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Abstract—In this brief, we show that by exploiting the inherent
symmetry of the discrete wavelet transform (DWT) algorithm
and consequently storing only the nonrepetitive combinations of
filter coefficients, the size of required memory can be signifi-
cantly reduced. Subsequently, a memory-efficient architecture for
DWT/inverse DWT is proposed. It occupies 6.5-mm2 silicon area
and consumes 46.8-µW power at 1 MHz for 1.2 V using 0.13-µm
standard cell technology.

Index Terms—Distributed arithmetic (DA), low-power architec-
ture, multiplierless implementation, very large scale integration,
wavelet.

I. INTRODUCTION

THE discrete wavelet transform (DWT) plays a central role
in a number of signal and image processing applications

[1]. Owing to its importance in real-time signal processing
systems, its first hardware implementation has been carried
out in [2]. Subsequently, significant research effort has been
made to optimize DWT/inverse DWT (IDWT) implementation,
like architectures based on the folded digit-serial approach [3]
and low-complexity architectures with a reduced number of
multipliers [4]–[15]. However, these hardware architectures do
not adequately address the power and area consumption issues
[15], which often are the two most important metrics in today’s
high-performance signal processing systems. The main power-
consuming operation in DWT/IDWT computation is filtering,
which requires a significant number of multiplications [12].
Distributed arithmetic (DA) can be adopted to eliminate the
requirement of multiplication [12], which may lead to the
reduction of power consumption. However, in the conventional
DA-based approach, one needs to store all the possible com-
binations of filter coefficients in the memory, which increases
exponentially in size with the frame length [12]. Thus, for a
longer frame length, the advantage of using DA may eventually
be lost, owing to the significant increase in memory size.

In this brief, we propose a novel methodology for mem-
ory reduction in the DA-based design of the DWT/IDWT
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TABLE I
CONVENTIONAL AND REDUCED MEMORY REQUIREMENT TO STORE

COMBINATIONS OF FILTER COEFFICIENTS IN DA FOR

FRAME-LENGTH = 4 AND WORDLENGTH = 4

architecture by exploiting its inherent algorithmic symmetry
resulting in data repeatability. Subsequently, a 16-b fixed-point
DWT/IDWT architecture is developed for a frame length of 16,
which requires significantly less silicon area and power con-
sumption compared to some of the published DWT/IDWT
architectures. The rest of this brief is organized as follows.
Section II outlines the adopted methodology, and Section III
describes the DWT/IDWT architecture designed using the pro-
posed methodology. Section IV analyzes the performance of the
architecture, and Section V gives the conclusions.

II. METHODOLOGY

A. Motivational Example

The basic DA equation can be given as [17]

xn = −xn,l.2
l +

l−1
∑

b=0

xn,b.2
b (1)

where l = (total number of bits per sample). In dyadic space, a
convolution-based wavelet filter can be represented as

wa =
∑

n

xnh2a−n (2)

where xn and hn are input samples and filter coefficients, re-
spectively. Considering frame-length = 4 and wordlength = 4
(as an example) and using (1) in (2) with a = 1, we get

w1 = −[x2,3h0 + x1,3h1 + x0,3h2]2
3 + · · ·

+[x2,0h0 + x1,0h1 + x0,0h2]2
0 (3)

where xij is the ith sample’s jth bit of the input data. The pos-
sible combinations of filter coefficients obtained from (3) are
shown in the first six rows of Table I, which occupies 16 mem-
ory locations. However, it can be observed in Table I that there
exists redundant (such as “0”) and repetitive filter coefficients
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(such as “h0,” “h1,” “h2,” “h1 + h2,” “h0 + h1,” “h0 + h2,”
and “h0 + h1 + h2”) occupying more than a single memory
location. Thus, if only the unique combinations of the filter co-
efficients are stored in the memory, the other filter coefficients
can be obtained on the fly using simple addition operations. In
this particular example, the proposed methodology leads to only
four memory locations, as shown in the last two rows of Table I,
rather than 16 locations in the conventional approach.

However, reducing memory at the expense of adders raises
two particular issues. First, a new addressing scheme needs to
be formulated to address the reduced memory system. Second,
the hardware savings obtained due to the reduction in memory
size can be negated if the total number of adders used in the
design is more than a certain limit. These issues are discussed
in Sections III and IV, respectively.

B. Proposed Methodology

Considering wavelet computation in dyadic space for frame
length (p) = number of filter coefficients and assuming that the
ith level of resolution consists of j number of filter coefficients,
the following relationships hold: ∀i ∈ [1, log2 p], j ∈ [1, p/2i],
where i and j are integers. Now, if the jth coefficient consists
of s number of data samples, considering the causality of the
system, s can be represented as

s = 1 + (j − 1)2i. (4)

The maximum number of samples (smax) present at the ith
level of resolution can be obtained by substituting j = p/2i in
(4), which leads to

smax = 1 + p − 2i. (5)

It is to be noted from (5) that (smax − 1) is an even number.
In this methodology, we divide (smax − 1) number of samples
into k subframes. Each of the subframes consists of a pair
of data samples xn−1 and xn. As shown later in Section IV,
this approach will lead to reduction in memory. k can be
represented as

k = (p/2) − 2(i−1). (6)

At each time instant, we check the binary value of the mth bit of
xn−1 and xn, and depending on their combination, we fetch the
appropriate linear combination of the filter coefficients from the
memory [as can be obtained by expanding (2)]. However, one
of these combinations is “00,” which means that no filter coeffi-
cient needs to be multiplied with the input data. As an example,
in (3), if ‘x1,3x0,3’ = ‘00, ’ then multiplying these input bits
with h1 and h2 will always yield zero. Thus, one needs to store
the combinations of filter coefficients corresponding to only
three bit combinations of the sample pair (namely, “01,” “10,”
and “11”). Arranging (smax − 1) samples from smax samples
at the ith resolution level, we are left with only one sample.
Since the mth bit of this sample can assume either “0” or “1,”
only one combination of filter coefficients needs to be stored
in the memory corresponding to this sample. Thus, the total
memory requirement (Mi) in this methodology for the ith level
of resolution can be given by

Mi = k × 3 + 1 =
[

(p/2) − 2(i−1)
]

× 3 + 1. (7)

Fig. 1. Very large scale integration architecture of DA-based DWT and IDWT.

The memory requirement for the analysis bank can be com-
puted by summing Mi for all i. However, at the last resolution
level of the analysis bank, all that is left is one residue signal
along with the wavelet coefficient. This residue signal consists
of one sample for which, as discussed above, two combina-
tions of filter coefficients are possible in which one is “0.”
Therefore, the combination of filter coefficients corresponding
to this residue signal occupies one memory block only. Thus,
according to this proposed methodology, the total memory
requirement (TMR) can be represented as

TMR = 1 +

log2 p
∑

i=1

Mi. (8)

From (8), it is evident that TMR grows nearly linearly with the
increase of frame length.

III. ARCHITECTURAL OVERVIEW

The block diagram of the DWT/IDWT architecture is shown
in Fig. 1. At the block level, the architecture is similar to a
standard DA-based architecture. However, the main novelty of
the architecture lies in the formulation of a new addressing
scheme and the corresponding address generation unit design
for the reduced memory unit (shown as Generic Memory in
Fig. 1) discussed in Section II.

A. Memory Unit

As outlined in Section II, in the memory unit of this architec-
ture, only the nonrepetitive combinations of filter coefficients
are stored from the set of data. The strategy for address gen-
eration is explained here with an example of frame length 16
for the first resolution level of the analysis bank. Fig. 2 shows
the incoming data samples and the associated filter coefficients
required for computing each wavelet coefficient in this case. It
can be noted from Fig. 2 that the filter coefficients are the same
for the different samples present in the same inclined slices.
For example, as shown in the encircled regions in Fig. 2, the
filter coefficients associated with the samples for computing the
third wavelet coefficient are the same for the last five samples
of the fourth wavelet coefficient computation. Mathematically,
the filter coefficients associated with the qth data sample of
the rth and (q + 2)th data samples of the (r + 1)th wavelet
coefficients are the same (symmetry property). This symmetry
can be represented in generalized form for the ith level of
resolution as follows:

xj
m = xj+1

m+2i (9)
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Fig. 2. Example of address generation logic for first-resolution-level wavelet
coefficients with a frame length of 16. x and h denote input data samples and
filter coefficients, respectively.

TABLE II
EXAMPLE OF ADDRESS GENERATION LOGIC SAMPLES x2 AND x3 OF THE

THIRD WAVELET COEFFICIENT IN THE FIRST RESOLUTION LEVEL

where m = sample number, and j = wavelet coefficient.
While designing the address generation logic, this symmetry
has been exploited at different levels of resolution. Table II
shows how the appropriate filter coefficients are fetched from
the memory for different combinations of the jth bit of samples
x2 and x3 for the third wavelet coefficient computation. This
way, we effectively deal with the first issue related to the new
addressing scheme raised in Section II-A.

B. Analysis/Synthesis Banks

The analysis and synthesis banks are designed following
the equations given in [3] and [6], which represent wavelet
analysis and synthesis in dyadic space. The DA-based filter
design technique has been applied to realize the finite-impulse
response filters of these blocks, which replaces multiplication
operations by additions only, thereby making the entire archi-
tecture multiplierless. In addition, there are two control units
responsible for controlling the analysis and synthesis banks. As
shown in Fig. 1, two active-low single-bit signals—“data ready”
and “wavelet ready”—enables the analysis bank and synthesis
bank, respectively. These signals may be enabled by the user
or the previous processing unit in case of a complete system.
When the output of these banks are ready, the respective con-
trollers produce two active-low single-bit signals—“analysis
over” and “synthesis over”—which indicates the completion of
the process.

The complete architecture is designed using fixed-point 2’s
complement arithmetic for a frame length of 16, with each
sample having a 16-b word length. The complete architecture
is modeled in very high speed integrated circuit hardware de-
scription language (VHDL) and is synthesized using a 0.13-µm
CMOS standard cell library. The address generation logic has
been implemented following the relationship described in (9)
and Fig. 2. The implementation results are discussed next.

IV. PERFORMANCE ANALYSIS

A. Hardware Cost

It was mentioned in Section II-A that in the proposed
methodology, there is a possibility that the area saving due
to the reduction of memory size may be outweighed by the
requirement of extra adders. This section explicitly addresses
this issue in terms of the total number of transistor savings. To
do that, the total memory requirement using conventional DA is
derived first. For simplicity, here, only the memory requirement
for the analysis bank is considered. The memory requirement
for the synthesis bank can be derived using the same approach.
Following the same notations adopted in Section II-B, the
number of memory blocks (Nij) required for computing the jth
wavelet coefficient at the ith resolution level using conventional
DA can be given by

Nij = 2s = 21+(j−1)2i

. (10)

Since each wavelet coefficient is a convolution sum of the input
samples and filter coefficients, the computation of j number
of wavelet coefficients at the ith level of resolution requires j
times of application of DA. It means that (10) has to be iterated
j times, where j varies from 1 to p/2i for each i. Thus, the
total memory required for the ith level of resolution can be
expressed as

Ni =

p/2i

∑

j=1

Nij = 2 × (2p − 1)
/ (

(4)2
(i−1)

− 1
)

. (11)

The memory requirement for the analysis bank can be com-
puted by summing Ni for all i. However, since the last level of
resolution consists of one wavelet coefficient and one residue
signal, which requires two more memory blocks (refer to
Section II-B), the total conventional memory requirement
(CMR) for the complete analysis bank can be expressed as

CMR = 2 +

log2 p
∑

i=1

Ni. (12)

Compared to CMR, the total memory requirement in our
proposed methodology is given by (8). The total hardware cost
required in our approach is the summation of TMR and the
number of extra adders required for generating the appropriate
filter coefficients on the fly.

We define a parameter “adder penalty” (AP ) to find out the
number of required adders. Unlike TMR, AP is dependent
on the number of coefficients present per level of resolution.
Here, we will restrict ourselves to the basic ripple-carry adder
structure for a proof of concept. However, we believe that other
structures can be used to improve performance and power. In
our proposed methodology, to compute the jth wavelet coeffi-
cient at the ith resolution level, we need (s − 1)/2 number of
W -b adders, where s is given by (4). Denoting the adder re-
quirement for the ith stage as Pi and expressing s in terms of j,
we get

Pi =

p/2i

∑

j=1

(j − 1)2(i−1) × W

= (p/22) ×
[

(p/2i) − 1
]

× W. (13)
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Fig. 3. Variation of TSPW with frame length and word length.

Thus, the total adder requirement for the analysis bank can be

given by

AP =

log2(p)−1
∑

i=1

Pi. (14)

In (14), the upper limit of the summation is set to log2(p) − 1
due to the fact that the last resolution level does not need any

addition because of the presence of only one sample in the

corresponding wavelet coefficient. Considering that a single-

bit memory cell consists of t number of transistors and one

single-bit adder consists of Kt number of transistors, transistor

savings (TS) can be given as

TS = [CMR× W−(TMR ×W+AP×K×W )] × t. (15)

More specifically, from (15), we define a new metric called

transistor savings per word length (TSPW ) as

TSPW = [CMR − (TMR + AP × K)] × t. (16)

To obtain effective savings in hardware in terms of total tran-

sistor count in the proposed methodology, TSPW should be

positive. Considering that a single-bit SRAM cell requires six

transistors and one single-bit adder requires 18 transistors [18],

we have plotted the variation of TSPW with different values

of frame length and word length in Fig. 3. It can be observed

that for smaller frames (< 8), TSPW is negative, which means

that for frame length < 8, the proposed methodology does

not achieve hardware savings over the conventional DA-based

method. However, for frame-length = 8, TSPW is positive

for word lengths of up to seven, but above that, TSPW
becomes negative. This means that greater than a word length of

seven, the rate of quadratic growth in AP dominates over the

rate of exponential growth of CMR. Such negative–positivie

transition of TSPW can also be observed in Fig. 3. For a

longer frame length (> 8), TSPW increases for a fixed word

length. This means that for longer frames, the value of CMR
dominates over the summation of AP and TMR, resulting in

hardware savings with the proposed methodology. It is to be

noted that for longer frames as well, keeping the frame length

fixed, TSPW starts falling gradually with the increase in word

Fig. 4. Comparative study between software and hardware results. The left
column represents the generated results of the C-model, and the right column
represents the generated results of the VHDL model (word length = 16 b).
The top figures represent wavelet coefficients of first resolution level, and the
bottom figures represent the reconstructed output.

length. However, this falling rate is much less compared to the

rate of increase in CMR for longer frames. This overall analy-

sis demonstrates that this proposed methodology is suitable for

longer frames.

B. Functional Validation and Error Analysis

To do the functional validation of the proposed methodol-
ogy, we generated a wavelet analysis model in C language
running on a personal computer. The functional output of the
C-model is compared with the VHDL model of the proposed
methodology-based architecture. As test vectors, we have used
264 000 samples of a female speech signal recorded in real
life. The comparison result is shown in Fig. 4. For brevity, we
have shown only the wavelet coefficients generated at the first
level of resolution for the analysis bank. The result from the
C-model is shown on the left side of Fig. 4, while the hardware
output as simulated from the VHDL description is shown on
the right side. It is evident that the designed architecture shows
functional similarity to the software model. However, because
of fixed-point implementation, the actual hardware is prone to
have errors due to the finite-word-length representation of the
input data and the truncation error, which gets accumulated
at every arithmetic operation. To examine the overall effect
of these sources of error (Fig. 5), we plotted the probability
of error with respect to bit position at which such numerical
error occurs. This is derived from the VHDL implementation
by converting the absolute value of error (E) to binary using
E2 = | ln(E)/ ln(2)|, where E2 is the bit position (from the
most significant bit) at which the error occurs (in magnitude).
It is to be noted from Fig. 5 that the error probability reaches to
0.05 at the ninth bit position, which is ignorable for all practical
purposes. The maximum probability of error (0.18) occurs at
the twenty-first bit position, which physically means that in this
case, a 16-bit word length can be considered as a good practical
choice.
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Fig. 5. Probability of error versus bit position in the proposed architecture.

TABLE III
COMPARISONS OF THE PROPOSED ARCHITECTURE WITH OTHER

REPORTED ARCHITECTURES

C. Comparison With Other Architectures

The proposed architecture is synthesized by Synopsys De-
sign Compiler (DC) using 0.13-µm standard cell CMOS tech-
nology. The synthesized area and power consumption of the
proposed-methodology-based architecture are 6.5 mm2 and
46.8 µW at 1-MHz frequency for VDD = 1.2 V. The power
value is obtained by feeding continuously 264 000 16-b random
vectors into the synthesized netlist and applying Synopsys
Prime Time.

Table III shows the comparison of the area requirement
and power consumption of the proposed-methodology-based
DWT/IDWT architecture with those of previously proposed
architectures. Since different architectures use different tech-
nologies, it is unfair to compare them on a one-to-one basis.
However, these results are provided to give an insight about
the performance of the proposed-methodology-based architec-
ture. Most of the results shown in Table III are taken from
[16]. Table III shows that the proposed-memory-reduction-
methodology-based DWT/IDWT architecture compares very
favorably in terms of area and power with respect to the
other reported architectures. It is to be noted that due to the
unavailability of an appropriate memory module in our standard
cell library, the architecture is implemented using registers. We
believe that the use of appropriate memory will significantly
reduce the area and power consumption.

V. CONCLUSION

In this brief, a novel methodology for reducing the memory
requirement of the DA-based DWT/IDWT architecture has
been proposed. Hardware analysis has shown that significant
transistor savings can be achieved for frame length > 8. Con-
trary to the conventional DA, where the total memory size is
dependent on the number of coefficients and the frame length,
the proposed methodology makes the memory size dependent
only on the frame length. This reduction of hardware implies
a reduction of power consumption, which is validated through
the design of a DWT/IDWT architecture with 16-b word length
and a frame length of 16.
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