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We perform a direct numerical simulation of the forced, incompressible two-dimensional Navier-Stokes 
equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, 
without polymers and at low Reynolds numbers Re, the film attains a steady state that is a square lattice of 
vortices and antivortices. We find that, as we increase the Weissenberg number Wi, a sequence of nonequilibrium 
phase transitions transforms this lattice, first to spatially distorted, but temporally steady, crystals and then to 
a sequence of crystals that oscillate in time, periodically, at low Wi, and quasiperiodically, for slightly larger 
Wi. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then 
obtain the nonequilibrium phase diagram for this system, in the Wi-� plane, where � ∝ Re, and show that (a) 
the boundary between the crystalline and turbulent phases has a complicated, fractal-type character and (b) the 
Okubo-Weiss parameter � provides us with a natural measure for characterizing the phases and transitions in 
this diagram.

I. INTRODUCTION

The equilibrium melting transition, from a spatially pe-

riodic crystal to a homogeneous liquid, has been studied ex-

tensively [1–6]. Nonequilibrium analogs of this transition have

been explored in, e.g., the melting of colloidal crystals by shear

[7] and the turbulence-induced melting of a periodic array of

vortices and antivortices in a forced, two-dimensional (2D),

fluid film [6]. We elucidate, via extensive direct numerical

simulations (DNSs), the nonequilibrium melting of a periodic

array of vortices and antivortices in a forced, 2D, fluid film

with polymer additives; we refer to this periodic array as a

nonequilibrium, 2D crystal; this is also called a cellular flow

[8,9] in some studies.

We show that such a crystal can be melted either (a) by

increasing the Reynolds numbers Re1 or (b) by increasing

the Weissenberg number Wi. Case (a) can be thought of as

a nonequilibrium melting transition, which is driven by fluid

turbulence [6,11,12] and in which the disordered phase is a

turbulent fluid that shows dissipation reduction, because of the

polymer additives [13–15]. Case (b) is also a nonequilibrium

melting transition; in this case the vortex crystal melts into a

disordered state, which is a polymeric fluid that shows elastic

turbulence [16,17] or rheochaos [18,19]. We show that this

system of driven vortices and antivortices provides an excellent

laboratory for studying the crossover from the dissipation

reduction to the elastic-turbulence regimes in a fluid film.
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1Strictly speaking, we should use the Grashof number Gr, the

nondimensionalized force [10], because we control the forcing, which

leads eventually to the Reynolds number Re of the statistically steady

of our fluid system. However, it has been conventional to use Re = n�

in studies of vortex crystals or cellular flows [6,8]; therefore, we use

Re too.

Case (a), namely, turbulence-induced melting, has been

explored in experiments [11,12], which use a spatially periodic

force to impose a nonequilibrium vortex crystal on a fluid film

at low Re; this crystal melts, at high Re, into a disordered,

nonequilibrium, liquid-type phase. This melting problem has

been studied by using linear-stability analysis [8,9], for the

first instability of the vortex crystal, and direct numerical

simulations (DNS) [6,20,21]. These DNSs have explored

the nonequilibrium phase diagram of this driven, dissipative

system by using techniques from nonlinear dynamics [6,20,21]

and generalizations of order parameters that are used to

characterize equilibrium crystals [1–3,6].

To the best of our knowledge, case (b), namely, elastic-

turbulence-induced melting of a vortex crystal, has not been

explored in experiments, even though there have been several

experimental studies of elastic turbulence [16,17] and the

related phenomenon of rheochaos [18,19]. Direct numerical

simulations of 2D fluid films with polymer additives have

begun to explore the [22,23] elastic-turbulence-induced melt-

ing of spatially periodic flows; the Kolmogorov-flow pattern

investigated in Ref. [22,23] is a one-dimensional crystal.

The nonequilibrium vortex crystal, whose melting we study,

is a 2D crystal. To describe the ordering in this crystal and its

subsequent melting, by either elastic or fluid turbulence, we

follow the treatment of Ref. [6], which has investigated this

problem in the absence of polymers. In particular, we solve

the incompressible, 2D, Navier-Stokes (NS) equation, for the

fluid film, coupled to the FENE-P equation, for the polymer-

conformation tensor C; this provides a good description of our

system if we can neglect the film thickness and the Marangoni

effect, and if the Mach number is low [6,24–26]. The force

we use yields, at low Re, a spatially periodic array of vortices

and antivortices that is stationary in time; we call this a vortex

crystal.

As we increase either (a) the forcing amplitude and, thereby,

Re or (b) the polymer-relaxation time τP and, hence, Wi,

this crystal loses stability and gives way to a variety of



nonequilibrium states. We show that time series of the energy 
of the fluid, their power spectra, and Poincaré maps help us to 
understand the spatiotemporal evolution of this system and its 
sequence of nonequilibrium transitions (cf. Refs. [6,20,21] for  
turbulence-induced melting in a fluid film without polymers).

Our exploration of these transitions, which is inspired by 
the density-functional theory of the crystallization of a liquid 
[1,3–6], is based on order parameters for our vortex crystal. 
The crystal density is periodic in space; the density-functional 
theory uses its Fourier coefficients as order parameters.

We follow Ref. [6] and use the Okubo-Weiss field � ≡ 
det(A) in the vortex-crystal instead of the crystal density 
ρ(r), in the density-functional theory mentioned above; A 
has elements Aij ≡ ∂i uj , with uj the j th component of the 
velocity. The Okubo-Weiss criterion [27,28], first developed 
to characterize the local topology of inviscid, incompressible, 
2D, fluid flow, is also useful if viscosity and air-drag–induced 
friction are present [26,29,30]; this criterion states that � > 0, 
where the flow is vortical, and � < 0, where it is extensional or 
strain-dominated [27,28]. In a nonequilibrium vortex crystal, 
�(r) has the Fourier expansion

�(r) =
∑

k

�̂k exp(ık · r), (1)

where k are the reciprocal-lattice vectors and the �̂k are the

natural order parameters for the vortex crystal. In our 2D vortex

crystal, the counterpart of the structure factor S(k), for a crystal

[1,3–6], is the 2D spectrum

E�(k) ≡ 〈�̂k�̂−k〉, (2)

where the angular brackets denote the average over the

nonequilibrium state of our system (and not a Gibbsian

thermal average); this state can (a) be independent of time,

(b) exhibit periodic or quasiperiodic oscillations, or (c) be

spatiotemporally chaotic and turbulent, but statistically steady.

We define

G(r) = 〈�(x + r)�(x)〉, (3)

an autocorrelation function whose spatial Fourier transform

is related to E�(k). This characterizes the spatial correlations

in our system [the overbar in Eq. (3) indicates the average

over the origin x]. As we show below, the near isotropy of the

turbulent phase implies that, to a very good approximation,

G depends only on r ≡ |r| here; and it characterizes the

short-range vortical order in our 2D fluid film, exactly as the

density correlation function g(r) does in an isotropic liquid

at equilibrium [1,3–6]. We also follow the spatiotemporal

evolution of the polymer-conformation tensor C and relate

it to the spatiotemporal evolution of �.

We use the order parameters, defined above, to obtain many

interesting results for the elastic-turbulence–induced melting

of such a 2D vortex crystal in a fluid film with polymer

additives. We first describe our principal results qualitatively.

We show that, as Re or Wi increase, the steady, ordered,

vortex crystal proceeds to the disordered, turbulent state via

a sequence of nonequilibrium transitions between different

nonequilibrium phases, which we list in Table I (column four):

SX is the original, temporally steady, crystal, with a square

unit cell that is imposed by the force; this is followed by

TABLE I. The number of the run (e.g., R1-1), the value of �,

and the type of order. SX: original, steady square crystal (the pattern

depends on n); SXA: temporally steady crystals slightly distorted

compared to SX; OPXA: crystal that is distorted slightly relative

to SX and with temporal oscillations; OQPXA: OPXA but with

quasiperiodic temporal oscillations; SCT: disordered phase with

spatiotemporal chaos and turbulence. We have carried out ≃400

such runs.

Run � Wi Order

R1 − 1 1 Wi � 1.9 SX

R1 − 2 1 2 � Wi � 9 OPXA

R1 − 3 1 Wi � 10 SCT

R22 − 1 22 Wi = 0 SCT

R22 − 2 22 0 <Wi < 0.45 OPXA

R22 − 3 22 Wi = 0.5 SXA

R22 − 4 22 0.55 <Wi < 0.8 OPXA

R22 − 5 22 Wi � 1 SCT

phases of type SXA, which are temporally steady crystals that

are distorted relative to SX; we then find distorted crystals

that display periodic (OPXA) or quasiperiodic (OQPXA)

oscillations in time; finally, the system exhibits spatiotemporal

chaos and turbulence (SCT). We conjecture that OPXA and

OQPXA are actually several (perhaps an infinity) different

nonequilibrium spatiotemporal crystals, which are periodic in

space and time; given the spatial and temporal resolutions of

our calculation, we can identify only some of these. In addition

to the order parameters and correlation functions mentioned

above, we also examine the spatiotemporal evolution of the

polymer-conformation tensor C in these phases. Our work

leads to a rich, nonequilibrium phase diagram for our system.

The remainder of this paper comprises the following

sections. Section II is devoted to the equations that we use

to model 2D fluid films with polymer additives and the

numerical methods we employ. Section III contains our results.

Section IV is devoted to a discussion of our results and to

conclusions.

II. MODEL AND NUMERICAL METHODS

To study a 2D fluid film with polymer additives, we write

the 2D, incompressible, NS, and FENE-P equations in terms

of the stream function ψ and the vorticity ω = ∇ × u(x,t),

where u ≡ (−∂yψ,∂xψ) is the fluid velocity at the point x and

time t , as follows (we use the nondimensional form suggested

in Ref. [31] for 2D fluid films without polymer additives):

Dtω = ∇2ω/� +
β

�Wi
∇ × ∇ · [f (rP )C] − αω + Fω, (4)

∇2ψ = ω, (5)

DtC = C · (∇u) + (∇u)T · C −
f (rP )C − I

Wi
; (6)

here Dt ≡ ∂t + u · ∇, the uniform solvent density ρ = 1, α is

the nondimensionalized, air-drag-induced friction coefficient,

β = μ/ν, the Weissenberg number Wi = τP [Famp/(nkν)], ν is

the kinematic viscosity, μ the zero-shear viscosity parameter

for the solute (FENE-P), τP is the polymer relaxation time, and



P

Fω ≡ −n3[cos(nx) + cos(ny)]/�  is the nondimensionalized, 
spatially periodic force, whose injection wave vector is related 
to n, α = nνα′k/Famp, and � = nFamp/(ν2k3) = nRe, where 
Famp is the forcing amplitude, α′ is the coefficient of friction, 
and Re is the Reynolds number. We nondimensionalize lengths 
by a factor k/n, with k a wave number or inverse length 
[31]. The x and y components of the velocity are u1 ≡ u and 
u2 ≡ v, respectively. The superscript T denotes a transpose, 
Cαβ ≡ 〈RαRβ 〉 are the elements of the polymer-conformation 
tensor (angular brackets indicate the average over polymer 
configurations), the identity tensor I has the elements δαβ , 
f (rP ) ≡ (L2 − 2)/(L2 − r2 ) is the FENE-P potential that
ensures finite extensibility, and rP ≡

√
Tr(C) and L are,

respectively, the length and the maximal possible extension

of the polymers.

Our direct numerical simulation (DNS) of Eqs. (4)–(6) uses

the MPI code that we have developed to study fluid turbulence

with polymer additives in fluid films [15]. We use periodic

boundary conditions, a square simulation domain of side

L = 2π , and N2 collocation points; these boundary conditions

are well suited for studying vortex crystals with square unit

cells. We use a fourth-order, Runge-Kutta scheme, with time

step δt , for time marching and an explicit, fourth-order, central-

finite-difference scheme in space and the Kurganov-Tadmor

(KT) shock-capturing scheme [32] for the advection term

in Eq. (6), because this scheme [see Eq. (7) of Ref. [13]]

successfully resolves steep gradients in Cαβ and, thereby,

minimizes dispersion errors. We solve the Poisson equation

(5) in Fourier space by using a pseudospectral method and

the FFTW library [33]. We choose δt to be small enough to

prevent rP from becoming larger than L (if rP > L, there is

a numerical instability). To preserve the symmetric-positive-

definite (SPD) nature of C at all times we adapt to 2D

the Cholesky-decomposition scheme of Refs. [13–15,34]. In

particular, we define J ≡ f (rP )C, so Eq. (6) becomes

DtJ = J · (∇u) + (∇u)T · J − s(J − I) + qJ , (7)

where s = (L2 − 2 + j 2)/(τP L2), q = {d/(L2 − 2) − (L2 −
2 + j 2)(j 2 − 2)/[τP L2(L2 − 2)]}, j 2 ≡ Tr(J ), and d =
Tr[J · (∇u) + (∇u)T · J ]. Note that C, and hence J , are SPD

matrices, so J = LLT , where L is a lower-triangular matrix

with elements ℓij , such that ℓij = 0 for j > i. We can now use

Eq. (7) to obtain, for 1 � i � 2 and Ŵij = ∂iuj ,

Dtℓ11 = Ŵ11ℓ11 + Ŵ21ℓ21 +
1

2

[
(q − s)ℓ11 +

s

ℓ11

]
,

Dtℓ21 = Ŵ12ℓ11 + Ŵ21

ℓ2
22

ℓ11

+ Ŵ22ℓ21

+
1

2

[
(q − s)ℓ21 − s

ℓ21

ℓ2
11

]
,

Dtℓ22 = −Ŵ21

ℓ21ℓ22

ℓ11

+ Ŵ22ℓ22

+
1

2

[
(q − s)ℓ22 −

s

ℓ22

(
1 +

ℓ2
21

ℓ2
11

)]
. (8)

Equation (8) preserves the SPD property of C if ℓii > 0; we

enforce this, as in Refs. [13–15], by considering the evolution

of ln(ℓii) instead of ℓii .

In most of our studies, we use a time step δt = 10−3 to

10−4 for N = 128; its precise value depends on the value of

the polymer-relaxation time τP ; for τP ≃ 1, δt = 10−3 and

δt = 10−4 otherwise (τP > 1). Our results do not change sig-

nificantly if we use N = 256 or N = 1024 (we have checked

this in representative cases). We obtain long time series for

several variables (see below) to make sure that the temporal

evolution of our system is captured accurately; most of our runs

are at least as long as 5 × 106δt . We monitor the time evolution

of the total kinetic energy E(t) ≡ u2 and calculate the stream

function ψ , vorticity ω, polymer-conformation tensor C, the

Okubo-Weiss parameter �, and the kinetic energy spectrum

E(k) ≡
∑

k−1/2<k′�k+1/2 k′2〈|ψ̂(k′,t)|2〉t , where 〈〉t indicates

the time average over the statistically steady state. From these

we obtain E�(k) and G(r), by averaging over 40 configurations

of �(r), which are separated from each other by 105δt ; to

eliminate the effects of initial transients, we remove data from

the first 106 time steps before we collect data for these averages.

From ψ we obtain the velocity and thence the k = (1,0)

component of the Fourier transform v̂ of the y component v of

u. We use the time series of E(t) to obtain its temporal Fourier

transform E(f ) and from that the power spectrum |E(f )|,
which we use to differentiate between periodic, quasiperiodic,

and chaotic temporal evolutions. We also use Poincaré-type

sections, namely, plots of ℑv̂(1,0) versus ℜv̂(1,0) at successive

times (for the Kolmogorov flow see Ref. [31]).

The equation of motion for a small, rigid particle (hence-

forth, an inertial particle) in an incompressible flow [35,36]

assumes the following simple form [37,38], if the particle is

much heavier than the advecting fluid:

dx

dt
= v(t),

dv

dt
= −

v(t) − u[x(t),t]

τs

; (9)

here v and x are, respectively, the velocity and position of

an inertial particle, and τs = (2a2)/(9νρf) is the Stokes or

response time of the particle, whose ratio with the Kolmogorov

dissipation time Tη is the Stokes number St = τs/Tη. We

assume that the radius of a particle a ≪ η, where η is the

dissipation scale of the carrier fluid, and that the particle

density is so low that we can neglect interactions between

particles. We also assume, as in Ref. [39], that the polymer

additives affect the inertial-particle velocity v(t) only by virtue

of their effect on the Eulerian velocity u[x(t),t] of the fluid

at the position of the inertial particle. We show below that the

spatial distribution of such inertial particles in the flow can

also be used to distinguish the nonequilibrium crystalline and

turbulent states in our system.

III. RESULTS

We now present the results of our DNS. We begin with an

overview, in the first subsection. In the next subsection, we

present the nonequilibrium phase diagram that we obtain from

our calculations. We then present the results of our numerical

simulations for n = 4 and the ranges of parameters given

in Table I. In the third and fourth subsections, respectively,

we present our results for � = 1 and � = 22. In the fifth

subsection, we report our results for the order parameters,

spatial correlation functions, and kinetic-energy spectra that



FIG. 1. Pseudocolor plots of the Okubo-Weiss parameter � for (a) � = 1 and Wi = 0 and (b) � = 20 and Wi = 1; these show vortex-crystal

states. Given our color bar in (a), vortical regions are red and strain-dominated regions are dark blue.

we have defined above; and the last subsection contains our

results for the spatial patterns of polymers and inertial particles.

A. Overview

We demonstrate below how our crystal of vortices melts,

as we increase Wi for a fixed, low value of �, through a

sequence of transitions. At somewhat higher values of �, at

which the vortex crystal has already reached a melted state

because of fluid turbulence, we find that this turbulent state

moves first to a frozen state, as we increase Wi; this frozen

state melts again as Wi increases some more. The air-drag-

induced friction delays these transitions; we have checked

this in some representative cases. However, to make contact

with earlier studies of turbulence-induced melting of a vortex

crystal [6,20,21] without polymers, we do not include air-

drag–induced friction here; our conclusions are not altered

qualitatively by this.

The steady-state solution [6,31], of Eq. (4) is ωs,n =
−n[cos(nx) + cos(ny)], if Wi = 0 and � < �s,n; here the

subscript s stands for steady state. We examine the desta-

bilization of this solution, by increasing Wi, while we hold

� fixed, for one representative value of n, namely, n = 4

for which �s,4 ≃ 5.657 (see Ref. [6]). The initial vortic-

ity is taken to be ω = ωs,n + 10−4
∑2,2

m1=0,m2=0[sin(m1x +
m2y) + cos(m1x + m2y)]m2

2/
√

(m2
1 + m2

2); and the system

then evolves under the force Fω. For a fixed value of �, we

increase Wi in steps of 0.1; and we carry out simulations for

� = 1,2, and from then to � = 26 in steps of 2. To track the

nonequilibrium transitions in our system, say, from SXA to

SCT, we have also carried out runs in which we increase Wi

in steps of ≃0.01. We have validated our numerical scheme

by comparing our results with those of Refs. [6,31]. Reference

[31] studies a Kolmogorov flow Fω = n cos(ny); and Ref. [6]

uses an external force of the form Fω ≡ −n3[cos(nx) +
cos(ny)]/�, which is exactly the same as the one we

employ.

For Wi = 0 and � < �s,n, the � field shows alternating

vortical and extensional regions, which are also referred to as

centers and saddles; these are arranged in a 2D square lattice,

which we illustrate via pseudocolor plots of �, for n = 4, in

Fig. 1(a). For � = 20, which is well beyond �s,4 ≃ 5.657,

the fluid becomes turbulent; but, on the addition of polymers,

Wi increases, and the fluid again forms a 2D vortex lattice,

which we illustrate via pseudocolor plots of �, for n = 4, in

Fig. 1(b). In Figs. 2(a) and 2(b) we show the corresponding

pseudocolor plots of the stream function ψ .

FIG. 2. Pseudocolor plots of the stream function ψ , illustrating vortex-crystal states, for (a) � = 1 and Wi = 0 and (b) � = 20 and Wi = 1.



FIG. 3. (a) Phase diagram of our 2D system with polymer additives in the Wi-� plane, where blue circles represent the regions SX and

SXA, green circles represent the regions OPXA and OQPXA, and red circles represent the region SCT; (b) an enlarged version of a region of

the phase diagram in (a).

B. Nonequilibrium phase diagram

We have carried out a very large number (≃400) of DNS

studies of our system for a wide range of parameter values

in the (Wi-�) plane; only a very small fraction of these

parameter values are listed in Table I. For each one of these

parameter sets we calculate the quantities, such as E(t),

which we have defined above; and from these calculations we

obtain the rich, nonequilibrium phase diagram of Fig. 3(a),

in which blue circles represent the steady crystal SXA,

green circles represent either temporally periodic (OPXA) or

quasiperiodic (OQPXA) states, and red circles represent the

state SCT that displays spatiotemporal chaos and turbulence.

The most striking feature of this nonequilibrium phase diagram

is that the boundaries between the different states are very

complicated, with a fractal-type interleaving of the states

SXA, OPXA/OQPXA, and SCT; this is especially clear in

Fig. 3(b), which shows a detailed view of the phase diagram in

the vicinity of the these boundaries. Earlier studies of elastic

turbulence seem to have missed the complicated nature of these

boundaries because they have not been able to examine these

transition in as much detail as we have done.

Fractal-type boundaries between different nonequilibrium

states have been obtained in nonequilibrium phase diagrams

for some other extended dynamical systems. Examples of such

boundaries can be found in the transition to turbulence in

pipe flow [40], the transitions between different spiral-wave

patterns in mathematical models for cardiac tissue [41,42], and

the transition from no-dynamo to dynamo regimes in a shell

model for magnetohydrodynamic (MHD) turbulence [43]. In

many dynamical systems, a fractal basin boundary can separate

the basin of attraction of a fixed point or a limit cycle from the

domain of attraction of a strange attractor; thus, a small change

in the initial condition can lead either to the simple dynamical

evolutions, associated with fixed points or limit cycles, or to

chaos, because of a strange attractor. The 2D NS and FENE-P

equations that we study here comprise a 4N2-dimensional

dynamical systems, where N2 is the number of grid points;

the factor of 4 appears here because we have the 2D vorticity

and the three independent components of the L matrix at

each grid point. It is not feasible to find the complete basin

boundaries for such a high-dimensional dynamical system (we

use N ∼ 102 so 4N2 ∼ 4 × 104); however, we can reasonably

assume that complicated, fractal-type boundaries separate the

basins of attraction of the SXA, OPXA/OQPXA, and SCT

states. Note that we do not change the initial condition; instead,

we change our dynamical system by changing the parameters

Famp and τP and, hence, � and Wi. This change affects the

long-time evolution of our 2D NS and FENE-P system as

sensitively as does a change in the initial conditions because

the fractal basin boundary itself changes with these parameters.

Reference [40] has found such a sensitive dependence on

model parameters in the transition to turbulence and the edge

of chaos in pipe flow (see their Fig. 3, which shows that the

border, in parameter space, between the laminar and turbulent

regions is very complicated, in much the same way as the

phase boundary is in our study). In Refs. [41,42], it has been

shown that the spatiotemporal evolution of spiral waves of

electrical activation depends sensitively on inhomogeneities

in partial-differential-equation models for ventricular tissue;

changes in the positions of these inhomogeneities in models

for cardiac tissue correspond in our system to changes in

parameters such as � and Wi. A shell-model study of the

dynamo transition in MHD has also found such a fractal-type

boundary, separating dynamo and no-dynamo regimes, in the

plane of the magnetic Reynolds number and the magnetic

Prandtl number [43].

In the next two subsections we describe in detail the results

of our calculations for two representative values of �, namely,

1 and 22, and a range of values of Wi (Table I). We have

carried out many such calculations (≃400) to obtain the phase

diagram of Fig. 3.

C. The case � = 1

If � = 1, which lies in region � < �s,n=4, the steady-state

solution is ωs,n=4, in the absence of polymers. When we

add FENE-P polymers to the 2D NS fluid and increase

the Weissenberg number Wi, the steady-state solution ωs,n=4

becomes unstable. For the range of values of Wi in our runs

R1-1 (Table I), we obtain a steady vortex crystal, which is

shown by the pseudocolor plots of ψ and � in Figs. 4(a)

and 4(b), respectively, for the illustrative value Wi = 1; for

this set of parameters, Fig. 4(c) shows the reciprocal-space

spectrum E�, which has clear, dominant peaks at the forcing

wave vectors.



FIG. 4. Pseudocolor plots for � = 1 and Wi = 1: (a) the stream function ψ and (b) the Okubo-Weiss parameter �; (c) a filled contour plot

of the E�, reciprocal-space spectrum; this shows peaks at the forcing wave vectors.

As we increase Wi beyond 1.9, new dynamical regimes

appear in the range of values for our runs R1-2. In particular,

we observe, for � = 1 and Wi = 3, that the time series of

E(t) is periodic [Fig. 5(a)] and its power spectrum |E(f )|
[Fig. 5(b)] shows one dominant peak, with hardly any sign

of higher harmonics. Thus, the Poincaré-type map in the

(ℜ[v̂(1,0)],ℑ[v̂(1,0)]) plane [Fig. 5(c)] displays a simple

attractor. In Figs. 5(d) and 5(e), we show, for these parameter

values, pseudocolor plots of ψ and �, respectively; there is

spatial undulation in the former and the latter is deformed

relative to SX [Fig. 1(a)]. In the reciprocal-space spectrum

E� [Fig. 5(f)], we do not see any major peaks, other than the

ones at the forcing wave vectors, because the deformation of

the original crystal is weak; the amplitudes of these dominants

peaks are smaller than those of their counterparts, at the forcing

wave vectors, in Fig. 4(c).

An additional increase of Wi (runs R1-3 with Wi > 10)

leads to chaotic temporal evolution and a disordered set of

vortices and antivortices in space. Thus, we have states with

spatiotemporal chaos and turbulence; for our nonequilibrium

system, turbulent states with spatiotemporal chaos are the

analogs of the disordered liquid state, which appears on the

melting of an equilibrium crystal [1–6]. We illustrate a state

with spatiotemporal chaos for � = 1 and Wi = 20 by the plots

in Fig. 6. In particular, Fig. 6(a) shows the chaotic energy

time series E(t), whose power spectrum |E(f )| [Fig. 6(b)]

shows a broad background, which indicates temporal chaos.

The scattered points in the Poincaré-type section in the

(ℜ[v̂(1,0)],ℑ[v̂(1,0)]) plane confirm the presence of chaos.

The disorder of this state is shown in the pseudocolor plots of

ψ and � in Figs. 9(d) and 9(e), respectively; and the associated

reciprocal-space spectrum E�(k) [Fig. 9(f)] shows many new

FIG. 5. Plots for � = 1 and  Wi  = 3: (a) the time evolution of the energy E(t), (b) its power spectrum |E(f )| versus the frequency f , and  
(c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ , (e) the Okubo-Weiss parameter 
�, and (f) a filled contour plot of the reciprocal-space spectrum E�; the amplitudes of the principal peaks in (f) are lower than the amplitudes 
of their counterparts, at the forcing wave vectors, in Fig. 4(c).



FIG. 6. Plots for � = 1 and Wi = 20: (a) the time evolution of the energy E(t), (b) its power spectrum |E(f )| versus the frequency f ,

and (c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ and (e) the Okubo-Weiss

parameter �; and (f) a filled contour plot of the reciprocal-space spectrum E�, which shows that various Fourier modes are present in addition

to those at the forcing wave vectors.

Fourier modes in addition to the residual peaks at the forcing

wave vectors.

Thus, we see that the onset of elastic turbulence can lead

to vortex-crystal melting, through a very rich sequence of

transitions, even when � is itself too small to melt this

nonequilibrium crystal. The spatial autocorrelation function

G(r) and the evolution of the order parameters 〈�̂k〉 with Wi

are given in the fifth subsection.

FIG. 7. Plots for � = 22 and Wi = 0: (a) the time evolution of the energy E(t), (b) its power spectrum |E(f )| versus the frequency f , 
and (c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ and (e) the Okubo-Weiss 
parameter �; and (f) a filled contour plot of the reciprocal-space spectrum E�, which shows a large number of Fourier modes in addition to 
the ones at the forcing wave vectors.



FIG. 8. Plots for � = 22 and Wi = 0.3: (a) the time evolution of the energy E(t), (b) the power spectrum |E(f )| versus the frequency f ,

and (c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ and (e) the Okubo-Weiss

parameter �; (f) a filled contour plot of the reciprocal-space spectrum E�.

D. The case � = 22

If we do not have any polymers and if � = 22, which is

greater than �s,n=4, the steady-state solution ωs,n=4 is unstable,

and the temporal evolution of our system is chaotic as we can

see from the time series of the energy in Fig. 7(a). Its power

spectrum |E(f )|, which is plotted in Fig. 7(b), has several

peaks in a broad background, and the Poincaré-type section

in the (ℜ[v̂(1,0)],ℑ[v̂(1,0)]) [Fig. 7(c)] displays points that

cover a 2D area. The disordered spatial structure of this state,

shown by the pseudocolor plots of ψ and � in Figs. 7(d) and

7(e), respectively, indicates that this state is spatiotemporally

chaotic and turbulent. Figure 7(f) shows the reciprocal-space

energy spectrum E�, which exhibits a large number of Fourier

modes in addition to the ones at the forcing wave vectors.

When we add polymers to our 2D NS system at � = 22,

these polymers lead first to a reappearance of states that are

periodic in time; this occurs, e.g., for the range of Wi covered

in runs R22-2. For Wi = 0.3, Fig. 8(a) shows that time series of

the energy is periodic in time and its power spectrum |E(f )|
[Fig. 8(b)] has a fundamental peak at f0 = 2.5 × 10−3 and

harmonics at f1 = 2f0, f2 = 3f0, f4 = 4f0, and f5 = 5f0.

The Poincaré-type section in the (ℜ[v̂(1,0)],ℑ[v̂(1,0)]) plane

in Fig. 8(c) exhibits a simple attractor, which is consistent with

the periodic behaviors that emerge from Figs. 8(a) and 8(b).

The spatial organization of this state, shown by pseudocolor

plots of ψ and � in Figs. 8(d) and 8(e), respectively, is

disordered, although some vestiges of the unit cells of the

original crystal are visible in the pseudocolor plot of �; and

Fig. 8(f) shows the reciprocal-space spectrum E�.

If we increase the Weissenberg number to Wi = 0.5 in run

R22-3, we obtain a new steady state that is a vortex crystal;

however, it is not exactly the same as the original vortex crystal

FIG. 9. Pseudocolor plot for � = 22 and Wi = 0.5: (a) the stream function ψ and (b) the Okubo-Weiss parameter �; and (c) a filled 
contour plot of the reciprocal-space spectrum E�, which shows peaks at the forcing wave vectors, but with amplitudes that are lower than for 
their counterparts in Fig. 4(c).



FIG. 10. Plots for � = 22 and Wi = 0.7: (a) the time evolution of the energy E(t), (b) the power spectrum |E(f )| versus the frequency f ,

and (c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ and (e) the Okubo-Weiss

parameter �; and (f) a filled contour plot of the reciprocal-space spectrum E�.

as can be seen clearly by comparing the pseudocolor plots

of � in Figs. 1(a) and 9(b). This difference is even more

striking if we compare the pseudocolor plots of ψ shown in

Figs. 9(a) and 2(a). Not surprisingly, then, the reciprocal-space

energy spectrum E� shows new peaks in addition to the ones

at the forcing wave vectors, which now appear with a reduced

amplitude.

If we increase Wi some more (runs R22-4 with 0.55 �

Wi � 0.8), we obtain a spatiotemporal crystal, i.e., one that

is spatially periodic and which also oscillates in time [6]. For

FIG. 11. Plots for � = 22 and Wi = 20: (a) the time evolution of the energy E(t), (b) the power spectrum |E(f )| versus the frequency f , 
and (c) the Poincaré-type section in the plane (ℜ[v̂(1,0)],ℑ[v̂(1,0)]). Pseudocolor plots of (d) the stream function ψ and (e) the Okubo-Weiss 
parameter �; and (f) a filled contour plot of the reciprocal-space spectrum E�.



FIG. 12. Plots of 〈�̂k=(4,4)〉 versus Wi for (a) � = 1 and for (b) � = 22; in (b) 〈�̂4,4〉 first increases with Wi, goes through a maxima, which

corresponds to an OPXA state, and then decreases after that.

instance, if Wi = 0.7, the time series of the energy is periodic in

time, as shown in Fig. 10(a); and Fig. 10(b) shows that its power

spectrum |E(f )| has only one dominant peak, which is a clear

indication that the temporal evolution is periodic. Figure 10(c)

shows the Poincaré-type section in the (ℜ[v̂(1,0)],ℑ[v̂(1,0)])

plane, which displays that the projection of the attractor on

this plane is a closed loop. Figures 10(d) and 10(e) show

pseudocolor plots of ψ and �, respectively; and the associated

reciprocal-space spectrum E� [Fig. 10(f)] shows dominant

peaks principally at the forcing wave vectors.

We now increase Wi again (run R22-5); the temporal

evolution of the system becomes chaotic and the spatial

organization of the vortex crystal is distorted. Thus, we finally

enter a state with spatiotemporal chaos and turbulence (SCT);

this is our analog of the disordered, liquid state, which appears

on the melting of an equilibrium crystal [1,3–5]. However,

some vestiges of the incipient crystalline ordering can still be

found in reciprocal-space spectra, as we illustrate for Wi = 20

in Fig. 11. From the time series E(t) of the energy [Fig. 11(a)],

it is clear that system is chaotic; this is confirmed by the power

spectrum |E(f )| [Fig. 11(b)], which displays several peaks,

and the Poincaré-type section in the (ℜ[v̂(1,0)],ℑ[v̂(1,0)])

plane [Fig. 11(c)], in which the points fill a 2D area. The

disordered spatial organization of vortical structures is shown

in Figs. 11(d) and 11(e) via pseudocolor plots of ψ and �,

respectively. The reciprocal-space spectrum E�(k) [Fig. 11(f)]

FIG. 13. (a) Plot of G(r) for the crystalline state with � = 1 and Wi  = 1 along the line connecting r = (π/2,π/2) and r = (π/2,π ); and plots 
of the circularly averaged G(r) in the turbulent state with (b) � = 1 and  Wi  = 20, (c) � = 22 and Wi = 0, and (d) � = 22 and Wi = 20.



FIG. 14. Plots of (a) energy spectra E(k) versus k and (b) polymer stretching spectra [TrC](k) versus k, for � = 4 and Wi = 10 (red line

with circles), � = 4 and Wi = 40 (green line with squares), and � = 50 and Wi = 5 (black line with triangles).

shows residual peaks at the forcing wave vectors, which

indicate the incipient vortex crystal, but the other Fourier

modes show that long-range spatial periodicity has been lost

in this SCT state.

Thus, our careful study of the case � = 22, for various

values of Wi, shows how the turbulent SCT state, at Wi = 0,

gives way to the states OPXA, SXA, and OPXA states, as

we increase Wi (Table I); finally these states show reentrant

melting into the SCT state.

E. Order parameters, spatial correlation functions,

and kinetic-energy spectra

We now use statistical measures that are employed in the

density-functional theory [1,3–5] of freezing. In particular, we

examine the dependence of the order parameters 〈�̂k〉 and

the spatial autocorrelation function G(r), defined in Eq. (3),

on Wi and �. Recall that equilibrium melting is a first-order

transition at which ρG jumps discontinuously from a nonzero

value in the crystal to zero in the liquid. The melting of our

FIG. 15. Plots of contours of the polymer stretching r2
P superimposed on a pseudocolor plot of the Okubo-Weiss field � for (a) � = 1 and

Wi = 1 (crystalline phase), (b) � = 1 and  Wi  = 20 (melted crystal in the elastic-turbulence regime), (c) � = 22 and Wi = 0.5 (frozen crystal), 
and (d) � = 22 and Wi = 20 (melted crystal in the dissipation-reduction regime).



FIG. 16. Particle positions (black dots) superimposed on pseudocolor plots of the Okubo-Weiss field � for (a) � = 1 and Wi = 1 (crystalline

phase), (b) � = 1 and Wi = 20 (melted crystal in the elastic-turbulence regime), (c) � = 22 and Wi = 0.5 (frozen crystal), and (d) � = 22

and Wi = 20 (melted crystal in the dissipation-reduction regime).

nonequilibrium vortex crystal is far more complicated, in all

parts of the parameter space of the phase diagram of Fig. 3,

because there are many transitions.

For our nonequilibrium vortex crystal ℜ〈�̂k〉, which is

obtained by summing �̂k over the four forcing wave vectors,

is the analog of the order parameters ℜ〈ρG〉 in a conventional

crystal. ℜ〈�̂k〉 changes with Wi as shown, respectively, for

(a) � = 1 and k = (4,4) and (b) � = 22 and k = (4,4) in

Figs. 12(a) and 12(b). For � = 1 and small values of Wi,

the steady state of our system is SX, so the Fourier modes

at the forcing wave vector are the most significant ones.

As we increase Wi, our nonequilibrium system undergoes a

series of transitions from SX to the turbulent state SCT (see

above); therefore, ℜ〈�̂k〉 decreases with Wi as we show in

Fig. 12(a). For � = 22 and Wi = 0, we begin with a system

that is disordered and turbulent; if we then increase Wi, our

system first goes to the state SX, so ℜ〈�̂k〉 first increases as

we show in Fig. 12(b); as we increase Wi, the system becomes

turbulent and disordered again, so ℜ〈�̂k〉 decreases at large

Wi [Fig. 12(b)].

We give representative plots of the correlation function G(r)

[see Eq. (3)] in Figs. 13(a)–13(d). For the crystal, we calculate

G(r) along the line from r = (π/2,π/2) and r = (π/2,π);

this shows periodic peaks [Fig. 13(a) for � = 1,Wi = 1] with

widths that are related to those of vortical or strain-dominated

regions. In the turbulent phase, we use a circular average of

G [Figs. 13(b), 13(c), and 13(d) for � = 1 and Wi = 20,

� = 22 and Wi = 0, and � = 22 and Wi = 20, respectively];

these peaks decay over a length scale that yields the degree

of short-range order. This decay is similar to the decay of

spatial correlation functions in a disordered liquid phase

in an equilibrium system. For similar, but not the same,

correlation functions in a viscoelastic Taylor-Couette flow see

Refs. [44,45].

We have also obtained the energy spectra E(k) in two parts

of the turbulent state of our system; the first part is dominated

by elastic turbulence, and the other one lies in the region of fluid

turbulence, where polymers lead to dissipation reduction. For a

given resolution, there is one qualitative difference between the

energy spectra in these two regimes. In the forward-cascade

part of E(k), the slope of the energy spectrum is higher in

the elastic-turbulence regime than in the dissipation-reduction

regime as we show in Fig. 14(a), for � = 4 and Wi = 10

(red line with circles), � = 4 and Wi = 40 (green line with

squares), and � = 50 and Wi = 5 (black line with triangles).

The exponent of the energy spectra is ≃− 3.2, which is

in reasonable agreement with the exponent in laboratory

experiments of Groisman and Steinberg [46]. Note that, in

both elastic-turbulence and dissipation-reduction regimes, the

energy spectra show that the energy of the polymeric fluid is

spread over many decades of k (or, equivalently, over many

length scales); this is a well-known signature of turbulent

flows, whether they are engendered by large Re or large Wi. We

have also obtained the spectrum of polymer stretching, which

is defined as [Tr(C)](k) ≡
∑

k−1/2<k′�k+1/2 k′2〈|Ĉ11(k′,t)|2 +
|Ĉ22(k′,t)|2〉t , where 〈〉t denotes the time average over the



FIG. 17. Particle positions (black dots) superimposed on a pseudocolor plot of the polymer stretching r2
P for (a) � = 1 and Wi = 1

(crystalline phase), (b) � = 1 and Wi = 20 (melted crystal in the elastic-turbulence regime), (c) � = 22 and Wi = 0.5 (frozen crystal), and

(d) � = 22 and Wi = 20 (melted crystal in the dissipation-reduction regime).

statistically steady state. In Fig. 14(b) we show the polymer-

stretching spectra, for � = 4 and Wi = 10 (red line with

circles), � = 4 and Wi = 40 (green line with squares), and

� = 50 and Wi = 5 (black line with triangles).

F. Spatial patterns of polymers and inertial particles

in the nonequilibrium states of our system

It is instructive to study the spatial patterns of polymers and

inertial particles in the nonequilibrium states of our system; we

show below that such patterns also provide clear signatures of

these states. In Figs. 15(a)–15(d) we show contours of the poly-

mer stretching r2
P superimposed on pseudocolor plots of the

Okubo-Weiss field � for � = 1 and Wi = 1 (crystalline state),

� = 1 and Wi = 20 (melted crystal in the elastic-turbulence

regime), � = 22 and Wi = 0.5 (frozen crystal), and � = 22

and Wi = 20 (melted crystal in the dissipation-reduction

regime), respectively. As we have seen in Ref. [15], the

polymers stretch preferentially in extensional regions, where

� < 0; thus, the patterns of their extension mirror the spatial

periodicity or lack thereof in the crystalline and turbulent

phases, respectively. The spatiotemporal evolution of the plots

in Fig. 15 can be found in the Supplemental Material [47].

The analogs of Figs. 15(a)–15(d), with polymers replaced

by inertial particles (black dots), are given in Figs. 16(a)–16(d),

respectively. We see from these plots that inertial particles

organize themselves in regions where � ≃ 0; thus, their spatial

organization can also be used to surmise the underlying

periodicity of a nonequilibrium vortex crystal. This method

of visualization has been used in experiments on fluid films

without polymers [11,12]. All these plots are for a Stokes

number St ≃ 1. Note the wavy patterns of particles across the

flow field, which are strongly influenced by the forcing field;

these patterns are not permanent; and, as the elastic turbulence

changes the particle positions, these wavy patterns of particles

disappear; similar patterns appear later in time, but at different

places in the simulation domain.

The analogs of Figs. 16(a)–16(d), with the � field replaced

by polymers, are given in Figs. 17(a)–17(d), respectively.

We see from these plots that the correlation between the

spatial organizations of polymers and inertial particles is not

dramatic. This is not surprising insofar as the polymers stretch

preferentially where � < 0, whereas inertial particles tend to

cluster in regions where � ≃ 0.

IV. CONCLUSIONS

Our detailed DNS elucidates the nature of melting of a

vortex crystal in a nonequilibrium, forced, thin fluid film

with polymer additives. This melting can be induced by (a)

elastic turbulence at low Reynolds numbers Re (or �) but

large Weissenberg numbers Wi (or τP ), (b) fluid turbulence at

low Wi but large �, or (c) a combination of these two types

of turbulence [see Figs. 3(a) and 3(b)]. Our work leads to the

rich, nonequilibrium phase diagram of Fig. 3. We emphasize

the importance of our examination of the topology of this phase

diagram and the intricate natures of the boundaries between

the different phases in it.



Our work builds on the DNS study of Ref. [6], which 
uses ideas from the density-functional theory of freezing 
[1,3–5], nonlinear dynamics, and turbulence to characterize 
the phases and transitions in the melting, by turbulence, of a 
nonequilibrium vortex crystal in a 2D fluid film. Most studies 
of the turbulence-induced melting of a vortex crytal in a fluid 
film do not include polymer additives; for an overview of 
such studies we refer the reader to Ref. [6]. The DNS study 
of 2D fluid films with polymer additives [15,22,23], which 
uses the Oldroyd-B model, is an exception; it has studied 
the elastic-turbulence-induced melting of spatially periodic 
Kolmogorov-flow pattern, which is, in our terminology, a 
one-dimensional crystal. To the best of our knowledge, there is 
no study of vortex crystals in fluid films with polymers, which 
brings together the variety of methods we use to analyze the 
melting of such crystals.

We follow Ref. [6], which does not include polymers, in

(a) identifying the order parameters for the vortex crystal,

(b) characterizing the series of transitions in terms of ψ and

�, the energy time series E(t), and their Fourier transforms,

and (c) using the spatial correlation functions G in crystalline

and turbulent phases. However, we go considerably beyond

the study of Ref. [6] by including polymers and, therefore,

(a) a new dimensionless control parameter, the Weissenberg

number Wi (or τP ), (b) the polymer-conformation tensor field

C, and (c) inertial particles. Therefore, we can examine the

nonequilibrium phase diagram of this system in a 2D parameter

space [see Figs. 3(a) and 3(b)] and elucidate the organization

of polymers and inertial particles in the flow, in both crystalline

and turbulent phases. We show also that our system provides

a natural laboratory in which we can study the crossover

from elastic-turbulence to dissipation-reduction regimes in the

turbulent phase.

We refer the reader to Ref. [6] for a discussion of the

thermodynamic limit and finite-size effects in such systems of

nonequilibrium, vortex crystals. To our knowledge, no study

(including ours) has addressed these issues because, for large

system sizes, we need very large DNSs to characterize the

temporal evolution of the system. If we extract a correlation

length from the correlation function G, it is much smaller than

the linear size of our simulation domain in the turbulent phase

(SCT), so our results should not change if we increase the

system size. However, subtle size dependence might occur in

the ordered phase because of the inverse cascade, well known

in 2D fluid turbulence, which might lead to undulations that

give rise to crystals with ever larger unit cells, whose size can

be controlled only by the inclusion of friction. A systematic

study of such subtle finite-size effects lies beyond the scope of

our study.

The sequence of transitions that take us from a vortex crystal

to the turbulent state is far richer than conventional equilibrium

melting. The former differ from the latter in another important

way: To maintain the steady states, statistically or strictly

steady, we must impose the force Fω; in the language of

phase transitions, this force is a symmetry-breaking field,

in both the ordered and disordered phases. Therefore, there

is no symmetry difference between the disordered, turbulent

state and the ordered vortex crystal, as we see directly from

the vestiges of the dominant peaks in the reciprocal-space

spectra E�(k); and the order parameters 〈�̂k〉, with k = (4,4)

the forcing wave vectors, do not become exactly zero in

the turbulent phase; however, they do become very small.

Moreover, our nonequilibrium vortex crystal undergoes a

sequence of transitions from an ordered state to an undulating

crystal and then to a fully turbulent state; there is no external

or thermal noise here and hence no fluctuations in the perfect

vortex crystal; this has no equilibrium analog.

We hope that our study will encourage experimental groups

to try to obtain the rich phase diagram of the melting of a

nonequilibrium vortex crystal in a fluid film with polymer

additives. In particular, experiments on such a system could

look for spatiotemporal crystals, which are periodic in both

space and time and which cannot be obtained easily in

nonequilibrium, hard-matter settings. Furthermore, the reen-

trant crystallization, i.e., the recrystallization, with an increase

in Wi, of the melted crystal, which emerges from our detailed

DNS, is certainly worth exploring in experiments.

Note added. We have recently learnt of a shell-model study

of elastic turbulence [48].
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