittivity ǫ = 0.11nJ/V2m, and dimensions L = 20µm, H = 1µm, which rolls up into

a circle upon electrical stimulus. The geometry and boundary conditions are depicted in Fig. 3c.
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The left tip cross-section of the rod is clamped, while all other boundaries are traction-free. The

electric potential at the top boundary is set to a certain non-zero value φ = V , and the bottom

boundary is grounded (φ = 0). The voltage difference ∆φ = V induces a transverse electric field

across the rod thickness, cf. Eq. (109), which triggers the flexoelectric and electrostrictive effects,

thereby generating a non-uniform strain that bends the rod, as shown in Fig. 8d. Depending on

the sign of the applied electric field the cantilever will bend upwards or downwards. This bending

actuator was first used by Bursian and Zaikovskii (1968) to experimentally demonstrate for the first

time the flexoelectric effect, which had been predicted theoretically by Mashkevich and Tolpygo

(1957).

5.3.1 Validation

Figure 7 shows the electromechanical response of an elastically isotropic Saint-Venant–Kirchhoff

flexoelectric rod (ν = l = 0) with the flexoelectric constants µT = 10nJ/Vm, µL = µS = 0 . The

curvature 1/R (Fig. 7a) and the axial strain ζ (Fig. 7b) are captured very well by the closed-circuit

flexoelectric rod model, where we have considered only the leading term in the expansions in

Eq. (126), up to a relatively large value of applied voltage V . Beyond this limit, the small strains

assumption of the 1D non-linear model loose validity. According to Eq. (126), the rod bends thanks

to the flexoelectric coupling, and elongates mainly due to electrostriction, cf Section 4.2.1.

5.3.2 General flexoelectric problem

Since the curvature is found to be uniform, cf. Eq. (127), the rod forms an arc of a circle, cf. Fig. 8d.

Thus, a natural question that arises is which set of flexoelectric parameters achieve a fully-closed

circular shape more efficiently (i.e. with a lower applied voltage). To address this question, we
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Figure 7: Actuation of Saint-Venant–Kirchhoff cantilever rod with transversal flexoelectric coef-

ficient µT = 10nJ/Vm. Numerically, the axial strain corresponds to the axial component of the

Green-Lagrangian strain tensor (E33), whereas the value from the 1D model corresponds to its

Taylor approximation in Eq. (68), evaluated at X1 = 0.
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consider an isotropic Neo-Hookean elastic (see Eq. (A.2)) rod with ν = 0.37, ℓ = 0.03µm and

varying flexoelectric constants. To quantify the curvature of the rod relative to the curvature of

the closed circle, we define the normalized curvature R−1(V) = R−1(V)/R−1
◦ (V), where R−1

◦ (V) =

2π/ ((1 + ζ(V))L) is the curvature required to form a closed circular shape.

Figure 8 shows the evolution of ζ(V), R−1(V) and R−1(V) for flexoelectric tensors with different

combinations of longitudinal (µL), transversal (µT) and shear (µS) flexoelectric coefficients. The

cases including a non-vanishing shear coefficient are omitted, since the results do not change sig-

nificantly, even when µS is one order of magnitude larger than µL or µT. For the sake of brevity, the

simulations (i) with negative applied electric voltage V , and (ii) yielding negative curvatures, are

also omitted since the results are analogous to those simulations with (i) positive applied voltage

and (ii) negative flexoelectric coefficients, respectively, as

ζ(V)|µ = ζ(−V)|µ = ζ(V)|−µ = ζ(−V)|−µ; (147a)

R−1(V)|µ = −R−1(−V)|µ = −R−1(V)|−µ = R−1(−V)|−µ; (147b)

R−1(V)|µ = −R−1(−V)|µ = −R−1(V)|−µ = R−1(−V)|−µ; (147c)

in accordance with Eqs. (126a) and (127).

As expected, the axial strain of the rod (depicted in Fig. 8a) does not vary much with the dif-

ferent flexoelectric parameters, since it is mainly a consequence of electrostriction. The curvature

(Fig. 8b), instead, varies significantly for the different combinations of flexoelectric parameters.

The dominant parameter is the transversal flexoelectric coefficient µT which leads to positive cur-

vature, as shown in case B. The longitudinal flexoelectric coefficient µL is also relevant and leads to

negative curvature, as shown in case D. The largest response is found with positive µT and negative

µL, as shown in case A. Finally, case C corresponds to positive µL and µT, and yields curvatures

inbetween cases B (purely transversal µ) and D (purely longitudinal µ).

The normalized curvature is shown in Fig. 8c. For sufficiently large actuation, case A reaches

R−1 > 1, which indicates that the actuator rolls up forming a closed circle. This process is shown

in Fig. 8d, where the deformed configuration and electric potential distribution within the rod is

depicted at different applied voltages. We also show in Fig. 8e the resulting polarization field once

the circle is formed, which remains normal to the bent rod.

5.4 Buckling of closed-circuit flexoelectric cantilever under electric actua-

tion

In the previous example, the rod undergoes elongation upon electrical actuation mainly due to

electrostriction. In this Section, we present a similar setup where the right tip is also clamped, as

shown in Fig. 3d. In this case, an axial compressive force is expected at the clamped ends since

the elongation of the rod is prevented. Restricting Eq. (134) in pre-buckling stage, the axial force

grows quadratically with the applied voltage and, for a large enough applied (critical) voltage Vcr,

cf. Eq. (144), a mechanical instability is reached, inducing buckling of the rod.
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Figure 8: Actuation of Neo-Hookean cantilever rod with different flexoelectric tensors (expressed

in nJ/Vm)

Figure 9 shows numerical simulations of a flexoelectric Saint-Venant–Kirchhoff rod (ν = ℓ = 0)

of dimensions L = 20µm, H = 1µm, with Young’s modulus Y = 1.0GPa, dielectric permittivity

ǫ = 0.11nJ/V2m and transversal flexoelectric coefficient µT = 10nJ/Vm (µL = µS = 0). The

postbuckling configuration and the evolution of the maximum deflection and axial strain with

respect to applied voltage are depicted in Fig. 9a-9c, showing an excellent match between the

numerical results and the analytical expressions in Eq. (140), (142) and (E.5). The critical voltage

at which the rod buckles (see Fig. 9d) matches also with the one predicted by the analytical 1D

nonlinear model in Eq. (143), and the critical electric field (cf. Fig. 9e) is inversely proportional to

the slenderness of the rod, as predicted in Eq. (145).
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Figure 9: Actuation of Saint-Venant–Kirchhoff clamped-clamped rod with transversal flexoelectric

coefficient µT = 10nJ/Vm and varying slenderness. In (d), λ̄min = λmin (nDOF/n0)4 ,where nDOF is

the number of degrees of freedom of each simulation, and n0 = 312 is an arbitrary normalization

constant, chosen such that λ̄min(0) ≈ 1.
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6 Conclusions and directions of future work

We have developed the material form of the balance equations for dielectric elastomers, including

the flexoelectric effect. Unlike previously considered models of the flexoelectric coupling, here

we formulate our model in terms of polarization, strain gradients and flexocoupling tensor in a

fully material frame. As a result, our formulation is objective by construction, and the flexocou-

pling tensor has the same symmetries as that used in linearized theories. After partial Legendre

transform, the equations are written in terms of the electric potential and the displacement field

as a fourth order unconstrained system of partial differential equations, which is convenient for

finding numerical and analytical solutions. A numerical implementation of the theory is developed

using open B-spline basis of sufficient smoothness on a uniform Cartesian grid, enabling robust

simulations deep into the nonlinear regime, for very large deformations, and including mechan-

ical instabilities (Yvonnet and Liu, 2017). On the other hand, analytical closed-form solutions

are derived for open- and closed-circuit nonlinear extensible flexoelectric rods under bending and

buckling. Direct comparison of this model with direct numerical simulations of the full model

shows excellent agreement well into the nonlinear regime in conditions where the rod theory is

expected to apply. The analytical rod theory serves both as a means of validation of our nonlinear

simulations, and as fast and simple model to analyze and design nonlinear flexoelectric devices.

The current model could be easily extended in several ways. For instance, rather than homo-

geneous electric Neumann boundary conditions on the free surfaces, it may be more realistic to

directly model the surrounding medium as a dielectric when considering soft materials materials

with relatively low dielectric constant (Yvonnet and Liu, 2017, Thai et al., 2018). Our model can

be extended to account for converse flexoelectricity (Lifshitz and Landau, 1951, Sharma et al.,

2010, Landau and Lifshitz, 2013), for polarization gradient dielectricity (Mindlin, 1968), for ma-

terial incompressibility, and coupled with flexible discretization methods, e.g. based on immersed

boundaries (Codony et al., 2019), to model domains of general, and possibly complex, geometry

that might enhance field gradients.
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Appendix A Material characterization

The material is fully characterized by specifying the elastic energy density ΨElast(C) and the mate-

rial tensors of flexoelectricity µ and strain gradient elasticity h.

38



Isotropic Saint-Venant–Kirchhoff model.

It corresponds to the extension of the linear isotropic elastic material model to the non-linear

regime, and depends on the Lamé parameters λ = Yν/(1+ν)(1−2ν) and µ = Y/2(1+ν) as follows:

ΨElast(C) =
λ

2
[Tr(E )]2

+ µTr(E2 ), (A.1a)

∂ΨElast(C)

∂CIJ

=
λ

2
[Tr(E )] δIJ + µEIJ, (A.1b)

∂2ΨElast(C)

∂CIJCKL

=
λ

4
δIJδKL +

µ

2
δIKδJL. (A.1c)

Isotropic Neo-Hookean model

The Neo-Hookean model is adequate for describing nonlinear stress-strain behavior of cross-linked

polymers at moderate strains. It is mathematically defined as

ΨElast(C) =
λ

2

[
log( J )

]2
+
µ

2
[Tr( C ) − 2] , (A.2a)

∂ΨElast(C)

∂CIJ

=
λ

2
log( J )C−1

IJ +
µ

2

(
δIJ −C−1

IJ

)
, (A.2b)

∂2ΨElast(C)

∂CIJCKL

=
λ

4
C−1

IJ C−1
KL +

1

4

[
µ − λ log( J )

] (
C−1

IKC−1
JL +C−1

IL C−1
JK

)
. (A.2c)

Flexoelectricity tensor µ.

The cubic flexoelectric tensor depends on the longitudinal µL, transversal µT and shear µS param-

eters (Le Quang and He, 2011, Codony et al., 2019). In the Cartesian axes, it takes the following

form:

µLIJK =



µL, for L = I = J = K,

µT, for I = J , K = L,

µS, for L = I , J = K or L = J , I = K,

0 otherwise.

(A.3)

Strain gradient elasticity tensor h.

We consider an isotropic simplified strain gradient elasticity tensor (Altan and Aifantis, 1997),

which depends on λ, µ and the length scale ℓ in the following form:

hIJKLMN = (λδIJδLM + 2µδILδJM) ℓ2δKN . (A.4)
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Appendix B Second variation of the enthalpy functional

The second variation of the enthalpy functional, required in our solution method, is given by

δ2Π[χ, φ; δχ, δφ;∆χ,∆φ]

=δ
(
R[χ, φ; δχ, δφ]

)
[∆χ,∆φ]

=
∂R[χ, φ; δχ, δφ]

∂χ
∆χ +

∂R[χ, φ; δχ, δφ]

∂φ
∆φ

=

∫

Ω0

{
δEIJ∆EKL

(
4
∂2Ψ̄Elast(C)

∂CIJ∂CKL

)
+

(
2
∂ΨElast(C)

∂CIJ

)
(∆δ)EIJ

+ hIJKLMNδẼIJK∆ẼIJK +
(
hIJKLMNẼLMN

)
(∆δ)ẼIJK

− ǫJC−1
MFδEF∆EM

+ ǫJCMFIJEF

(
1

2
EM(∆δ)EIJ + δEIJ∆EM + δEM∆EIJ

)

+ ǫJC̃MFIJKL

1

2
EMEFδEIJ∆EKL

− µFABK JC−1
MF

(
EM(∆δ)ẼABK + δEM∆ẼABK + δẼABK∆EM

)

+ µFABK JCMFIJ

(
ẼABK (δEIJ∆EM + δEM∆EIJ) + EM

(
δEIJ∆ẼABK + δẼABK∆EIJ

)

+ EMẼABK(∆δ)EIJ

)

+ µFABK JC̃MFIJPQEMẼABKδEIJ∆EPQ

}
dΩ0

=

∫

Ω0

{
Ŝ IJ(∆δ)EIJ + S̃ IJK(∆δ)ẼIJK

+
(
A

Elast
IJKL + A

Diele
IJKL + A

Flexo
IJKL

)
δEIJ∆EKL

+ ÃSGEla
IJKLMNδẼIJK∆ẼLMN

+ ÃFlexo
IJKLM

(
δEIJ∆ẼKLM + δẼKLM∆EIJ

)

+ BDiele
IJ (δEI∆EJ)

+
(
C

Diele
IJK + C

Flexo
IJK

)
(δEIJ∆EK + δEK∆EIJ)

+ C̃Flexo
IJKL

(
δEL∆ẼIJK + δẼIJK∆EL

) }
dΩ0,

(B.1)
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where ∆χ and ∆φ are variations of χ and φ, respectively, and

∆EL ≔ −
∂(∆φ)

∂XL

, (B.2a)

∆FiI ≔
∂(∆xi)

∂XI

, (B.2b)

∆F̃iIJ ≔
∂2(∆xi)

∂XI∂XJ

, (B.2c)

∆EIJ =
∆CIJ

2
≔ symm

IJ

(∆FkIFkJ) , (B.2d)

∆ẼIJK =
∆C̃IJK

2
≔ symm

IJ

(
∆FkI F̃kJK + FkI∆F̃kJK

)
, (B.2e)

(∆δ)EIJ =
(∆δ)CIJ

2
≔ symm

IJ

(∆FkIδFkJ) , (B.2f)

(∆δ)ẼIJK =
(∆δ)C̃IJK

2
≔ symm

IJ

(
∆FkIδF̃kJK + δFkI∆F̃kJK

)
. (B.2g)

The material tensors in the right hand side of Eq. (B.1) are defined as follows:

A
Elast
IJKL(C) ≔

∂2Ψ̄Elast

∂EIJ∂EKL

(B.3a)

A
Diele
IJKL(C, E) ≔

∂2Ψ̄Diele

∂EIJ∂EKL

=
1

2
JC̃MFIJKLEMǫEF (B.3b)

A
Flexo
IJKL(C, C̃, E) ≔

∂2Ψ̄Flexo

∂EIJ∂EKL

= JC̃MFIJKLEMµFABCẼABC (B.3c)

Ã
SGEla
IJKLMN ≔

∂2Ψ̄SGEla

∂ẼIJK∂ẼLMN

= hIJKLMN , (B.3d)

Ã
Flexo
IJKLM(C, E) ≔

∂2Ψ̄Flexo

∂EIJ∂ẼKLM

= JCABIJµBKLMEA (B.3e)

B
Diele
IJ (C) ≔

∂2Ψ̄Diele

∂EI∂EJ

= −ǫJC−1
IJ (B.3f)

C
Diele
IJK (C, E) ≔

∂2Ψ̄Diele

∂EIJ∂EK

= ǫJCKMIJEM (B.3g)

C
Flexo
IJK (C, C̃) ≔

∂2Ψ̄Flexo

∂EIJ∂EK

= µMABC JCKMIJẼABC (B.3h)

C̃
Flexo
IJKL(C) ≔

∂2Ψ̄Flexo

∂ẼIJK∂EL

= −µMIJK JC−1
ML (B.3i)
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The tensor C̃ in Eq. (B.1) is defined as

C̃ABCDEF ≔
2

J

∂ (JCABCD)

∂CEF

= (DACBDEF + DBDACEF + DADBCEF + DBCADEF − DABCDEF − DCDABEF) ,

(B.4)

where DABCDEF ≔ C−1
AB

(
1
2
C−1

CDC−1
EF −C−1

CEC−1
DF −C−1

CFC−1
DE

)
.

Appendix C Analytical solutions for the displacement and the

electric field in flexoelectric rods under bending

Following Bisshopp and Drucker (1945), Eq. (88) is integrated as

1

2

(
dθ

dS

)2

+ β2 (sin θmax − sin θ) = 0, (C.1)

where θ(L) = θmax ≤ 0 is the rotation at the free end of the rod produced by the applied load, and

equivalently

dS = − dθ

β
√

2(sin θ − sin θmax)
, (C.2)

since θ ≤ 0 and dθ/ dS ≤ 0 for a rod bending downwards. The integral of Eq. (C.2) along the rod

yields approximately its length, since

L =

∫ L

0

dS =

∫ θ(L)

θ(0)

dS

dθ
dθ =

∫ 0

θmax

dθ

β
√

2 (sin θ − sin θmax)
, (C.3)

and thus

βL =

∫ 0

θmax

dθ
√

2 (sin θ − sin θmax)
. (C.4)

In order to evaluate this integral, let us assume

sin θmax = 1 − 2p2, sin θ = 1 − 2p2 sin2 ψ, ψ ∈ [ψ0,
π

2
], (C.5)

with

ψ0 = sin−1


1

p
√

2

 = sin−1

(
1

√
1 − sin θmax

)
. (C.6)

Using cos θ =
√

1 − sin2 θ = 2p sinψ
√

1 − p2 sinψ2, we obtain

dθ = − 2p cosψ√
1 − p2 sin2 ψ

dψ, (C.7)
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and substituting in Eq. (C.4) yields

βL =

∫ π/2

ψ0

dψ√
1 − p2 sin2 ψ

, (C.8)

which can be written as

βL = F(p) − F(p, ψ0), (C.9)

where

F(p) =

∫ π/2

0

1√
1 − p2 sin2 ψ

dψ, and F(p, ψ0) =

∫ ψ0

0

1√
1 − p2 sin2 ψ

dψ. (C.10)

are the complete and incomplete elliptical integrals of the first kind, respectively (Jahnke, 1945).

Hence, for a given value of θmax, β can be determined from Eq. (C.9) using Eqs. (C.5) and (C.6),

and the corresponding applied vertical load producing the rotation θmax at the free end is then

N = Ȳ Ieffβ2. For a given N, the problem is thus solved by the shooting method.

Using Eq. (61), the vertical displacement of the rod is

r1(S ) =

∫ S

0

(1 + ζ) sin θ dS̃ ≈
∫ θ

0

sin θ dθ

β
√

2 (sin θmax − sin θ)
=

∫ ψ

ψ0

2p2 sin2 ψ̃ − 1

β

√
1 − p2 sin2 ψ̃

dψ̃

=
1

β

[
F(p, ψ) − F(p, ψ0)

]
+

2

β

[
Ẽ(p, ψ) − Ẽ(p, ψ0)

]
, (C.11)

where

Ẽ(p) =

∫ π/2

0

√
1 − p2 sin2 ψ dψ, and Ẽ(p, ψ0) =

∫ ψ0

0

√
1 − p2 sin2 ψ dψ, (C.12)

are the complete and incomplete elliptical integrals of the second kind, respectively (Jahnke, 1945).

Thus, the deflection of the rod at its loaded end is

r1(L) = L +
2

β

[
Ẽ(p, ψ0) − Ẽ(p)

]
. (C.13)

Finally, the vertical electric field is computed from Eq. (74) as

E1(S ) =
µT

ǫ
θ′ = −βµT

ǫ

√
2 (sin θ − sin θmax) = −µT

ǫ

√
2N

ȲIeff
(sin θ − sin θmax). (C.14)

Therefore, the electric field at the fixed end is

E1(0) = −µT

ǫ

√
2N

ȲIeff
sin |θmax|. (C.15)
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Appendix D Analytical solutions for displacement and electric

field in flexoelectric rods under compressive axial

load

Integration of Eq. (104) yields

1

2

(
dθ

dS

)2

− β2 (cos θ − cos θmax) = 0, (D.1)

where we assume upward buckling without loss of generality, and θ(L/4) = θmax > 0. Equivalently,

dS =
dθ

β
√

2(cos θ − cos θmax)
. (D.2)

Since the right end of the rod is allowed to move horizontally under the action of the compressive

load, the length of the rod is assumed to remain approximately unaltered after buckling. Hence,

using Eq. (D.2),

L

4
=

θ( L
4 )∫

θ(0)

dS

dθ
dθ =

θmax∫

0

dθ

β
√

2(cos θ − cos θmax)
, (D.3)

and thus

βL

4
=

θmax∫

0

1

2

√
sin2 θ

max

2
− sin2 θ

2

dθ. (D.4)

To compute this integral, we define

sin
θmax

2
= p, sin

θ

2
= p sinψ, ψ ∈ [0,

π

2
]. (D.5)

Hence,

βL = 4F(p) = 4F

(
sin

θmax

2

)
, (D.6)

where again F(p) is the complete elliptical integral of the first kind, see Eq. (C.10). So, for a given

load N, θmax is determined by the shooting method, i.e. by giving values to θmax and computing the

corresponding loading parameter β from Eq. (D.6) until the target β =
√

N/Ȳ Ieff is reached.
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Similarly, the change in the horizontal displacement, ∆r3, can be evaluated by the difference of

actual length (L) and the length projected over axial direction upon buckling as

∆r3 ≈ L − 4

θ( L
4 )∫

θ(0)

cos θ
dS

dθ
dθ = L −

θmax∫

0

2 cos θ

β

√
sin2 θ

max

2
− sin2 θ

2

dθ = L − 4

β

π/2∫

0

1 − 2p2 sin2 ψ√
1 − p2 sin2 ψ

dψ

= L − 8Ẽ(p) − 4F(p)

β
=

8[F(p) − Ẽ(p)]

β
, (D.7)

where we have used
√

sin2 (θmax/2) − sin2 (θ/2) = p cosψ, cos θ/ cos (θ/2) =
1 − 2p2 sin2 ψ√

1 − p2 sin2 ψ

, and

Eq. (D.6), and again Ẽ(p) is the complete elliptical integral of the second kind, see Eq. (C.12).

Since, the deformations in the half-rod are antisymmetric with respect to S = L/4, we split the

vertical deflection into two parts. Hence, assuming that the rod buckles upwards without loss of

generality,

S ∈
[
0,

L

4

]
: r1(S ) ≈

∫ S

0

sin θ(u) du =

∫ θ

0

sin γ dγ

β
√

2 (cos γ − cos θmax)

=

∫ ψ

0

2p sin ξ dξ

β
=

2p

β
(1 − cosψ), ψ ∈ [0,

π

2
] (D.8a)

S ∈
[
L

4
,

L

2

]
: r1(S ) ≈ 2p

β
−

∫ θ

θmax

sin γ dγ

β
√

2 (cos γ − cos θmax)

=
2p

β
+

∫ ψ

π
2

2p sin
(
π
2
− ξ

)
dξ

β
=

2p

β

(
1 + cos

(
π

2
− ψ

))
, ψ ∈ [0,

π

2
],(D.8b)

(D.8c)

where we have used
√

sin2 (θmax/2) − sin2 (θ/2) = p cosψ, and sin θ/ cos (θ/2) = 2p sinψ. Finally,

the electric field can be evaluated as

S ∈
[
0,

L

4

]
: E1(S ) =

µT

ǫ
θ′ =

µTβ

ǫ

√
2 (cos θ − cos θmax)

=
µT

ǫ

√
2N

ȲIeff
(cos θ − cos θmax), θ ∈ [

0, θmax] (D.9a)

S ∈
[
L

4
,

L

2

]
: E1(S ) = −µT

ǫ

√
2N

ȲIeff

(
cos

(
θ

(
L

2
− S

))
− cos θmax

)
, θ ∈ [

0, θmax] (D.9b)
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Therefore, the vertical deflection and electric field at the center of the rod are

r1

(
L

2

)
=

4

β
sin

(
θmax

2

)
, (D.10)

E1(0) = −E1

(
L

2

)
= E1 (L) =

µT

ǫ

√
2N

ȲIeff
(1 − cos θmax). (D.11)

Appendix E Analytical solutions for displacement and voltage

in flexoelectric rods under transversal voltage ac-

tuation

Similarly to Appendix D, integration of the moment balance Eq. (136) yields

1

2

(
dθ

dS

)2

− (1 + ζ) β̃2 (cos θ − cos θmax) = 0, (E.1)

where θ(L/4) = θmax and upon integration

L

4
=

∫ L/4

0

dS =

θ( L
4 )∫

θ(0)

dS

dθ
dθ =

1√
1 + ζ

θmax∫

0

dθ

β̃
√

2(cos θ − cos θmax)
=

F(p)

β̃
√

1 + ζ
. (E.2)

Thus

β̃
√

1 + ζL = 4F(p) = 4F

(
sin

θmax

2

)
. (E.3)

In this case, the right end of the rod is clamped and thus the length of the rod after buckling is

unknown, but its projection on the horizontal axis is the undeformed length L, therefore with the

help of constraint Eq. (133)

L

4
=

∫ L/4

0

dr3 =

θmax∫

0

(1 + ζ) cos θ
dS

dθ
dθ =

√
(1 + ζ)

[
2Ẽ(p) − F(p)

]

β̃
. (E.4)

Therefore, by using Eqs. (E.3) and (E.4)

ζ =
F(p)

2Ẽ(p) − F(p)
− 1. (E.5)

Once ζ is known, β̃ can be evaluated using Eq. (E.3) for any θmax.
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Now, similar to Appendix D,

S ∈
[
0,

L

4

]
: r1(S ) = −

∫ θ

0

(1 + ζ) sin θ dθ

β̃
√

1 + ζ
√

2 (cos θ − cos θmax)

= −
∫ ψ

0

2p
√

1 + ζ sinψ dψ

β̃
= −

2p
√

1 + ζ(1 − cosψ)

β̃
,

S ∈
[
L

4
,

L

2

]
: r1(S ) = −

√
1 + ζ

β̃

(∫ θmax

0

sin θ dθ
√

2 (cos θ − cos θmax)
−

∫ θ

θmax

sin θ dθ
√

2 (cos θ − cos θmax)

)

= −
2p

√
1 + ζ(1 + cosψ)

β̃
,

(E.6)

with sin
θ

2
= p sinψ. Hence, the deflection at the center of the rod and the curvature at the left end

for downward buckling are

r1

(
L

2

)
= −

4p
√

1 + ζ

β̃
, (E.7)

θ′(0) = β̃
√

2(1 + ζ)(1 − cos θmax). (E.8)
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