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In this paper, we explore the mechanics and the
turbulent structure of two-phase (fluid—solid particle)
flow system, for the first time, by considering the
dynamic equilibrium coupled with suspended solid
particle concentration, fluid flow and energetics
of the two-phase flow system. The -continuity,
momentum and turbulent kinetic energy (TKE)
equations of the fluid and the solid phases are
treated separately to derive a generalized relationship
of the two-phase flow system aided by suitable
closure relationships. The results obtained from the
numerical solution of resulting equations show that
the particle concentration and the TKE diminish with
an increase in the Rouse number, while the horizontal
velocity component increases. On the other hand,
the TKE flux, diffusion and production rates increase
with an increase in the Rouse number, while the
TKE dissipation rate decreases. In the vicinity of
the reference level (that is, the hypothetical level
from which the particles come in suspension), the
Kolmogorov number increases with an increase in
the Rouse number. However, as the vertical distance
increases, this behaviour becomes reverse. A close
observation of the turbulent length scales reveals that
the Prandtl’s mixing length decreases with an increase
in the Rouse number, but the Taylor microscale and
the Kolmogorov length scale increase.

1. Introduction

When fluid flows over a loose boundary, the surface
particles composing the boundary are subject to fluid-
induced shear stress. As a consequence, particles are
transported forming different layers according to their
modes of transport. With an increase in boundary shear
stress in excess of the threshold boundary shear stress
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Figure 1. Conceptual description of suspended particles in turbulent free-surface flow. Density of dots signifies the
concentration of particles. Reference level is shown by the broken line.

for the initiation of particle motion, the transport of particles takes place within a thin layer,
known as contact load layer, in the form of rolling, sliding and saltating (a series of short jumps)
modes. On the other hand, particles beneath the contact load layer remain immobile. With a
further increase in boundary shear stress, the production of turbulence in the vicinity of the
boundary acts to lift up the finer particles out of the contact load layer, maintaining them to
transport in a suspension mode. A conceptual representation of suspended particles in turbulent
free-surface flow is shown in figure 1, where the circular arrows represent the turbulent eddies.
The tendency of a particle to settle down owing to the settling velocity is balanced by the turbulent
diffusion to maintain the dynamic equilibrium. In figure 1, the density of dots signifies the particle
concentration. The transport of suspended particles takes place convectively when a turbulent
eddy carrying the suspended particles in its core is primarily transported by the vertical velocity
fluctuations to a region of lower particle concentration and then mixes up with the ambient
fluid. The determination of suspended particle concentration is usually done relative to a reference
concentration that exists at a reference level. The reference level is defined as a hypothetical level of
the extremity of the contact load layer in the close proximity of the loose boundary from which
the solid particles come in suspension (figure 1 and table 1).

The conceptual framework of the Fickian diffusion [1] aided by the turbulent diffusion was
widely applied to study the dynamics of suspended particles in a flowing fluid. Rouse [2]
pioneered the analytical solution for the vertical profile of suspended particle concentration by
means of Fickian diffusion in conjunction with the Karman-Prandtl logarithmic velocity law.
The limitation of the Rouse equation is that it predicts a vanishing particle concentration at
the free surface, although the measurements evidenced a finite concentration there. The reason
for the discrepancy is attributed to the assumption of the linear law of turbulent shear stress
together with the logarithmic law (log-law) of velocity. Importantly, the log-law of velocity is
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Table 1. (Continued.)
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based on the assumption of a constant shear stress within the wall-shear layer. After Rouse [2],
several attempts were made in order to provide an improved version of the vertical distribution
of suspended particle concentration. A comprehensive survey on this topic was presented by
Dey [3]. Remarkably, Hunt [4] analysed the particle suspension dynamics by treating the fluid
phase and the solid phase separately and then coupled both the phases by decomposing the
vertical velocity of the particle into the vertical flow velocity and the particle settling velocity
in a quiescent fluid.

In addition to the diffusion concept, the gravitational theory pioneered by Velikanov [5,6]
provides an enhanced understanding towards the vertical profile of suspended particles arising
from the principle of conservation of energy. In the gravitational theory, the fluid phase acts as the
active dispersive component to perform work in carrying the particles in suspension. By contrast,
the solid phase acts as the passive component because the particles consume the energetics of the
system in order to remain in suspension.

Several experimental studies, based on the determinations of mean concentration and
velocity [7-10] and turbulence characteristics of the two-phase flow system [11-13], were
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reported. Lagrangian and Eulerian particle tracking methods were applied in particle-laden flows
to study the behaviour of two-phase flow [14-19]. The transport of massive particles in fluid was
modelled by Hsu et al. [20]. On the other hand, the rheology of solid particle suspension was
studied by Mueller et al. [21]. Recently, Cantero-Chinchilla ef al. [22] developed a power law theory
to determine the concentration profile of particle-laden flow. However, they did not consider the
energetics of the two-phase flow system.

The major drawback of the diffusion theory in modelling the dynamics of suspended particles
is due to the questionable assumption, which states that the dynamics of fluid flow remains
unaffected by the presence of suspended particles. Further, with regard to the gravitational theory,
the primary shortcoming is that the reduction in pulsation energy resulting from the work done
to keep the particles in suspension is ignored.

Here, we present the mechanics and the turbulent structure of the two-phase flow system
by taking into account the dynamic coupling of suspended particle concentration, flow velocity
and energetics of the two-phase flow system. A generalized formulation of the two-phase flow
system is derived by treating separately the equations of motion of fluid and solid phases.
The resulting equations are numerically solved applying closure relationships. The profiles of
suspended particle concentration, horizontal velocity component and turbulent kinetic energy
(TKE) are obtained. Further, the profiles of TKE flux, diffusion rate, production rate, dissipation
rate, the Kolmogorov number and turbulent length scales are determined. The variations of these
profiles with the Rouse number are depicted.

2. Theoretical analysis

We consider a two-phase flow system, where both the relative volume and the particle size
are small. The instantaneous fluid acceleration can be fairly neglected in comparison with the
gravitational acceleration. We further assume that the molecular diffusion of suspended particles
is vanishingly small and therefore neglected. Under such assumptions, the equation of motion of
fluid phase is [23]

@
0 9 ] 9t
—[pe(1 — 1+ —pe(1 — Qugug]l = —— 1—-0)gi —fi 2.1
ar Pt~ Ol o Lol = Qupugl = —grlosp) + 5 - F o —asi=f 2D
and the equation of motion of solid phase is [23]
9 9 d afj(iz)
ﬁ(ppc”lpi) + aTCj(ppcupiupj) = _Tm[(l —as)pl + o + ppcgi +fi- (2.2)

In equations (2.1) and (2.2), subscripts ‘f" and ‘p” refer to the quantities related to fluid and
particle, respectively, f is the time, p is the mass density, c is the instantaneous suspended particle
concentration, #; and u; are the instantaneous velocity components along x; and Xj, respectively,
i=1, 2 and 3 denote the x (horizontal), y (lateral) and z (vertical) directions, respectively, p
is the instantaneous hydrodynamic pressure of the disperse system, «s is the instantaneous
hydrodynamic pressure shared by the fluid phase, r.(il) is the component j, i of the viscous stress
tensor of fluid, g; is the component of gravity force along x;, f; is the component of the interaction
force between fluid and particle along x; and r].(iz) is the component j, i of the stress tensor due to
interaction between the particles.

The mass density pm of the two-phase flow system is defined by
pm = pt(1 —¢) + ppc. (2.3)
The flow velocity along i of the mass centre of the disperse system per unit volume is

1 —c)ug + ppcup;
vi= pf( )ugi + pp pi (2.4)
Pm
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The equation of motion of the disperse system, after adding equations (2.1) and (2.2), yields

817,‘]‘ _ H.Qﬁ
ax; Ty ax;

9
&(Pm v;) + + Pm&i- (2.5)

In equation (2.5), I1;; is the convective momentum flow density defined by
ITjj = pe(1 — QJugiugy + ppCilpitip. (2.6)

The conductive counterpart appearing in equation (2.5) is £2;; = 1'51) + rl-;z). When the particle
concentration is very small, the tensor r(iz) becomes much smaller than the tensorr].(il).
The continuity equations for the fluid phase and the solid phase are, respectively,

Sl - 01+ %[m(l — Ougl =0 27)

and

0 a
a(ppc) + 3—xj(,opcupj) =0. (2.8)

The continuity equation of the two-phase flow system, after combining equations (2.7) and
(2.8), is therefore
9pm

ad
) =0. 2.
9t 3x]' (me]) 0 (2.9)

Moreover, from equations (2.7) and (2.8), we obtain
0]

ox; [(1 = )ug + cup;]1 =0. (2.10)

As the particle concentration is small and the fluid acceleration is considered relatively
smaller in comparison with the gravitational acceleration, we can fairly approximate that the
instantaneous horizontal velocity components of fluid and particle coincide. By contrast, the
instantaneous vertical velocity components of fluid and particle differ by the settling velocity
w of particles. Specifically, the  is a function of the particle diameter d [3]. Therefore, it yields

ug; — Upi = dj30, (2.11)

where §;; is the Kronecker delta function defined by é;;(i #j) =0 and §;;(i=j) = 1.
Using equations (2.10) and (2.11), partial differentiation of equation (2.4) yields

v; 9 [we(l —c)
5o =p = P05 [—} : (2.12)
X; 0z m
With allowance to equation (2.12), equation (2.9) reduces to
0Pm 00m 3 [wc(l—c)
Pmy oy, SPm —pp)— | 2.13
or T 7 Pm(Pp — Pf) P [ - (2.13)

Furthermore, differentiating partially equation (2.6) and using equations (2.4) and (2.11), we
obtain

arl; 3 3 | w?c(1—c¢)
5 1 = —(Pmvivy) + prpp— | ——— | di3- (2.14)
X 0x; 0z Pm

Thus, equation (2.5) becomes

9 9 ap 082 3 | wc(1—0)
— )+ — V) = - — — — | ——— | 8;3- 2.15
at(val) + ox; (vazv]) Pmi o, + ox; PtPp 9z i3 ( )

m
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Introducing the submerged relative density of particles A [=(pp — pf)/pf] and noting that
pm = p¢ (14 Ac), equations (2.12), (2.13) and (2.15) reduce to

av; _
ik —A- [“’C(l C)} (2.16)
ax; 1+ Ac
ac ac 3 [wc(l—c)
— i— =014+ Ac)— | ——= 2.17
ot Uy, (1+2093 [1+Ac] @17)
1 ap 082ji
and [(1 + Ac)v;] —|— [(1 + Acjvivi] = (1 + Ac)g; — +
33(1 Pt 0x;
3 | w?c(1—0)

Applying the Reynolds decomposition, we split the instantaneous velocity and particle
concentration as v; = v; + v; and ¢ = + ¢/, where over-bar denotes the time-averaged quantities
and prime denotes the fluctuations. Here, the time-averaged velocity components v;(i = 1,2, 3) are
(1, v, w), respectively. Thus, in time-averaged form, equations (2.16)-(2.18) are

av; d c(l1—c
0 _ a0 [L( f)] , (2.19)
ij 0z | 1+ Ac
ac _ oc 3y — _ we(1 —7)
¢ . —_ /0! R P 2.20
8t+v]8xj 8xj(cvf) 1+ ) [ 1+ Ac ] (2.20)
9 9 _ 10p 108
d —[@+ Al + — [T+ Ac)vjvi] = (1 + Ad)g; — — — + —
an oL+ Aol + = [(1+ Adjviy] = (1 + Ad)g; o ax,-+pf ox;
]
3 | w1 —7)
—1+A)— | —— 8. 2.21
(a+ )8z|:1+AE:|l3 @21)

Equations (2.19)-(2.21) represent the generalized formulation of the fluid—particle system.
Now, we intend to introduce the energetics of the two-phase flow system by balancing the energy
of the system.

The instantaneous kinetic energy per unit volume in the two-phase flow system is

E= %pmvl-z. (2.22)

The time-averaged form of equation (2.22) is thus

E= %ﬁmﬁiz + pr’nv]fﬁ]' + 2,omv V2. (2.23)
e
Ex Er

In equation (2.23), the Ek signifies the time-averaged kinetic energy per unit volume in the
two-phase flow system resulting from the mean flow, while the Et represents the time-averaged
TKE per unit volume in the two-phase flow system resulting from the fluctuations. Hence, the
energy balance equation becomes

dE  dEx |, dEt
dt — dt T odt

Using the mathematical operation d(-)/dt=4(-)/dt+v;d(-)/9x; and neglecting the smaller
order terms, the energy balance of the two-phase flow system is obtained as

(2.24)

=t S A Yo QT = , @2
ot Tl T YT 0 T oy ox; aref) = gei,  @25)

where &j= viQ]fi defining the component of the current density vector of the TKE along x;,

resulting from molecular mixing, Q =0. 5.(2/ st i describing the TKE dissipation per unit volume in
the two-phase flow system and s;; = 9v;/ Bx] + 9v;/dx;. The terms appearing in the right-hand side
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of equation (2.25) can be interpreted as follows: the first term signifies the loss in TKE in lifting
the particles. The second term describing the gain in TKE resulting from the work done owing
to pressure fluctuations is vanishingly small and therefore neglected. The third term denotes the
gain in TKE resulting from molecular mixing. The fourth term designates the TKE dissipation.
The fifth term represents the gain in TKE owing to turbulent mixing and the last term expresses
the gain in TKE resulting from the energy of time-averaged flow.

Under two-dimensional steady homogeneous turbulent flow, equations (2.19)—(2.21) and (2.25)
reduce to

dw d [wc(l—20)
= A— |, 2.2
dz dz [ 1+ Ac } (2.26)
_dc d — _.d [we(l—c)
() AT) — 27
Yz dz(cw)—'—(l—'— C)dz[ 1+ Ac ]' @27)
d e —— Ul _
&[(1 + Ac)(uw + w'w') + Auc'w'] = 7(1 + AC) (2.28)
dE — d (1 —— —du 1 —du
and z‘ud—ZT + Apdw'g +Q + e (Epfvlfzw’> + pfu’w’d—z + Epfw/2£ =0, (2.29)
where /1 is the flow depth and u, is the friction velocity.
Integrating equation (2.26) results in
- wc(l —7)
=—-A|—], 2.30
v [ 1+ AC ] (2:30)

where the integration constant is assumed to be zero, as the vertical velocity vanishes at the free
surface.

Inserting equation (2.30) into equation (2.27) and performing the integration yield
dw' = wi(l —0). (2.31)

Further, integration of equation (2.28) with the boundary condition —u/'w’|,—¢ = ui and using
equations (2.30) and (2.31) yield

Ff=1-2z", (2.32)

where T is 7/ u,%, 7 is the Reynolds shear stress (relative to mass density of fluid pf) given by -uw'w'
and z* is z/h. Equation (2.32) reveals that the Reynolds shear stress profile, even in a two-phase
flow system, displays a linear variation with the vertical distance when the velocity fluctuations
of fluid flow are replaced by the velocity fluctuations in the two-phase flow system. To check
the validity of equation (2.32), we consider the experimental data of Lyn [9] (runs 1957EQ and
1965EQ) and Cellino & Graf [11] (runs SLF3 and SAT), as depicted in figure 2. A brief summary
of the experimental conditions is furnished in table 2. Figure 2 shows that the computed 7(z™)
profiles have an excellent agreement with the experimental data. However, for z+ <0.18, the
experimental data of Cellino & Graf [11] depart from the linear relationship (equation (2.32)). This
is attributed to the fact that for z* < 0.18, the Reynolds shear stress profile exhibits a considerable
damping owing to the reduced velocity fluctuations in the vicinity of the boundary. In fact,
equation (2.32) represents the total shear stress profile (summation of Reynolds shear stress and
viscous shear stress). As the viscous shear stress is practically negligible except within the thin
viscous sub-layer, the Reynolds shear stress composes the total shear stress. Therefore, equation
(2.32) is legitimate above the viscous sub-layer.
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Figure 2. Computed 7 profiles compared with the experimental data of Lyn [9] and Cellino & Graf [11].
Table 2. Brief summary of experimental conditions.
author run h (mm) d (mm) Uy (ms™) 7
Montes [7] 20 3 0.3899 0.06917 2

Because equations (2.26)—(2.29) do not form a closed system, we adopt the following closure

relationships:

2
vl/v]/ = gksy — alsij, (2.33)
3 3 3
1 5 ok
3 Z Z V! v]’» =-n) o= (2.34)
j=1 i=1 j=1 "
3 3 Y
and Z c’v]f =—03 P (2.35)
j=1 =1 7%

where k represents the TKE transmitted to unit mass in the two-phase flow system and o1, 0, and
o3 are the scalar coefficients. Introducing the turbulent length scale L, we can write o1 = o5 = Lk!/2
and o3 = Lk1/2 /Sc [24], where Sc is the turbulent Schmidt number, a phenomenological constant,
which is considered here as unity, for simplicity. The L can be expressed as L =k yz [25], where «
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is the von Kédrman constant (=0.41) and y is the universal constant (=0.5) [25]. Furthermore, the
Q in equation (2.29) is expressed as Q = ey k32 /L [24,25].

Measurements evidenced that in fluid with suspended particles, the flow around the
neighbouring settling particles induces a larger drag in comparison with that in a pure fluid
(without particles), known as hindered settling effect. This effect yields a settling velocity in a
two-phase flow system (particle-laden fluid) to reduce from that in a pure fluid. Thus, we
write w = ws(1 — ¢)" [26], where ws is the settling velocity in a pure quiescent fluid and # is an
exponent. Under such consideration and using the closure relationships (equations (2.33)—(2.35))
in conjunction with equations (2.30)-(2.32), equations (2.26)-(2.29) reduce to the following three
equations:

de Ze(1 — )t

dzt ~ yrrknz (2.36)
(cilzii - ,c:z%kz:l/z (2.37)

and K12+ ji]g (2]5*74;/2 . % k+1/2> jZLi
_ G%za oty Zé . k;/ o (Kj,)Z , (;/—:f, -

where Z is the Rouse number [=wsSc/ (k1i4)], kt is k/u2, u™ is ii/u, and G is u,%/(Agh). Equations
(2.36)—(2.38), illustrating the complete dynamics of the two-phase flow system, provide a closed
form solution that can be obtained numerically subject to specified boundary conditions.

3. Numerical implementation and boundary conditions

To solve the above set of equations, we set a reference level at z = a, where the reference horizontal
velocity, the reference concentration ¢, and the reference TKE are being specified. For the
numerical computations, we set the reference values as a* (=a/h)=5x 1072, ut (zt =at) =15,
¢a=1073 and k* (z* =aT)=y 2 [25]. These reference values may change depending on the
experimental conditions. At the free surface (z="), we set a vanishing flux boundary condition
suggesting 9k/dz~0. To compute the theoretical curves in subsequent figures, we assume
g=981ms2, h=0.15m, u, =5x102ms~! and A =165, implying G=10"3. According to
Richardson & Zaki [26], n varies from 4.9 to 2.3 depending on the particle Reynolds number
varying from 10! to 10%. Here, we consider n=4 as an average natural integer. However, to
validate the results with the experimental data, suitable boundary conditions are considered from
the experimental conditions. With these considerations, equation (2.38) is first transformed to
two ordinary differential equations of the first order. Then, the system of resulting equations is
simultaneously solved numerically to illustrate the evolution of different key parameters and the
turbulent structure of the two-phase flow system.

4, Results and discussion

Here, we present the vertical profiles of suspended particle concentration, horizontal velocity,
TKE, TKE flux, TKE diffusion rate, TKE production rate, TKE dissipation rate, the Kolmogorov
number and turbulent length scales. We also investigate their variations with the Rouse number.
For the validation of model results, we consider the experimental data of several investigators.
The experimental conditions are briefly summarized in table 2.

In figure 3, we plot the normalized concentration c*(=¢/¢,) as a function of normalized vertical
distance z* for different Z (=2, 1, 0.5 and 0.25). As a smaller value of Z indicates finer particles,
¢t for a given z* diminishes with an increase in Z. For finer particles, finite values of ¢* at the
free surface (z* = 1) are meaningful, while for coarser particles, the ¢* at the free surface becomes
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Figure 3. Computed ¢ (z™) profiles for different 7 (=2, 1, 0.5 and 0.25). (Online version in colour.)

vanishingly small. Interestingly, for zt < 0.2, the set of ¢ (z*) curves for different Z are converging
in nature.

Figure 4 shows the comparison between the computed ¢*(z 1) profiles and the experimental
data of Montes [7] for runs 20 and 24, Coleman [8] for runs 22 and 33, and Lyn [9] for runs
1957ST2A and 1957ST2B. Overall, the computed profiles have a satisfactory agreement with the
experimental data, excepting the experimental data of Lyn [9], for which the computed c*(z")
profiles slightly overestimate the experimental data.

As the suspended particles suppress turbulence resulting from the energetics of the two-
phase flow system, equation (2.37) shows that the velocity gradient increases with the
suspended particle concentration. It indicates that the local strain rate of fluid element
enhances in a two-phase flow system. This phenomenon corroborates with the observations
of Bennett et al. [13]. It is worth noting that a satisfactory comparison of computed ¢t (z™)
profiles with the experimental data is not the sufficient condition to test the performance
of an analytical model. This is attributed to the fact that the ¢*(zt) and u't(z") profiles
are mutually dependent. Therefore, a simultaneous comparison of the theoretical ¢*(z") and
ut(z%) profiles with the corresponding measurements would be more useful. For this reason,
in figure 5, we show the computed ut(z") profiles compared with the experimental data
of Montes [7], Coleman [8] and Lyn [9] for the same runs as considered in figure 4. In
figure 5, the computed u™(z1) profiles, in general, have a good agreement with the experimental
data. However, the computed ut(zt) profiles marginally depart from the experimental
data of Lyn [9]. The departure of the computed ct(z*) and uT(z") profiles from the
experimental data is due to the presence of strong secondary currents, which can significantly
change the dynamics of suspended particles by affecting the concentration and velocity
profiles.

Figure 6 depicts the variation of k* with z*t for different Z (=2, 1, 0.5 and 0.25). As the
suspended particles weaken the strength of the turbulent eddies to carry the particles, the
resulting TKE must diminish [13]. In other words, the work done to keep the particles in
suspension is to reduce the turbulence resistance in particular and therefore, the TKE reduces.
Moreover, the coarser particles are to reduce the turbulence strength more than the finer ones as
the local strain rate of fluid element tries to suppress the turbulence fluctuations. Hence, for a
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Figure 4. Computed ¢ (z™) profiles compared with the experimental data of Montes [7], Coleman [8] and Lyn [9].

given z*, the kt reduces with an increase in Z. On the other hand, for a given Z, the kT decreases
with an increase in z* satisfying the no-flux boundary condition, that is, 3k /9zt ~0atzt =1.
Considering isotropic turbulence, we can write the horizontal turbulence intensity as tiyms[=
W)Y Ju, ] = kT /3)1/2. The computed ilyms(zT) profiles are compared with the experimental
data of Cellino & Graf [11] for runs SLF3 and SAT, as shown in figure 7. The comparison is more

6400102 2L ¥ 905y 01 BioBusiqndiraposiefor-edss



Downloaded from https://royalsocietypublishing.org/ on 25 October 2022

1.0

run 20 run 24 :
0.8 <& Montes [7] o Montes [7] <&
I computed ] computed Z
>
064 7z-2 1 z=23 o
z i
0.4 4 =
0.2 1 2
<G <
() m— B, — R e Q?.?ﬁgﬁ.., ......... e
1.0
| run 22 | run 33
o Coleman [8] o Coleman [8]
0.8 computed ] computed
0.6-2=0.75 42Z=0.8
+ i o
Z
0.4 1 .
0.2 . o
4 ] oo
<><>
0 LS U ) TR L R ] FLEL L R e L) R L LU L B L R e R [ L LR i IR L L
1.0 5
|run 1957ST2A | run 1957ST2B ©
0glo Ll it |o  Lyn[9] :
computed  [© | computed
>
0.6_Z:1,5 1Z=1.2 >
»
Z+
0.4 - -
0.2 $ E &)
< §O
0 """"" | B RS LR  EREEEREEET N R [ LR R § SRR RN R BT R
0 10 20 30 40 0 10 20 30 40
ut ut

Figure 5. Computed u™ (z™) profiles compared with the experimental data of Montes [7], Coleman [8] and Lyn [9].

satisfactory for run SAT than run SLF3. A slight departure of the computed ii;ms(z™) profiles
from the experimental data for run SLF3 is possibly due to the uncertainties associated with the
measurement of instantaneous velocity close to the free surface.

The TKE flux, obtained from equation (2.34), is expressed as fi, = —Lk/?9k/dz. Figure 8
represents the variation of normalized TKE flux Fi,(= fiw/ u) with z* for different Z (=0.25, 0.5,
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Figure 7. The computed &,y () profiles compared with the experimental data of Cellino & Graf [11].

1 and 2). Because the Fy, is influenced by the combined action of the local TKE and its gradient, it
is found that for a given Z, the Fi,(z") profiles appear as inverted S-shaped curves, forming two
protuberances. Figure 6 shows that for a given Z, the 8kt /9z" is essentially negative, while for a
given z*t, the kT reduces with an increase in Z. As the decay of 9kt /dz" with z" is faster than that
of k*, the Fy,, for a given z" increases with an increase in Z, indicating that the coarser particles
are more effective to enhance the TKE flux than the finer ones.

The TKE diffusion rate is defined as tp = dfy,,/3z. The variation of normalized TKE diffusion
rate Tp(=tph/ ui) with z* for different Z(=0.25, 0.5, 1 and 2) is illustrated in figure 9. In
the vicinity of the boundary and most of the upper region, the Tp is negative, while in the
intermediate region, it is positive. For a clear understanding, an enlarged frame bounded by
zt€[0.9, 1] and Tp €[-0.8, —0.4] shows the typical variation of Tp with z* for different Z. It
is evident that for a given z*, Tp increases with an increase in Z. This represents that the coarser
particles are to increase the TKE diffusion rate in a two-phase flow system.

Furthermore, we are interested to analyse the characteristics of TKE production rate (tp)
and TKE dissipation rate (¢) in the two-phase flow system. By definition, they are given by
tp = 1(9i1/9z) and € =Q/ps=y*k®/2/L. The normalized tp and € are expressed as (Tp,Ep) =
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Figure 8. Computed Fy,, (z™) profiles for different Z (= 0.25, 0.5, 1and 2). (Online version in colour.)
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Figure 9. Computed Tp(z™) profiles for different Z (=0.25, 0.5, 1and 2). (Online version in colour.)

(tp, €) x h/ui. The variation of Tp with z* for different Z(=0.25, 0.5, 1 and 2) is presented in
figure 10. The enlarged frames bounded by z* €[0.9, 1] and Tp € [0, 0.05] and z* €[0.94, 0.95] and
Tp €[0.01, 0.016], respectively, help to envisage the typical variation of Tp with z* for different
Z. Figure 10 shows that for a given z", Tp increases with an increase in Z. This is attributed to
an enhanced velocity gradient with an increase in Z. To be explicit, the coarser particles are to
increase the TKE production rate. On the other hand, the Ep(z™") profiles for different Z (=2, 1,
0.5 and 0.25) are shown in figure 11. As the Ep ~ K372, an enlarged frame bounded by z* €[0.9, 1]
and Ep €[0.45, 0.75] indicates that for a given z", Ep increases with a decrease in Z, indicating
that the resulting TKE dissipation rate reduces when coarser particles are mostly present in the
two-phase flow system. Figures 10 and 11 show that for a given z*, the behaviour of Tp(Z) is
contrary to that of Ep(Z). This is primarily attributed to the fact that at any vertical distance,
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Figure 1. Computed £y(z™) profiles for different Z (=2, 1,0.5 and 0.25). (Online version in colour.)

the TKE diffusion rate, the TKE production rate and the TKE dissipation rate always maintain a
dynamic equilibrium from the perspective of the energetics of the two-phase flow system, given
by equation (2.29).

To determine the influence of suspended particles on the flow dynamics, the Kolmogorov
number (Ko) is often used. For stratified fluids, the Kolmogorov number is similar to the
Richardson number. The Ko represents the relative expenditure of TKE production rate to retain
the particles in suspension [24]. The Ko is expressed as

Agclwl K2)/Z+k+1/2 7 .
Ko = = 21—t 41
°T Tdijdn) T (1—z)2 c1-9 (1)

Figure 12 depicts the Ko(z 1) profiles for different Z (=2, 1, 0.5 and 0.25). In general, for a given Z,
the Ko slowly increases with z* and then its evolution suddenly escalates for a larger z*. Equation
(4.1) reveals that the Ko is affected by k¥, Z and ¢. Therefore, in the limit z+ — a™, the enlarged
frame, bounded by z* €[0.05, 0.07] and Ko € [0, 0.02], depicts that for a given z*, Ko increases
with an increase in Z, because the Ko approximately scaled as Ko~ Z in the limit z+ —a™. It
suggests that in the limit z* — a*, the relative expenditure of TKE production rate to retain the
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Figure 12. Computed Ko(z™) profiles for different Z (=2, 1, 0.5 and 0.25). (Online version in colour.)

particles in suspension is more for the coarser particles because the downward settling flux is
larger for coarser particles. However, as zt increases, the kT and ¢ diminish at a much faster rate
with Z (figures 3 and 6). Therefore, away from the reference level, Ko for a given z* increases with
a decrease in Z.

Finally, we are interested to explore the behaviour of the inherent turbulent length scales,
such as Prandtl’s mixing length (I), Taylor microscale (1) and Kolmogorov length scale (7). In
normalized form, they are expressed as

) ; 1/2
= , 42
[ <du+/dz+>|du+/dz+|} “2
4\ 1/2
x+:<10k ) 12 (4.3)
Ep
and nt=EpA 0, (4.4)

where (It, A%, nT)=(, A, n)/h, ] =u.h/v and v is the coefficient of kinematic viscosity of fluid.
Here, we consider v =10~ m? s~ 1. Figure 13 depicts the profiles of I*(z*), AT (z*) and n*(z*) for
different Z in the left panel. On the other hand, the right panel demonstrates the enlarged view of
the curves in the small rectangular frames. For a given zt, It increases with a decrease in Z owing
to an increased velocity gradient with an increase in Z. This feature reveals that the effective
traversing distance of an eddy from its generation to degeneration reduces with an increase in
particle size before transmitting the energy to the ambient fluid. By contrast, AT and n* increase
with an increase in Z. Equations (4.3) and (4.4) show that the A" is jointly influenced by k™ and
Ep, while the 57 is solely affected by Ep. Importantly, for a given zT, both k™ and Ep increase
with a decrease in Z. Therefore, AT is mutually dependent on k*(Z) and Ep(Z). The enhanced
trend of n*(z") with an increase in Z corresponds to that of the Ep(z") with a decrease in Z.
These observations disclose that the characteristic size of an eddy in the inertial subrange and the
dissipation range increases with an increase in particle size, as the coarser particles dampen the
TKE dissipation rate in the two-phase flow system.

The present mathematical model thus provides a complete picture of the turbulent
characteristics of the two-phase flow system by a dynamic coupling of the suspended particle
concentration, flow velocity and the energetics of the two-phase flow system. This study,
therefore, remedies the existing shortcomings of the diffusion theory by considering the dynamics
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Figure 13. Computed /(z*), A.(z") and n(z™) profiles for different Z (=2, 1, 0.5 and 0.25). (Online version in colour.)

of fluid flow that is affected by the presence of suspended solid particles. Moreover, it takes into
account the reduction in pulsation energy resulting from the work done to keep the particles in
suspension. It can be applied to simulate the advection of suspended particles in loose boundary
streams, especially in field conditions. The variations of several key turbulence parameters with
the Rouse number demonstrate a clear understanding of the dynamics of the two-phase flow
system. However, for the simulation of the dynamics of the two-phase flow system considering
the impact of cohesive force and particle collisions, further investigation is required as a future
scope of research.
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5.

Conclusion

A mathematical model of the two-phase flow system is developed by a dynamic coupling of the
suspended particle concentration, flow velocity and the energetics of the two-phase flow system.
The main conclusions of the study are as follows:

(i) The Reynolds shear stress in a two-phase flow system still obeys a linear law when the
fluid velocity fluctuations are replaced by the velocity fluctuations of the two-phase flow
system.

(ii) Unlike the suspended particle concentration profile obtained from the Rouse equation,
the concentration profiles obtained from this study do not vanish at the free surface.
However, the concentration reduces with an increase in the Rouse number. On the other
hand, the horizontal velocity component marginally increases with an increase in the
Rouse number owing to an enhanced velocity gradient, while the TKE decreases.

(iii) The TKE flux, diffusion and production rates increase with an increase in the Rouse
number. On the contrary, the TKE dissipation rate increases with a decrease in the Rouse
number.

(iv) In close proximity of the reference level, the Kolmogorov number increases with an
increase in the Rouse number. However, away from the reference level, it increases with
a decrease in the Rouse number.

(v) The Prandtl’s mixing length increases with a decrease in the Rouse number. It results
from an increased velocity gradient with an increase in the Rouse number. By contrast, the
Taylor microscale and the Kolmogorov length scale increase with an increase in the Rouse
number owing to the damping of the TKE dissipation rate by the coarser suspended
particles.
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