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Abstract

Thermal leptogenesis in the canonical seesaw model in supersymmetry suffers from the incom-

patibility of a generic lower bound on the mass scale of the lightest right-handed neutrino and

the upper bound on the reheating temperature of the Universe after inflation. This is resolved by

adding an extra singlet superfield, with a discrete Z2 symmetry, to the NMSSM (Next to Minimal

Supersymmetric Standard Model). This generic mechanism is applicable to any supersymmetric

model for lowering the scale of leptogenesis.
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I. INTRODUCTION

In the minimal standard model (SM), neutrinos are massless. However, small nonzero neu-

trino masses are required by the atmospheric and solar neutrino experiments. A natural

explanation for such tiny neutrino masses in the SM comes from an effective dimension-5

operator [1]

LΛ =
fαβ
Λ

(ναφ
0 − lαφ

+)(νβφ
0 − lβφ

+) +H.c., (1)

where (να, lα), α = e, µ, τ are the usual left-handed lepton doublets transforming as (2,−1/2)

under the standard electroweak SU(2)L ×U(1)Y gauge group and (φ+, φ0) ∼ (2, 1/2) is the

usual Higgs doublet of the SM. There are three realizations of this operator [2], the most

popular one being the canonical seesaw [3] mechanism which adds three singlet heavy neutral

fermions Ni, i = 1, 2, 3 to the SM Lagrangian. The neutrino mass matrix is then given by

Mν = −MDM−1

N MT
D (2)

where MD is the 3×3 Dirac mass matrix linking να with Ni through the Yukawa interactions

hαi(ναφ
0 − ℓαφ

+)Ni.

The Majorana masses of Ni violate lepton number by two units. Therefore, in the early

Universe, a net lepton asymmetry may be generated [4] through the out-of-equilibrium decay

of the lightest Ni (call it N1). The generated lepton asymmetry then gets converted into a

baryon asymmetry through the interactions of the SM sphalerons [5] which conserve B−L,

but violate B+L, where B and L are baryon and lepton number respectively. The existence

of Ni explains thus at the same time why both neutrino masses as well as the observed

baryon asymmetry of the Universe (BAU) are nonzero and small.

In supersymmetric theories the reheating temperature (Th) following inflation is likely to

be rather low [6, 7]. Although some models [8] may allow a higher reheating temperature, in

the conventional models Th is bounded strongly from above by the possible overproduction

of gravitinos. On the other hand, in the simplest version of the seesaw mechanism the

condition for thermal leptogenesis requires that the mass M1 of the lightest right-handed
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neutrino N1 should be much higher than Th, assuming that N1 contributes to the left-handed

neutrino masses dominantly. Since inflation would erase any pre-existing lepton asymmetry,

the asymmetry generated by N1 after inflation would be highly suppressed by its small

number density and hence this mechanism will fail to explain the BAU.

To avoid this problem, several ideas have been discussed in the literature [10, 11, 12].

An attractive scenario is the extended seesaw mechanism [13, 14]. In this paper we follow

the same scheme and work with the canonical seesaw mechanism (SM plus three Ni) in the

Next to Minimal Supersymmetric Standard Model (NMSSM), which has an extra singlet

superfield χ. To distinguish Ni from χ, an exactly conserved Z2 discrete symmetry is im-

posed, corresponding to (−1)L. We then add an extra heavy singlet superfield S, together

with a softly broken discrete symmetry Z ′
2, under which S is odd and all others are even.

As a result, the production and decay channels of S are different, and the out-of-equilibrium

decay of S can take place much below the mass scale of the lightest right-handed neutrino

N1. The lower bound on the mass scale of S can then be compatible with the upper bound

on the reheating temperature after inflation.

The rest of this paper is arranged as follows. In section II we review the canonical

leptogenesis and briefly recall the Davidson-Ibarra (DI) bound on the mass scale of N1. In

section III we discuss an extended seesaw model by introducing an additional heavy singlet

fermion S of mass less than that of N1. In section IV we discuss how the thermal-leptogenesis

constraint on the mass scale of S can be lowered in comparison with the mass scale of N1.

In section V we solve the required Boltzmann equations numerically and show how the

low mass scale of S is compatible with thermal leptogenesis. In section VI we state our

conclusions.

II. CANONICAL LEPTOGENESIS AND DI BOUND

In canonical leptogenesis the lightest right-handed neutrino N1 decays into either ℓ−φ+ and

νφ0, or ℓ+φ− and ν̄φ̄0. Thus a CP asymmetry can be established from the interference of
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the tree-level amplitudes with the one-loop vertex [4] and self-energy corrections [15]. A net

lepton asymmetry arises when the decay rate

Γ1 =
1

8πv2
m̃1M

2
1 (3)

fails to compete with the expansion rate of the Universe

H(T ) = 1.66g1/2∗

T 2

Mpl
(4)

at T ∼ M1, where m̃1 = (m†
DmD)11/M1 is the effective neutrino mass parameter, g∗ ≃ 228

is the effective number of relativistic degrees of freedom in the MSSM and Mpl = 1.2× 1019

GeV. This means that a upper bound on m̃1 may be established by first considering the

out-of-equilibrium condition H(T = M1) > Γ1 which gives

m̃1 < 1.6× 10−3eV . (5)

However, for m̃1 > 10−3eV a reduced lepton asymmetry may still be generated, depending

on the details of the Boltzmann equations which quantify the deviation from equilibrium of

the process in question.

Assuming a normal mass hierarchy in the right handed neutrino mass spectrum the CP

asymmetry ǫ1 is given by

ǫ1 ≃ − 3

8πv2

(

M1

M2

)

Im[(m†
DmD)12]

2

(m†
DmD)11

. (6)

The baryon-to-photon ratio of number densities has been measured [16] with precision,

i.e.

ηB ≡ nB

nγ

= 6.1+0.3
−0.2 × 10−10. (7)

To get the correct value of ηB, one needs ǫ1 to be of order 10−6 to 10−7. However, using the

DI upper bound on the CP asymmetry parameter [9]

|ǫ1| ≤
3M1

8πv2

√

∆m2
atm (8)

one can get a lower bound on the mass scale of the lightest right-handed neutrino as

M1 ≥ 2.9× 109GeV

(

ηB
6.1× 10−10

)(

4× 10−3

(nN1
/s)δ

)

( v

174GeV

)2

(

0.05eV
√

∆m2
atm

)

, (9)
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where v is the vacuum expectation value (vev) of the SM Higgs and it is also assumed that

the physical left handed neutrinos follow the normal mass hierarchy. Since Th is not likely

to exceed 109 GeV, this poses a problem for canonical leptogenesis. In order to overcome

this problem we consider an extended seesaw model as follows.

III. THE MODEL FOR THERMAL LEPTOGENESIS BELOW THE DI BOUND

In a recent paper [13] we proposed a singlet mechanism to overcome the DI bound shown

in Eq. (9). We now present a realistic model where this mechanism can be implemented.

One more ingredient has been added to produce these singlet fields abundantly in a thermal

bath.

We start with the NMSSM model, which includes a singlet superfield χ in addition to

the usual particles of the Minimal Supersymmetric Standard Model (MSSM). To implement

the seesaw mechanism, we also include three right-handed neutrinos Ni, i = 1, 2, 3. We

then demonstrate how a minimal extension of this model may admit a very low scale of

leptogenesis, thus overcoming the gravitino problem. We include another singlet superfield

S and impose a Z2×Z ′
2 discrete symmetry. Under Z2, the lepton superfields Li, l

c
i , Ni, S are

odd, whereas the Higgs superfields φ1,2, χ are even. This corresponds to having an exactly

conserved lepton number (−1)L, or the usual R−parity of the MSSM. Under Z ′
2, S is odd and

all others are even, but Z ′
2 is allowed to be broken softly. The most general superpotential

invariant under Z2 × Z ′
2 is then given by

W = he
ijLil

c
jφ1 + hijLiNjφ2 + µφ1φ2 +MijNiNj +Mχχχ

+αχχχ+ βχφ1φ2 + fNχNiNj +MSSS + fSχSS. (10)

We do not discuss quarks nor other interactions of the NMSSM, which have been studied

elsewhere. We deal only with neutrino masses and leptogenesis.

We now break Z ′
2 softly and the only possible such term is

Ws = diNiS,
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i.e. exactly as required to implement the singlet mechanism of ref. [13]. This allows S to

mix with Ni to form a 7× 7 mass matrix in the basis [Li Ni S], i.e.

M =











0 mD 0

mD MN d

0 d MS











(11)

where MS = fS〈χ〉, and without loss of generality we choose MN to be diagonal with masses

M1,2,3. For small di/(Mi −MS) as well as the usual seesaw assumption that the entries of

mD are very small relative to Mi, the heavy masses are roughly given by

MS′ ≃ MS −
∑

i

d2i
Mi −MS

,

MN ′

i
≃ Mi +

d2

Mi −MS
, (12)

corresponding to the mass eigenstates S ′ and N ′
i

S ′ ≃ S −
∑

i

di
Mi −MS

Ni

N ′
i ≃ Ni +

di
Mi −MS

S. (13)

The light neutrino mass matrix is then

(mν)ij ≃ −
∑

k

(mD)ik

(

Mk +
d2k

Mk −MS

)−1

(mD)kj. (14)

In the limit di → 0 we recover the neutrino masses as in the canonical seesaw mechanism.

We assume thus MS′ ≃ MS and MN ′

i
≃ MN in the following.

IV. LEPTON ASYMMETRY AND LOWER BOUND ON MS

In this model, the addition of S allows the choice MS < M1. The induced couplings of S

to leptons are suppressed by factors of di/Mi compared to those of Ni. The decay rate of S

is thus given by

ΓS
D =

1

8πv2
MS

∑

i

[

m̃iMi(di/Mi)
2
]

, (15)
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where we have assumed Ms ≪ Mi and the effective neutrino mass parameter is defined as

m̃i =
(m†

DmD)ii
Mi

. (16)

Assuming that d1
M1

= d2
M2

= d3
M3

and m̃3 > m̃2 > m̃1 the above Eq. (15) can be rewritten as

ΓS
D ≃ 1

8πv2
MSm̃3M3(d3/M3)

2 . (17)

The out-of-equilibrium condition ΓS
D < H(T ∼ MS) is thus suppressed by a factor

η =

(

d23
M3MS

)(

m̃3

m̃1

)

≡ κ

(

m̃3

m̃1

)

(18)

in comparison to Γ1/H(T ∼ M1) and hence can be satisfied at a lower mass depending on

the value of d3. The value of m̃3, m̃1 and M3 can be approximately fixed from the low energy

neutrino oscillation data. So, the remaining free parameters are d3 and MS on which the

suppression factor η depends.

➛ ➛

➛

➛

X ➛

➛ ➛

➛
S N

φ

N

φ

l

l

➛
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➛S N

l

φ

➛ ➛

➛

➛
➛

➛

X

➛

➛S Û N

φ

N

φ

l

l

FIG. 1: Tree-level and one-loop (self-energy and vertex) diagrams for S decay, which interfere to

generate a lepton asymmetry.

The CP asymmetry generated by the decays of S comes from the interference of the

tree-level and one-loop diagrams of fig. (1). Both the numerator and denominator of Eq.

(6) are then suppressed by the same (di/Mi)
2 factor, and we obtain

ǫS ≃ − 3

8πv2

(

MS

M2

)

Im[(m†
DmD)12]

2

(m†
DmD)11

, (19)
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where we have assumed that M1 ≪ M2 ≪ M3. Thus we see that the CP asymmetry

parameter is independent of the suppression parameter d3. Therefore, depending on the

value of κ the L-asymmetry will saturate at different temperatures as implied by Eq. (18).

This is shown in Section V by numerically solving the required Boltzmann equations. As

demonstrated in fig. (8) the value of MS can be lowered much less than the DI bound on

M1 by an appropriate choice of d3. This is because the low values of MS are not restricted

by the low energy neutrino oscillation data for di ≪ Mi as we have seen from Eq. (12).

Moreover the washout effects are suppressed for low values of (d3/M3). So, a successful

lepton asymmetric universe before the electroweak phase transition can be created even for

a TeV scale of S.

V. NUMERICAL ESTIMATION OF LEPTON ASYMMETRY

A. Production and decay of S

In this model S is produced through the decay of χ. The corresponding Yukawa coupling

fS can be as large as of order unity. Therefore, S can be brought to thermal equilibrium

through the scattering processes: SS̄ → SS̄, SS̄ → χχ† and χS → χS. Note that these

processes never change the number density of S, but they keep S in kinetic equilibrium.

The decay rate of χ can be given by

Γχ
D =

f †f

8π
Mχ

(

1− 4M2
S

M2
χ

)3/2
K1 ((Mχ/MS)z)

K2 ((Mχ/MS)z)
. (20)

where (K1/K2) is the boost factor and z = MS/T . Thus the inverse decay of χ is given by

Γχ
ID = (neq

χ /neq
S )Γχ

D.

Once the S particles are produced, they decay through the channel: S → ℓφ†, ℓ̄φ as shown

in fig. (1) which violates lepton number by two units. Apart from that, the other process

which depletes the number density of S is Sℓ → φ → Qt̄. This is shown in fig. (2).

The subsequent decay of S, below its mass scale, then produces the required baryon

asymmetry through the leptogenesis route. However, an exact lepton asymmetry can be

8
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φ
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FIG. 2: ∆L = ±1 processes which deplete the number density of S. These processes also deplete

the net lepton number density produced through the decay channel.

estimated by solving the required Boltzmann equations [17]. It is useful to define the Boltz-

mann equations in terms of the dimensionless variables YS = nS/s and YL = nL/s, where

YS is called the comoving density of S while YL is the density of net lepton in a comoving

volume and

s =
2π2

45
g∗T

3 (21)

is the entropy density. The required Boltzmann equations are given as

dYS

dz
= − (YS − Y eq

S )

[

ΓS
D

zH(z)
+

ΓS
s

zH(z)

]

(22)

and

dYL

dz
= ǫS

ΓS
D

zH(z)
(YS − Y eq

S )− Γℓ
W

zH(z)
YL , (23)

where ΓS
D, Γ

S
s and Γℓ

W simultaneously represent the decay, scattering and wash out rates

that takepart in establishing a net lepton asymmetry in a thermal plasma. The Hubble

parameter H(z) is given by

H(z) =
H(MS)

z2
with H(MS) = 1.67g1/2∗

M2
S

Mpl
. (24)

In a relativistic frame the decay rate (17) can be rewritten as

ΓS
D =

1

8πv2
MS

(

K1(z)

K2(z)

)

m̃3M3(d3/M3)
2 . (25)

The ΓS
s in Eq. (22) represents the processes which violate lepton number by one unit and

9



l

lφ

N

φ

φ

φl

l

 
N

FIG. 3: ∆L = ±2 processes which deplete the number density of net leptons.

is given by 1

ΓS = 4ΓS
φ,s + 2ΓS

φ,t . (26)

The ΓW in Eq. (23) represents the lepton number violating processes by two units and

is given by

ΓW =
1

2
ΓS
ID + 2Γl

φ,t + 2Γl
φ,s

(

YN1

Y eq
N1

)

+ 2Γl
N1 + 2Γl

N1,t , (27)

where ΓS
ID = (neq

S /neq
l )Γ

S
D. In Eqs. (26) and (27) the Γ’s are defined as Γx

i = (γi/n
eq
x ) where

γi is the scattering density. Note that the other ∆L = ±2 processes: ll → N1SN1 → φ̄φ̄,

and of course higher order processes, which contribute to Γℓ
W are suppressed in comparison

to the processes shown in fig. (3).

B. Solution of Boltzmann equations

In fig. (4) we have plotted the decay and inverse decay of χ and S against z. It is shown that

the inverse decay of ℓ + φ† → S is not sufficient to bring S into thermal equilibrium even

if the suppression factor d3 is as large as 108 GeV. On the contrary, the decay rate of χ is

sufficiently larger than the Hubble expansion parameter. Hence S can be brought to thermal

equilibrium through the scattering process involving χ as long as (Mχ/MS) ≃ O(101−2).

Therefore, at a temperature far above the mass scale of S it is in thermal equilibrium and

hence a net lepton asymmetry in the thermal plasma is zero. Below the mass scale of S

1 We have not included the SUSY processes. It is shown that upon inclusion of those processes the result

doesn’t change significantly [18].
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FIG. 4: The production and decay, and their inverse processes, are compared with the Hubble

expansion parameter H for a typical set of parameters. We have used MS = 108 GeV, Mχ = 1010

GeV, M3 = 1010GeV , m̃3 = 10−2 eV, d3 = 108 GeV and fS = 0.5.

the lepton number violating processes go out of thermal equilibrium and thus produce a net

lepton asymmetry dynamically. This is obtained by solving the Boltzmann equations (22)

and (23). We take the following initial conditions:

YS = Y eq
S and YL = 0 at z → 0 . (28)

The evolution of the number density of S and the corresponding asymmetry with respect

to z are shown in figs. (5), (6) and (7). At any epoch z the value of YS and the corresponding

asymmetry YL can be inferred from

z

sH(MS)
γS
D ∝ κm̃3 . (29)

Since the decay rate of S is suppressed by a factor of κ, the asymmetry is produced at late

times depending how small it is. However, the value of κ cannot be made indefinitely small.

Because a net L-asymmetry has to build up before the electroweak phase transition which

is required to be converted to the B-asymmetry through the sphaleron transitions. The

11



0.1 1 10 100 1000
z

-20

-15

-10

-5

0

lo
g(

Y
) Y

L

Y
SY

S

eq

FIG. 5: The evolution of S is shown against z with MS = 108 GeV, M1 = 109 GeV, M3 = 1010

GeV and d3 = 108 GeV and the CP asymmetry parameter is ǫS = 10−7.

final L-asymmetry is numerically obtained for three values of d3 in figs. (5), (6) and (7).

It is found that the final L-asymmetry is almost same apart from a numerical factor. This

is because for the delayed decay of S the wash out effects are comparatively small. While

κ = 10−2 and 10−4 are used in figs. (5) and (6), it is of 10−6 in fig. (7). As seen from figs. (5),

(6) and (7), for κ = 10−2, 10−4, 10−6 the value of YL is saturated at around zs ≃ 10, 102, 103

respectively. Assuming that a final L-asymmetry has to be produced before Tew ≃ 100 GeV

the minimum tolerable value of κ = 10−12 is obtained. This indicates that for M3 = 1010

GeV, d23 and MS can be readjusted among themselves so as to get the suppression factor κ

ranging from 10−2 to 10−12. This is shown in fig.(8). The solid line in fig. (8) is obtained

for MS = d3. The region above to that are defined by d3 > MS. So these values of d3

are unnatural and are not allowed. While the region below to the solid line are defined by

d3 < MS and hence is allowed for naturalness. Thus we see that a wide range of MS values

from 103 GeV to 108 GeV are allowed that can produce the required lepton asymmetry

before the electroweak phase transition.
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FIG. 6: The evolution of S is shown against z with MS = 108 GeV, M1 = 109 GeV, M3 = 1010

GeV and d3 = 107 GeV and the CP asymmetry parameter is ǫS = 10−7.

VI. CONCLUSIONS

We accomplished the baryogenesis via leptogenesis from the decay of an additional singlet

S in a supersymmetric extended NMSSM. The bound coming from the out-of-equilibrium

condition could be evaded because the couplings of the singlets cancel out from the asym-

metry, so the couplings could be small and can satisfy the out-of-equilibrium condition even

at low scales. In the simplest seesaw models the couplings of the lightest right-handed

neutrino could not be lowered much because that will not enable the thermal production

of these fields. However, in the present case there is one additional singlet field (χ) which

can produce these S fields, having large couplings to them, but itself not taking part in

leptogenesis.

Acknowledgments

The work of EM was supported in part by the U. S. Department of Energy under Grant

No. DE-FG03-94ER40837.

13



0.1 1 10 100 1000
z

-20

-15

-10

-5

0

lo
g(

Y
)

Y
S

Y
S

eq

Y
L

FIG. 7: The evolution of S is shown against z with MS = 108 GeV, M1 = 109 GeV, M3 = 1010

GeV and d3 = 106 GeV and the CP asymmetry parameter is ǫS = 10−7.

APPENDIX A: SCATTERING DENSITIES

In this appendix we give the various scattering densities that have been used in the

Boltzmann Eqs. (22) and (23).

γφ,s =
M4

SM3m
2
t

64π5v4z

(

d3
M3

)2

m̃3

∫ ∞

1

dx1

√
x1K1(z

√
x1)

[

1− 1

x1

]2

(A1)

γφ,t =
M4

SM3m
2
t

128π5v4z

(

d3
M3

)2

m̃3

∫ ∞

1

dx1

√
x1K1(z

√
x1)

[

1− 1

x1

+
1

x1

ln

(

x1 − 1 + y

y

)]

(A2)

where v is the vev of SM Higgs and x1 =
s

M2

S

, s being the Mandelstam variable, and y =
m2

φ

M2
s
.

γN1 =
M5

1MSm̃
2
1

128π5v4z

∫ ∞

0

dx2

√
x2K1

(

z
√
x2

M1

MS

)

[

1 +
1

D1(x2)
+

x2

2D2
1(x2)

{

1 +
1 + x2

D1(x2)

}

ln(1 + x2)

]

(A3)

γN1,t =
M5

1MSm̃
2
1

128π5v4z

∫ ∞

0

dx2

√
x2K1

(

z
√
x2

M1

MS

)[

x2

x2 + 1
+

1

x2

ln(x2 + 1)

]

(A4)

where x2 =
s

M2

1

and

1

D1(x2)
=

x2 − 1

(x2 − 1)2 +
(

Γ2

D

M2

1

) (A5)
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