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Lowcomplexity Generic VLSI Architecture Design

Methodology for N th Root and

N th Power Computations
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Abstract— In this paper, we propose a low complexity archi-
tecture design methodology for fixed point root and power com-
putations. The state of the art approaches perform the root and
power computations based on the natural logarithm-exponential
relation using Hyperbolic COordinate Rotation DIgital Computer
(CORDIC). In this paper, any root and power computations
have been performed using binary logarithm-binary inverse
logarithm relation. The designs are modeled using VHDL for
fixed point numbers and synthesized under the T SMC40-nm
CMOS technology @ 1 GHz frequency. The synthesis results

shows that the proposed Nth root computation saves 19.38%
on chip area and 15.86% power consumption when compared
with the state of the art architecture for root computation
without compromising the computational accuracy. Similarly,

the proposed Nth power computation saves 38% on chip area,
35.67% power consumption when compared with the state of the
art power computation with out loss in accuracy. The proposed
root and power computation designs save 8 clock cycle latency
when compared with the state of the art implementations.

Index Terms— CORDIC, logarithm, exponential, VLSI archi-
tecture, root computation, power computation, hyperbolic
CORDIC.

I. INTRODUCTION

R
OOT and power computations have been used in dif-

ferent areas such as atmospheric models, digital image

synthesis, 3-D graphics and many VLSI signal processing

applications [1]–[3]. However, the design and implementation

of low complexity as well as highly accurate VLSI architecture

of such N th root and N th power computation is a challenging

task for real time resource constrained platform.

There are various approaches available for root compu-

tation. The well known method is Newton-Raphson (NR)

method requiring an initial guess which may result different

precision in the outputs [4]–[6]. The hardware complexity of

NR method increases with increasing value of N . A General
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digit-recurrence algorithm is presented in [7] whose hardware

complexity like NR approach, also depends on N . In [8],

a top-level approach has been presented based on the binary

logarithm-binary inverse logarithm relation i.e, R
1
N = 2

log2(R)
N .

But this approach [8] did not present the implementation

details of the binary logarithm, division and binary inverse

logarithm. Another approach was presented in [9] based on the

natural logarithm-exponential relation i.e, R
1
N = ex p( ln(R)

N
)

where the natural logarithm, division and exponential com-

putations are performed using CORDIC. On the other hand,

the powers are computed using multipliers [10]–[13], in which

the square and cube operations were computed using reduced

partial product arrays and ancient Indian Vedic mathematics.

However, these approaches [10]–[13] are not generic for the

N th power computation. Such a generic approach for N th

power computation is proposed in [14] based on the natural

logarithm-exponential relation i.e, RN = ex p(ln(R) × N)

where the natural logarithm and exponential computations are

performed using CORDIC.

It is well known that the CORDIC performs several tasks

such as trigonometric, hyperbolic and logarithmic functions,

real and complex multiplications, division and square-root

using shift add operations [15]–[21]. However, the conver-

gence and precision of the CORDIC depend on its negative

index (m) and positive (n) boundaries respectively [15], [21]

(elaborated in section II, please see equation (11), (12)

and (13a)). The CORDIC convergence boundary (m) poses

the following limitations on the state of the art N th root and

N th power computations [9], [14].

• The CORDIC negative index boundary (m) limits the

input range of R and N . As m value increases the input

ranges of R and N will increase.

• As m value increases, number of CORDIC iterative stages

will increase in turn the hardware complexity, area, power

consumption and latency will increase.

Addressing the fore mentioned limitations, in this paper,

• We propose a low complexity architecture design method-

ology for the N th root and N th power computation

based on the binary logarithm-exponential relation using

CORDIC.

• We propose Binary Hyperbolic CORDIC algorithm to

perform the binary logarithm and inverse binary logarithm

computations.

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4938-4995
https://orcid.org/0000-0002-5636-0676


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

The highlights of this paper are given below.

• The proposed approach unlike the state of the art

approach will not depend on the CORDIC negative index

boundary (m) for logarithm and exponential computations

and thereby reduces the hardware complexity, power

consumption and latency.

• The proposed architecture and the state of the art archi-

tecture are coded in VHDL for fixed point numbers

and the ASIC implementation has been done at TSMC

45nm CMOS technology @ V DD = 1.08V and clock

frequency @ 1G H z with the help of Synopsis Design

Compiler (DC) and IC compiler. The synthesis results

show that the proposed N th root design saves 19.38% on

chip area, 15.86% power consumption when compared

with the state of the art architecture [9] without com-

promising the computational accuracy. Similarly, the pro-

posed N th power computation design saves 38% on chip

area, 35.67% power consumption when compared with

the state of the art power computation [14].

• The proposed approach is one order superior in accuracy

for the N th root computation and two order superior for

N th power computation.

• The proposed approach will fix the shortcomings of [8]

including the implementation of binary logarithm and

inverse binary logarithm computations.
The rest of this paper is organized as follows: Section II

provides the necessary theoretical background. Section III

introduces the proposed methodology. Section IV details the

experimental results and section V concludes the discussion.

II. THEORETICAL BACKGROUND

The state of the art approaches perform the N th root and

N th power computations based on the the natural logarithm-

exponential relation [9], [14]

R
1
N = ex p(

ln(R)

N
) (1a)

RN = ex p(ln(R) × N) (1b)

The computations shown in (1) have been divided into three

steps. The first step is the computation of the natural logarithm

i.e, ln(.) in both approaches [9], [14]. The next step is division

operation for root computation and multiplication operation for

power computation. The final step is exponential computation

i.e, ex p(.). The natural logarithm and exponential computa-

tions are performed in [9], [14] using Hyperbolic CORDIC.

The division operation is performed using linear CORDIC [9].

The basic working principle of Hyperbolic CORDIC can be

expressed as:
[

x f

y f

]

= RH ∗
[

x0

y0

]

; RH =
[

cosh(z) sinh(z)

sinh(z) cosh(z)

]

(2)

where [x0, y0] and [x f , y f ] are the initial and final position

vectors, RH is hyperbolic rotation matrix and z is the angle

of rotation [15]. By factoring out the cosh(z) term, the above

equation can be rewritten as follows
[

x f

y f

]

= cosh(z) ∗
[

1 tanh(z)

tanh(z) 1

] [

x0

y0

]

(3)

TABLE I

CONVERGENCE RANGE OF CORDIC

The CORDIC performs the rotation iteratively through an

angle αi instead of performing the rotation directly through

the angle z, where αi = tanh−1(2−i ). So that z can be

decomposed as follows

z =
n

∑

i=1

σiαi ; σi = ±1 (4)

where σi is decomposition factor. The iteration formula

for conventional Hyperbolic CORDIC can be expressed as

follows

xi+1 = xi + σi (2
−i yi ) (5a)

yi+1 = yi + σi (2
−i xi ) (5b)

zi+1 = zi − σi (tanh−1(2−i )) (5c)

where i is an integer starts with 1. The σi can be determined

by mode of operation [15]. Based on the mode of operation,

the CORDIC has been divided into two classes. One is rotation

mode CORDIC and other is vectoring mode CORDIC. The σi

for Hyperbolic Rotation (HR) mode CORDIC and Hyperbolic

Vectoring (HV) mode CORDIC is given by

σi = sign(zi ) (6a)

σi = −sign(yi ) (6b)

The scale factor for the Hyperbolic CORDIC K H is expressed

as:

K H =
n

∏

1

cosh(σiαi ) =
n

∏

1

cosh(αi ) =
n

∏

i=1

1
√

1 − 2−2i

(7)

From the CORDIC convergence theorem in [21], to guarantee

the convergence, the iterations i = 4, 13, 40, · · · , k, (3k + 1)

must be repeated. The maximum z value of conventional

Hyperbolic CORDIC is expressed as

|z|max =
n

∑

i=1

αi =
n

∑

i=1

tanh−1(2−i ) (8)

The iterative formula for Linear Vectoring (LV) mode

CORDIC [15] is expressed as follows

xi+1 = xi (9a)

yi+1 = yi + σi (2
−i xi ) (9b)

zi+1 = zi − σi (2
−i ) (9c)

where i is an integer starts with 0, and σi = −sign(yi). Table I

summarizes the convergence range of the HR, HV and LV

CORDIC as n → ∞. The convergence limits of CORDIC

shown in the Table I are not enough for the implementation

logarithm, exponential and division computations in practical

applications [9], [15], [21]. Hence, the convergence range for
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TABLE II

IMPROVEMENT IN CONVERGENCE RANGE OF CORDIC

the Hyperbolic CORDIC was improved in [21] by considering

the negative index numbers as i = −m,−m+1, · · · , 1, · · · , n.

However, the iteration formula can not be same as (5).

As mentioned in [21], when i ≤ 0, the term 2−i in (5) will be

replaced with the term (1 − 2−2−i+1
). The iterative formula of

Hyperbolic CORDIC (5) for i ≤ 0 can be rewritten as follows

xi+1 = xi + σi (1 − 2−2−i+1

)yi (10a)

yi+1 = yi + σi (1 − 2−2−i+1

)xi (10b)

zi+1 = zi − σi tanh−1(1 − 2−2−i+1

) (10c)

where σi is same as shown in (6). The iterative formula of

LV CORDIC for i ≤ 0 is same as shown in (9) [21]. If n is

large, the convergence of LV CORDIC depends on m which

is expressed as follows

zn ← z0 +
y0

x0
= V ecLz(m, n, x0, y0, z0) ≤ 2m+1 (11)

where V ecLz(.) represents the z component output of LV

CORDIC. If n is large, the x , y, z of the Hyperbolic CORDIC

tends to the results shown in (12) and (13a) for the rotation

and vectoring modes respectively.

xn ←
1

K H
(cosh(z0)x0 + sinh(z0)y0)

= Rot Hx(m, n, x0, y0, z0) (12a)

yn ←
1

K H
(sinh(z0)x0 + cosh(z0)y0)

= Rot Hy(m, n, x0, y0, z0) (12b)

zn ← 0 = Rot Hz(m, n, x0, y0, z0) (12c)

xn ←
1

K H

√

x2
0 − y2

0 = V ecHx(m, n, x0, y0, z0) (13a)

yn ← 0 = V ecHy(m, n, x0, y0, z0) (13a)

zn ← z0 + tanh−1(
y0

x0
) = V ecHz(m, n, x0, y0, z0) (13a)

where Rot Hc(.) and V ecHc(.) represent the rotation mode and

vectoring mode of the Hyperbolic CORDIC respectively and

c represents the output of x or y or z component. For different

values of m, the improvement in the convergence range of

CORDIC is summarized in the Table II. It can be noted from

Table II that the convergence range of CORDIC increases as

m increases. Now the steps involved in (1) can be computed

using HV, HR and LV CORDIC as follows [9], [14]:

Step1: The logarithm can be computed using HV CORDIC.

Consider inputs to the HV CORDIC as x0 = R+1, y0 = R−1

TABLE III

CONVERGENCE RANGE OF R AND N

and z0 = 0. The ln(R) can be computed as:

ln(R) = 2 × V ecHz(m, n, R + 1, R − 1, 0)

= 2 × tanh−1(
R − 1

R + 1
) (14)

The ln(R) value can be obtained by shifting the HV CORDIC

output shown in (14) by 1 bit to the left.

Step2: The division operation can be performed using LV

CORDIC by considering inputs to the LV CORDIC as x0 = N ,

y0 = ln(R) and z0 = 0

ln(R)

N
= V ecLz(m, n, N, ln(R), 0) (15)

Step3: The exponential computation can be performed

using the HR CORDIC by considering inputs as x0 = K H ,

y0 = 0 and z0 = ln(R)
N

. The outputs are xn = Rot Hx

(m, n, K H , 0, ln(R)
N

) = cosh( ln(R)
N

), yn = Rot Hy(m, n,

K H , 0, ln(R)
N

) = sinh( ln(R)
N

). The exponential is computed by

adding HR CORDIC outputs as follows

ex p(
ln(R)

N
) = Rot Hx(m, n, K H , 0,

ln(R)

N
)

+Rot Hy(m, n, K H , 0,
ln(R)

N
) (16)

In RN computation, the input to the HR CORDIC is z0 =
ln(R) × N . The above equation can be rewritten as

ex p(ln(R) × N) = Rot Hx(m, n, K H , 0, ln(R) × N)

+ Rot Hy(m, n, K H , 0, ln(R) × N)

(17)

From the above three step, the R
1
N computation will depend

on the m. The convergence of R and N is summarized in the

Table III for different values of m.

From Table III, (14), (15), (16) and (17), it can be inferred

that the steps involved in R
1
N and RN computations will have

the following limitations.
• The convergence of R and N values depends on the

negative index boundary (m) of CORDIC.

• The input range of R and N increases as m increases.

• As m increases, the iterative stages in CORDIC also

increases resulting in increase in the hardware complexity,

latency and power consumption.
Addressing all the limitations, in the next section we intro-

duce a low complexity architecture design methodology for

N th root and N th power computations.

III. PROPOSED METHODOLOGY AND ARCHITECTURE

In this section, a low complexity architecture design

methodology for N th root and N th power computation is

proposed.
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A. Proposed Methodology

The R
1
N and RN computations can be performed using

binary logarithm- binary inverse logarithm relation.

R
1
N = 2(

log2(R)
N

) (18a)

RN = 2(log2(R)×N) (18b)

The binary logarithm log2(.) and binary exponential 2(.) can

not be performed by Hyperbolic CORDIC as it is due to

rotation matrix RH . Hence, we will investigate the proper-

ties of RH and introduce new RH to compute the binary

logarithm log2(.) and binary exponential 2(.). From (2),

it can be observed that the determinant of RH is cosh2

(z) − sinh2(z) = 1. In RH , the cosh(z) is an even function

and the sinh(z) is an odd function. The natural exponential

can be computed using cosh(z) and sinh(z) as follows

ez = cosh(z) + sinh(z) (19a)

e−z = cosh(z) − sinh(z) (19b)

Now, we will define two new functions coshb(z) and sinhb(z)

which are even and odd functions for inverse binary logarithm

computation. The binary inverse logarithm computation can be

expressed as

2z = coshb(z) + sinhb(z) (20a)

2−z = coshb(z) − sinhb(z) (20b)

By solving (20), the coshb(z) and sinhb(z) can be obtained

as follows

coshb(z) =
2z + 2−z

2
(21a)

sinhb(z) =
2z − 2−z

2
(21b)

From (21), it can be noted that the defined coshb(z) is an

even function, sinhb(z) is an odd function and cosh2
b(z) −

sinh2
b(z) = 1. Hence, the cosh(z) and sinh(z) can be replaced

with coshb(z) and sinhb(z) in RH for binary logarithm

and inverse binary logarithm computation and (2) can be

rewritten as
[

x f

y f

]

=
∣

∣

∣

∣

coshb(z) sinhb(z)

sinhb(z) coshb(z)

∣

∣

∣

∣

[

x0

y0

]

(22)

The Hyperbolic CORDIC in (22) is intended for computation

of binary logarithm and inverse binary logarithm. Therefore,

it is named as Binary Hyperbolic CORDIC. Taking coshb(z)

term out from (22), the sinhb (z)
coshb(z)

is considered as tanhb(z)

then (22) can be rewritten as
[

x f

y f

]

= coshb(z)

[

1 tanhb(z)

tanhb(z) 1

] [

x0

y0

]

(23)

From (21), tanhb(z) = 2z−2−z

2z+2−z . As mentioned section II,

the CORDIC performs the rotation iteratively with predefined

angle αi instead of rotation directly through z, where αi =
tanh−1

b (2−i ). Assume that tanhb(z) = t and t can be derived

as follows

t =
2z − 2−z

2z + 2−z
(24)

The above equation can be rewritten as

t =
22∗z − 1

22∗z + 1
(25)

From the above equation z = tanh−1
b (t) can be derived as

follows

tanh−1
b (t) =

1

2
log2

(1 + t)

(1 − t)
; |t| < 1 (26)

The rotation angle z can be decomposed in terms of predefined

angle αi as

z =
n

∑

i=1

σiαi =
n

∑

i=1

σi tanh−1
b (2−i ); σi = ±1 (27)

The decomposition factor (σi ) can be determined by the

mode of operation. The rotation formula for i th iteration

corresponding angle αi using (23).
[

xi+1

yi+1

]

= coshb(σiαi )

[

1 tanhb(σiαi )

tanhb(σiαi ) 1

] [

xi

yi

]

(28)

From (21), the sinhb(.) is an odd function and coshb(.) is

an even function so that tanhb(.) is an odd function. Since

σi = ±1, (28) can be rewritten as
[

xi+1

yi+1

]

= coshb(αi )

[

1 σi tanhb(αi )

σi tanhb(αi ) 1

] [

xi

yi

]

(29)

where tanhb(σiαi ) = σi tanhb(αi ). Using (27) and (29),

the iterative formula of CORDIC is expressed as follows

xi+1 = xi + σi (2
−i yi ) (30a)

yi+1 = yi + σi (2
−i xi ) (30b)

zi+1 = zi − σi (tanh−1
b (2−i )) (30c)

where i is an integer starts with 1, σi = sign(zi ) and

σi = −sign(yi ) for rotation and vectoring mode respectively.

The scale factor coshb(αi ) is independent of decomposition

factor σi so that instead of scaling during each iteration,

the magnitude of final output could be scaled by final scale

factor Kb. The Kb is computed using the following equation

Kb =
n

∏

i=1

coshb(αi ) (31)

By substituting coshb(z) = 1
√

1−tanh2
b(z)

and tanb(αi) = 2−i

in (31), the above equation can be rewritten as

Kb =
n

∏

i=1

1
√

1 − tanh2
b(αi )

=
n

∏

i=1

1
√

1 − 2−2i
(32)

From (7) and (32), it can be noted that the scale factors K H

and Kb are same. The maximum z can be computed as

|z|max =
n

∑

i=1

αi =
n

∑

i=1

tanh−1
b (2−i ) (33)

As n → ∞, the convergence of Binary Hyperbolic rota-

tion mode (BR) CORDIC and Binary Hyperbolic vectoring

mode (BV) CORDIC have been tabulated in Table IV.
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TABLE IV

CONVERGENCE OF BINARY HYPERBOLIC CORDIC

TABLE V

CONVERGENCE OF IMPROVED BINARY HYPERBOLIC CORDIC

From the Table IV, it can be noted that the scale factor of

the Binary Hyperbolic CORDIC is same as the conventional

Hyperbolic CORDIC. The convergence range of the Binary

Hyperbolic CORDIC is improved when compared with the

conventional Hyperbolic CORDIC shown in the Table II. The

convergence limit shown in the Table IV is not adequate for

implementation logarithm and exponential computations. The

convergence range of Binary Hyperbolic CORDIC can be

improved by considering negative indices as i = −m,−m +
1, · · · , 1, · · · , n and replacing the term 2−i with the term

(1−2−2−i+1
) as mentioned in section II. Now the convergence

range and scale factor depend on the negative index boundary

(m). For different m values the convergence range and scale

factor of the proposed improved Binary Hyperbolic CORDIC

has been summarized in Table V. It can be noted from

Table V that the the convergence range of the Binary CORDIC

increases as m increases. If n is considered large, the x ,

y, z of the Binary Hyperbolic CORDIC tend to the results

shown in (34) and (35a) for the rotation and vectoring modes

respectively.

xn ←
1

Kb

(coshb(z0)x0 + sinhb(z0)y0)

= Rot H b
x (m, n, x0, y0, z0) (34a)

yn ←
1

Kb

(sinhb(z0)x0 + coshb(z0)y0)

= Rot H b
y (m, n, x0, y0, z0) (34b)

zn ← 0 = Rot H b
z (m, n, x0, y0, z0) (34c)

xn ←
1

Kb

√

x2
0 − y2

0 = V ecH b
x (m, n, x0, y0, z0) (35a)

yn ← 0 = V ecH b
y (m, n, x0, y0, z0) (35b)

zn ← z0 + tanh−1
b (

y0

x0
) = V ecH b

z (m, n, x0, y0, z0) (35c)

where Rot H b
c (.) and V ecH b

c (.) represent the rotation mode

and vectoring mode of Binary Hyperbolic CORDIC respec-

tively. The Hyperbolic CORDIC can be extended for other

logarithm and inverse logarithm computations by storing

appropriate predefined angles.

Our main goal now is to perform the computations shown

in (18), which can be performed using the Binary Hyperbolic

CORDIC shown in (34) and (35a). The computations shown

in (18) is now divided into the following three steps.

Step1: The first step is binary logarithm log2(R) compu-

tation. Consider inputs to the Binary Hyperbolic Vectoring

mode (BV) CORDIC as x0 = R + 1, y0 = R − 1 and z0 = 0.

The output zn is expressed using (35a) and (26) as follows

log2(R) = 2 × V ecH b
z (m, n, R + 1, R − 1, 0)

= 2 × tanh−1
b (

R − 1

R + 1
) (36)

From the Table IV, the convergence limit of the BV CORDIC

is tanh−1
b (

y0

x0
) ≤ 1.6132. From (36), R−1

R+1
≤ tanhb(1.6132) =

0.8069 and R ∈ [ 1
9.36

, 9.36].
The range of R ∈ [ 1

9.36
, 9.36] is limited and may not ade-

quate for many practical applications where R /∈ [ 1
9.36

, 9.36].
Therefore, the range of R can be increased by considering

negative indices like the state of the art design [9] and as

shown in Table V. But this technique increases the hardware

complexity, latency and power consumption. Hence, we will

introduce a normalization procedure which enhances the

convergence limit without increasing the hardware complexity

and latency.

Consider the working range of R as r ∈ [1, 2]. If R /∈ [1, 2],
the R can be scaled down to the working range by performing

a simple shifting operation. For example, if 2(k) < R ≤ 2k+1

where k is an integer, the R is scaled down to working range

by right shifting R by k bits. The R value can be expressed as:

R = 2k ∗ r; r ∈ [1, 2] (37)

Now the log2(R) can be computed as follows

log2(R) = log2(2
k ∗ r) = k + log2(r) (38)

Now the log2(r) can be computed using the BV CORDIC by

considering inputs x0 = (r + 1), y0 = (r − 1), z0 = 0 and

m = × (don’t care condition).

log2(r) = 2 × V ecH b
z (×, n, r + 1, r − 1, 0) (39)

where m = × denotes that the computation in (39) will not

depend on the negative index boundary (m). The computations

shown in (37) and (38) can be performed with shift and add

operations. From (39), it can be noted that the logarithm

computation is independent of m which reduces the hardware

complexity and latency. As an example, consider R = 49 then

25 < R ≤ 26 and k = 5. After shifting R by k = 5 bits

to right, r will become 1.53125. The log2(r) is computed

using BV CORDIC as shown in (39) and log2(r) = 0.6147.

Thereafter log2(r) should be brought to its original value by

adding k = 5 i.e, log2(R) = 5.6147 as shown in (38).

Step2: The next step in root computation is the division

operation using LV CORDIC. The inputs to the LV CORDIC

are x0 = N , y0 = log2(R) and z0 = 0. From (11), the output

converge to the following result.

log2(R)

N
= V ecL(m, n, N, log2(R), 0) (40)

The second step in the RN computation is multiplication

i.e, log2(R) × N which can be performed using any conven-

tional multiplier.
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Step3: The final step is binary inverse logarithm computa-

tion. The 2
log2(R)

N can be computed using Binary Rotation mode

CORDIC (BR CORDIC). Consider the inputs to BR CORDIC

as x0 = Kb, y0 = 0 and z0 = log2(R)
N

. So that outputs of BR

CORDIC can be expressed using (34)

xn = Rot H b
x (m, n, Kb, 0,

log2(R)

N
) = coshb(

log2(R)

N
)

(41a)

yn = Rot H b
y (m, n, Kb, 0,

log2(R)

N
) = sinhb(

log2(R)

N
)

(41b)

The binary inverse logarithm can be computed by adding BR

CORDIC outputs which is expressed as follows

2(
log2(R)

N ) =coshb(
log2(R)

N
)+sinhb(

log2(R)

N
)= R

1
N (42)

In RN computation, z0 will be log2(R) × N . From Table IV,

it is observed that the BR CORDIC has convergence limit

which limits the input range for exponential computation

i.e, z0 = log2(R) × N ≤ 1.6132 or z0 = log2(R)
N

≤ 1.6132.

However, this limit z0 ≤ 1.6132 is not adequate for practical

applications. Therefore, it can be enhanced by considering

negative indices for BR CORDIC as shown in the Table V

but this technique results the increase hardware complexity

and latency. Hence, we introduce a normalization procedure

to enhance the convergence limit.

Consider a real number P ≤ 1. If P > 1, it can be split

into two parts as shown in the following equation

P = PI + PF (43)

where PI and PF represents the integer and fractional parts

of P respectively. Now 2P can be computed using following

equation

2P = 2PI +PF = 2PI ∗ 2PF (44)

Now PF is less than 1. The 2PF can be compute using basic

BR CORDIC considering inputs as x0 = Kb, y0 = 0 and

z0 = PF ≤ 1.6132. The 2PF can be computed as

2PF = Rot H b
x (×, n, Kb, 0, PF ) + Rot H b

y (×, n, Kb, 0, PF )

(45)

where m = × denotes the computation shown in (45)

independent of m. After 2PF computation, it could be brought

to the original value by shifting PI bits to the left. The

steps shown in (43) and (43) can be performed using simple

shifting operation which made the BR CORDIC independent

of m resulting in the reduction of hardware complexity. As an

example, consider
log2(R)

N
= P = 5.36 then PI = 5,

PF = 0.36 and 20.36 = 1.2834. Now 2PF should be brought

to its original value by shifting PI = 5 bits to the left

i.e, 2P = 41.0696. Therefore, the 2(
log2(R)

N ) or 2(log2(R)×N)

can be computed by using above normalization procedure and

the BR CORDIC. From (39) and (45), the logarithm and

exponential computations are independent of the CORDIC

converge limit (m) which reduces the hardware complexity and

latency in root power computations. A similar normalization

Fig. 1. Computational flow for the proposed methodology a) N th Root

computation b) N th Power computation.

procedure for inverse binary logarithm was presented in [8].

But the implementation details of the normalization procedure

and 2PF computation were not provided. In the proposed

approach, we presented the implementation details of normal-

ization procedure and Binary Hyperbolic CORDIC algorithm

to perform 2PF computation. The hardware complexity of the

proposed Binary Hyperbolic CORDIC is same as conventional

Hyperbolic CORDIC which is discussed in section IV-C. The

proposed Binary Hyperbolic CORDIC algorithm facilitates us

to apply the pre-log normalization and pre-exponential normal-

ization procedures for the binary logarithm and binary expo-

nential computations which reduces the number of iterations.

B. Illustration of the Proposed Methodology

The computational flow of the proposed methodology is

depicted in Fig.1(a) and Fig.1(b) for the R
1
N and RN compu-

tations respectively. The functionality of the proposed method-

ology has been illustrated with an example here. Consider two

real numbers R = 67.55 and N = 4.78. In the R
1
N and RN

computations the first step is binary logarithm computation.
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Fig. 2. Iteration structure for a) BR CORDIC, b) BV CORDIC and c) LV CORDIC.

Step1: The binary logarithm can be computed using pre-log

normalization and BV CORDIC (using (37), (38) and (39),) as

shown in Fig.1(a) and Fig.1(b). The pre log normalization can

be performed using shifting operation. The input to the pre-log

normalizer is R = 67.55 then 26 < R ≤ 27 and the outputs

are r = 1.05546875 and k = 6. Now log2(r) can be computed

using BV CORDIC. Consider the inputs to the BV CORDIC

as x0 = r + 1 = 2.05546875, y0 = r − 1 = 0.5546875 and

z0 = 0. The output of BV CORDIC is zn = 1
2
log2(r) =

0.0389. The log2(r) is obtained by shifting zn one bit to left

then log2(r) = 0.0779. The log2(R) can computed by adding

k = 6 to the log2(r) then the log2(R) = 6.0779.

Step2: The second step in R
1
N is division computation. The

division can be performed using LV CORDIC. The inputs

to the LV CORDIC are x0 = N = 4.78, y0 = log2(R) =
6.0779 and z0 = 0. The output of LV CORDIC is zn =
log2(R)

N
= 1.2715 which is treated as D. The second step in

RN is multiplication operation. The inputs to the multiplier

are x0 = N = 4.78, y0 = log2(R) = 6.0779 then the output

zn = 29.0523 is treated as M .

Step3: The final step of the R
1
N and RN computations

is binary inverse logarithm computation. The binary inverse

logarithm can be computed using pre-exponential normaliza-

tion and BR CORDIC (using (43), (44) and (45)) as shown

in Fig.1(a) and Fig.1(b). In R
1
N computation, the input to

the pre- exponential normalization is P = D = 1.2715. The

outputs are PI = 1, PF = 0.2715. Now 2PF can be computed

using basic BR CORDIC considering inputs as x0 = Kb,

y0 = 0 and z0 = PF = 0.2715. The outputs of BR CORDIC

are xn = 1.0178, yn = 0.1893. The 2PF can be obtained

by adding xn , yn then the 2PF = 1.2071. The 2P could

be obtained by shifting the 2PF by PI = 1 bits to the left

then 2D = 2.4141 = R
1
N = 67.55

1
4.78 . In RN computation,

the input to the pre- exponential normalization is P = M =
29.0523. The outputs are PI = 29, PF = 0.0523. Now 2PF

can be computed using basic BR CORDIC considering inputs

as x0 = Kb, y0 = 0 and z0 = PF = 0.0523. The outputs of

BR CORDIC are xn = 1.0007, yn = 0.0363. The 2PF can be

obtained by adding xn , yn then 2PF = 1.0369. The 2P could

be obtained by shifting the 2PF by PI = 29 bits to the left.

Then 2M = 5.5669 × 108 = RN = 67.554.78.

C. Proposed Architecture

We implemented the architecture for the R
1
N and RN com-

putations in pipeline manner using the proposed methodology

shown in section III-A. From the proposed methodology,

the binary logarithm and binary inverse logarithm can be

performed using Binary Hyperbolic CORDIC. The iterative

formula for the proposed Binary Hyperbolic CORDIC is

shown in (30). Using (30) and (6), the iteration structure

of the Binary Hyperbolic CORDIC for rotation and vector-

ing mode are shown in Fig.2(a) and Fig.2(b) respectively.

Similarly using (9), the iteration structure of LV CORDIC

is shown Fig.2(c). The iteration stages in the BV CORDIC,

BR CORDIC and LV CORDIC are cascaded with each other

to form a pipeline architecture. The critical path for the R
1
N

computation is a shift-add operation which is same as the

state of the art approach [9]. The critical path for the RN

computation is a multiplication operation which is same as

the state of the art approach [14]. The proposed architectures

are implemented in pipeline fashion. Therefore, the output is

available for every clock cycle. The throughput of the proposed

approach for R
1
N and RN computation is 100% which is same

as the state of the art approaches [9], [14].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Verification of Proposed Methodology

In this subsection, the correctness of the proposed methodol-

ogy has been verified by modeling in MATLAB and simulating

the absolute errors. The Absolute Error (AE) is defined as

AE = |
T − M

T
| (46)

where T is the true value of the N th root or N th power and

M is measured value of the N th root or N th power using

the proposed method. The another important criteria is Mean

Absolute Error (MAE) which defined as follows

M AE =
∑Num

j=1 AE

Num
(47)

where Num denotes the number of test cases. The steps

involved in the proposed approach and the state of the art

approaches [9], [14] are depend on the m and n values. Before

simulating the errors, the dependency of m and n values

have been analyzed. In R
1
N computation, the state of the

approach [9] performed the software implementation as well

as hardware implementation for R ∈ [10−6, 106] and N ∈
[2, 1002] [9]. In order to compare our proposed architecture

with the state of the art architecture [9] on a uniform platform,

we also consider the same values of R and N . In the state of
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TABLE VI

DEPENDENCY OF m AND n FOR PROPOSED METHODOLOGY

TABLE VII

VERIFICATION OF THE PROPOSED METHODOLOGY (MATLAB SIMULATION)

the art approach [9], from the Table III, the m is chosen as 2

for HV CORDIC then R ≤ 1.0562 ∗ 106. If m = 2, from the

Table II, for the HR CORDIC, the z0 ≤ 6.935112 then N =
ln(106)

6.935112
≥ 2. The maximum N value is chosen as 1002. The

convergence of LV CORDIC is
ln(R)

N
≤ 2m+1. The minimum

value of N is 2 then ln(106)
2

≤ 2m+1 and m should be 2. The n

value is considered as 20. In the proposed approach, the input

R is independent of m value. In the proposed approach from

(39), (40) and (45), the division operation alone depends on

m value. The convergence of LV CORDIC is
log2(106)

2
≤ 2m+1

and m should be 3. The dependency of m and n for the pro-

posed and state of the art approach [9] have been summarized

in the Table VI. From the Table VI, it can be observed that the

proposed approach requires one extra iteration for the division

computation because
log2(106)

2
> ln(106)

2
≤ 2m+1. However,

it can be noted from the Table VI that the proposed approach is

independent of m for logarithm and exponential computations.

This reduces the number of iterations involved in the logarithm

and exponential computations. This also reduces the hardware

complexity and latency which is discussed in IV-C in detail.

Similarly, for RN computation, the dependency analysis of

m and n is carried out here. From (39) and (45), it is evident

that the proposed approach is independent of m where as the

state of the art approach [14] depends on m. Consider R as

R ∈ [10−2, 100] and ln(100) = 4.0652. From the Table III,

to compute ln(100) the m should be 1 for HV CORDIC. The

HR CORDIC has been used for exponential computation. The

input to the HR CORDIC is z0 = ln(R)×N . From the Table II,

if m = 4 for HR CORDIC the z0 ≤ 24.255 then ln(R)× N ≤
24.255 and N ≤ 5.2669. Therefore, the range of N can be

increased by increasing m which results additional hardware

complexity and latency. Hence, the proposed methodology for

RN computation does not have any limitation on its input

ranges of R and N . The dependency of m and n for RN

computation has been summarized in the Table VI. For the

m and n values shown in the Table VI, the proposed and the

state of the art approaches [9], [14] are coded in MATLAB and

simulated the absolute errors using (46) and (47). The Num

is chosen as 5 million, the R and N are generated randomly.

The results are summarized in Table VII. From the Table VII,

it is evident that the proposed approach for R
1
N computation

is one order superior and the proposed approach for RN

computation is two order superior in terms of maximum AE

and M AE when compared with the respective state of the

art approaches [9], [14]. The MAE of the proposed Binary

Hyperbolic CORDIC is same as the conventional Hyperbolic

CORDIC. However, the proposed approach achieved better

MAE than the state of the art approach due to the input ranges

of the CORDIC. For example, in root computation, it can be

noted from the Table VII, the input range of R and N for the

state of the art approach and proposed are same. However,

for logarithm computation the proposed Binary Hyperbolic

CORDIC has been operated for the input of [1, 2]. Where

as in the state of the art approach the conventional Hyperbolic

CORDIC has been operated for the input of [10−6, 106].
Similarly, for exponential computation, the proposed Binary

Hyperbolic CORDIC has been operated for [0, 1]. But, in the

sate of the art approach, the conventional Hyperbolic CORDIC

operates within range of [0, 6.935112].

B. Word Length Analysis

In this subsection, before implementing the proposed archi-

tectures on hardware, first we will analyze the input word
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TABLE VIII

WORD LENGTHS REQUIRED FOR THE STATE OF THE ART ARCHITECTURE AND PROPOSED ARCHITECTURE FOR R
1
N COMPUTATION

lengths required for each step. First, let us analyze the word

lengths required by the state of the art approach for R
1
N com-

putation. The state of the art approach [9] implemented their

design for R ∈ [10−6, 106] and N ∈ [2, 1002]. The state of the

art design [9] is chosen the fractional part of data as 27 bits.

The maximum value of R is 106 and log2(106) ≈ 20. The inte-

ger part of R will be 20 bit. The input data for next module (LV

CORDIC) is N and ln(R). The integer part of the input data

for the LV CORDIC depends on maximum of ln(R) and N .

The maximum value of ln(R) i.e, ln(220) = 13.863 ≈ 24. Four

bits are necessary to represent the ln(.) value. The maximum

value of N is 1002 ≈ 210. Ten bits are required to represent

the N value. Therefore, the integer part of input for LV

CORDIC is chosen as 10 bit. The input to the final step

depends on maximum of sinh( ln(R)
N

) and cosh( ln(R)
N

). The

sinh( ln(220)
2

) = sinh( ln(220)
2

) = 512.0005 hence the integer

part for input of HR CORDIC is 10 bit. But, the integer part

of the input data for HR CORDIC as 11 bits to avoid the

truncation errors due to the iteration formula. An extra sign

bit is added in front of every input data and the word length

requirements for each step are tabulated in Table VIII.

Next, we will analyze the input data word lengths required

for the proposed architecture for R
1
N computation. We will

consider the same input range for R and N as the state of the

art approach [9] to compare the proposed architecture with the

state of the art architecture [9] on a uniform platform and the

integer part and fractional part of R chosen as 20 and 27

respectively. Here, we followed the word length selection

methodology presented in the state of the art approach [9]. For

hyperbolic CORDIC, the convergence range and precision will

depend on its positive index(m) and negative index(n) bound-

aries respectively. The fractional word length will depend on

the n value. In the hyperbolic CORDIC, the iterations 4,

13, . . . ., 3k + 1 need to be repeated. The negative index

boundary (n) considered in MATLAB simulation is 20. For

n = 20, the iterations 4 and 13 need to be repeated in

hyperbolic CORDIC and the number of effective iterations

will be ne f f = 22. To achieve n bit precision in the output

of CORDIC, the internal registers should have log2(n) extra

bits at the LSB position [15]. Therefore, the fractional word

length is ne f f + log2(ne f f ) = 27. The first step is pre-log

normalization as shown in Fig.1(a). The output of first step

is r which is fed as input to the BV CORDIC. From (37),

the r ∈ [1, 2]. The maximum of R is 220, therefore, to bring

the R is between r ∈ [1, 2], it is required to shift the R

by k = 19 bits to the right. The least significant 19 bits

may be ignored while performing normalization. However,

we considered additional 18 bits in the fractional part of r to

improve the accuracy in logarithm computation. The fractional

part of r is to be set as 45. The integer part of r is considered

as 2 bit because r ∈ [1, 2]. After performing the logarithm

computation, the least significant 18 bits of the fractional

part will be ignored. The consideration of additional 18 bit

in fractional part of r improves the accuracy of logarithm

computation. The next step is compensation of logarithm by

adding K to the log2(r). The maximum value of k is 19.

The integer part of the k is to be set as 5 bits. The input

data for LV CORDIC is N and log2(R). The word length

of the input data for the LV CORDIC depends on maximum

of N and log2(R). The maximum value is 1002, therefore,

the integer part for N and log2(R) will be chosen as 10 bits.

The maximum input to the pre exponential normalization step

is P = log2(2
20)

2
= 10. The integer part of input P to be set as

4 bit. The input to the final CORDIC depends on maximum

of sinhb(PF ) and coshb(PF ). The PF is less than equal to 1

so that max{coshb(PF )} = max{sinhb(PF )} ≈ 1.25. The

integer part required for input of BR CORDIC is 2 bit. The

final output is shifted by PI bits to the original value. An extra

sign bit is added in front of every input data and settings are

summarized in the Table VIII.

From the Table VIII, it can be noted that an extra step

is required in proposed approach in logarithm computation

i.e, pre log normalization which involves only shift operations.

The input word length to HV CORDIC and BV CORDIC
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TABLE IX

WORD LENGTHS REQUIRED FOR THE STATE OF THE ART ARCHITECTURE AND PROPOSED ARCHITECTURE FOR RN COMPUTATION

is same. The proposed approach will have more accuracy in

the logarithm computation due to the range of r ∈ [1, 2]
and the fractional part of r consists of 45 bits instead of

27 bits. Similarly, an extra step is required in exponential

computation i.e, pre exponential normalization which involves

only shift operations. The input word length required by the

BR CORDIC is lesser compared to the HR CORDIC due

to pre exponential normalization which reduces the hardware

complexity.

Now, we will analyze the input data word length required

for RN computation for m and n shown in the Table VI.

We consider the input range of R as R ∈ [10−2, 100]
as mentioned in the Table VII. The fractional part R is

chosen as 27 bits to achieve an average precision of 10−7.

The integer part of R depends on maximum R value. The

integer part will be log2(100) ≈ 7 bit. In the state of the

art approach [14], the exponential computation depends on

m as shown in Table VI. From Table VI, m = 4 which

limits the N value (N ≤ 5.2669). Hence, we consider

N as N ∈ [1, 5]. The multiplier word length depends on

maximum value ln(R) = ln(100) = 4.6051 and N = 5.

The maximum multiplier output is ln(100) ∗ 5 = 23.0258.

Therefore, the integer part of multiplier is chosen as 5 bit.

The word length for HR CORDIC depends on sinh(ln(100)×
5) = cosh(ln(100) × 5) = 1.71 × 1010. The integer part

required by HR CORDIC is 34 bits. The word lengths

required by the state of art approach [14] are tabulated

in Table IX for RN computation. In proposed approach,

the logarithm and exponential computations are independent

of CORDIC convergence limit (m). The similar word length

analysis of R
1
N computation is performed for RN compu-

tation and the input word lengths required in each step are

tabulated in the Table IX. From the Table IX, it can be

noted that, the word length required by the BR CORDIC is

32 bit lesser compared to the HR CORDIC. This reduces

the hardware complexity in exponential computation. The

hardware complexity analysis is performed in the following

subsection.

C. Hardware Complexity and Timing Analysis

In this subsection, we analyze the performance of the

proposed architecture and compare with the state of the art

architecture [9], [14] in terms of the hardware complexity,

latency and throughput. Throughout the analysis we keep a

generalized view on CORDIC stages m, n and word-length

as b. A Ripple Carry Adder (RCA) and Conventional Array

Multiplier (CAM) are considered here to provide compar-

ison on a uniform platform. A b-bit RCA requires b full

adders (FA). A bXb CAM requires b(b − 2) FA plus b half

adders (HA) and b2 AND gates. In addition, one FA cell

requires 24 transistors, one HA cell consist of 12 transistors

and a two input AND gates consists of 6 transistors. Based on

the approach presented in [9] and [18], Transistor count for the

proposed architecture is expressed in terms of Transistor Count

(T C) of RCA and CAM. We can calculate T CRC A = 24b

and T CC AM = 6b(5b − 6). In the Hyperbolic CORDIC,

each iteration requires six add operations for i > 0 and for

i ≤ 0, each iteration requires eight add operations. In the LV

CORDIC, each iteration requires two add operations for all

values of i . In conventional Hyperbolic CORDIC, for i > 0

the critical path the critical path is one shift and one add

operation but for i ≤ 0 the critical path is one shift and

two add operations [9]. The state of the art approach [9]

used a folding-delay technique to maintain critical path as

one shift and one add operation. The consequence of the

folding-delay technique is the iteration i ≤ 0 requires two

clock cycles and the iteration i > 0 requires one clock

cycle [9]. For LV CORDIC each iteration requires one clock

cycle.

In the state of the art approaches [9], [14], the natural

logarithm is computed using HV CORDIC along with two

additional add operations as shown in (14). The total T C

involved in the natural logarithm computation for the state

of the art design [9] is expressed as follows

T Cnatural_log = (8 × (m + 1) + 6 × (n) + 2) × T CRC A

(48)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MOPURI AND ACHARYYA: LOWCOMPLEXITY GENERIC VLSI ARCHITECTURE DESIGN METHODOLOGY 11

TABLE X

TRANSISTOR COUNT AND CLOCK CYCLE ANALYSIS

The number of clock cycles required for the natural logarithm

computation is expressed as

C L Knatural_log = 2 ∗ m + n + 3 (49)

In the proposed approach, the binary logarithm is computed

using basic BV CORDIC along with two additional add

operations as shown in (37), (38) and (39). The compensation

with k is performed by add operation. The T C involved in the

log2(r)computation is T Clog2(r) = (6 × (n) + 2) × T CRC A.

The total T C a require for the binary logarithm computation

can be expressed as follows

T Cbinary_log = T Clog2(r) + T CRC A (50)

From (37), (38) and (39), the number of clock cycles required

for the binary logarithm computation is expressed as

C L Kbinary_log = n + 4 (51)

The division operation has been performed using LV CORDIC

in the proposed design and the state of the art design as shown

in (15) and (40). The T C involved in the division computation

is expressed as

T Cdiv = (2 × (m + n + 1) × T CRC A) (52)

The number of clock cycles required for the division compu-

tation is expressed as

C L Kdiv = m + n + 1 (53)

The second step in RN computation is multiplication operation

which is performed using CAM and number of clock cycles

required by CAM is 1. The final step in the state of the

art design is natural exponential computation. The natural

exponential is computed using HR CORDIC and one add

operation as shown in (16). The T C involved in the natural

exponential computation is expressed in the following equation

T Cnatural_exp = (8 × (m + 1) + 6 × (n) + 1) × T CRC A

(54)

The number of clock cycles required for the natural exponen-

tial computation using (16) can be expressed as

C L Knatural_exp = 2 ∗ m + n + 3 (55)

The binary inverse logarithm in the proposed design is com-

puted using basic BR CORDIC and one add operation as

shown in (44) and (45). The T C involved in the binary inverse

logarithm computation is given by

T Cbinary_inv_log = (6 × (n) + 1) × T CRC A (56)

The number of clock cycles required for the binary inverse

logarithm computation using (44) and (45) is given by

C L Kbinary_inv_log = n + 2 (57)

The total T C and clock cycles required for each step have

been summarized in Table X for the values of m and n

shown in the Table VI and word lengths shown in the

Table VIII and Table IX. From the Table VI, n is considered

as 20. In conventional and Binary Hyperbolic CORDIC as per

CORDIC convergence theorem i = 4, 13 are to be repeated

which results additional complexity and latency. The repeated

iterations are also accounted in T C and C L K computation,

summarized in Table X for root and power computations. The

TS (Transistor Saving) is defined as follows

T S = 1 −
T Cproposed

T CStateof theart

(58)

In the proposed approach, if the pre-log normalization and

pre-exponential normalization procedures are not performed

the number of iterations and word lengths required for the

proposed Binary Hyperbolic CORDIC is same as conventional

Hyperbolic CORDIC. Therefore, the hardware complexity

of the proposed approach is same as [9] and [14] when

normalization is not performed. As can be seen from Table X

that the proposed approach saves 20.55% and 42.01% T S for

R
1
N and RN computations when compared with the state of the

art approaches [9], [14] respectively. The proposed approach

also saves 8 clock cycle latency compared with the the state

of the art approaches [9], [14].

D. Implementation Results

The proposed architectures and the state of the art archi-

tectures are coded in VHDL for per word lengths shown in

the Table VIII and Table IX. The ASIC implementation was

done for the proposed architecture at TSMC 45nm CMOS

technology @ V DD = 1.08V and clock frequency @

1G H z with the help of Synopsis Design Compiler (DC) and

IC compiler. The synthesis results of ASIC implementation

are shown in Table XI. The state of the art approach [9]
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TABLE XI

HARDWARE IMPLEMENTATION FOR THE PROPOSED AND STATE OF THE ART ARCHITECTURES

performed its ASIC implementation @ 1GHz. To compare

the proposed approach with the state of the art approach on a

uniform platform, the synthesis frequency is selected as 1GHz.

From the Table XI, it can be noted that the maximum clock

frequency of the proposed design is same as the state of the

art approach. The critical path of the proposed design is same

as the state of the art deign as mentioned in section III-C.

Due to this reason, the maximum operating frequency of the

proposed design is same as the state of the art design.

From the Table XI, the proposed design for R
1
N computation

saves 19.38% on chip area and 15.86% power consumption

when compared with the state of the art architecture [9]. Sim-

ilarly, from the Table XI, the proposed design for RN compu-

tation saves 38% on chip area and 35.7% power consumption

when compared with the state of the art architecture [14].

It can be noted that, the proposed methodology is independent

of the technology node. However to provide insight into the

FPGA implementation of the proposed methodology, FPGA

prototyping is performed on Xilinx Virtex-6 (XC6v1x240t).

From the Table XI, it can be observed that the proposed

design saves 20.25% and 39.32% LUT consumption for root

and power computations respectively. In order to evaluate

the energy efficiency, sampling rate per watt criterion [9]

is adopted here by assuming the sampling rate equals to

1000× f MSPS (Million Samples Per Second). The sampling

rate per watt can be expressed as
1000× f

p(w) M S PS/W where f

is frequency in GHz and p is power consumption in watts.

From the Table XI, it can be noted that at 1GHz frequency

the proposed approach can process 4.436 million additional

root computations per second per watt (joule) when compared

with the state-of-the-art method [9]. Similarly, the proposed

approach can process 11.6 million additional power com-

putations per joule when compared with the state-of-the-art

method [14].

E. Accuracy

In order to better understand the accuracy of the pro-

posed approach, here we will illustrate an example for

Fig. 3. Bit position Error of BV CORDIC and BR CORDIC.

root computation. The Binary Hyperbolic CORDIC performs

ne f f = 22 iterations so that 22 bits are accurate. The input

range for BV CORDIC and BR CORDIC are [ 1
9.36

, 9.36] and

[0, 1.6132] respectively. However, in the proposed approach

we are limiting the input ranges to r ∈ [1, 2] for BV CORDIC

and PF ∈ [0, 1] for BR CORDIC which gives better precision.

The bit position error of BV CORDIC and BR CORDIC are

simulated for the input range of r ∈ [1, 2] and PF ∈ [0, 1]
based on approach presented in [9] and [17]. The bit position

error of Binary Hyperbolic CORDIC is shown in Fig.3.

Let us consider R = 999999.22721512243151664733 =
11110100001000111111.00111010001 01010110001010011.

After the range reduction, we have r having 48 bits and

r = 1.1110100001000111111001110100010101011000101

001 and k = 19 = 10011. From Fig.3, it is evident that 23 bits

approximately accurate for the BV CORDIC. The output of

BV CORDIC is log2(r) =0.111011100111101100110X X X X

where X X X X will be noise. After adding k to the log2(r)

then log2(R) = 10011.111011100111101100110X X X X .
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TABLE XII

COMPARISON WITH FLOATING-POINT EXPONENTIATION UNITS

Consider N = 2 and the result of the division is

P = 01001.111101110011110110011X X X X X X . Now PI =
9(01001) and PF = 0.111101110011110110011. The 2PF

can be computed using BR CORDIC. It can be noted

from Fig.3 that 23 bits approximately accurate for the BR

CORDIC. The 2PF =1.11110011111111111111000X X X X

and it can be brought to original value by shifting PI = 9

to the left. The R(1/2) i.e, 2P =1111100111.11111111111001

X X X X but actual R(1/2) is 1111100111.1111111111100

1101010110101101. In this example, the absolute error is

2−14 = 6.1035 × 10−5 and considering 39 bit output 26 bit

are approximately accurate.

The HDL simulation is carried out for proposed architec-

tures using (46) and (47) for 5 million test cases. The MAE

and maximum AE are tabulated in the Table XI. The MAE

for proposed root computation is 7.6958 × 10−6 ≈ 2−17.

Considering 39 bit output, 29 bits are approximately accu-

rate for the proposed root computation. From the Table XI,

the MAE for the state of the art [9] root computation is

7.3852 × 10−5 ≈ 2−14 and considering 39-bit output, 26 bits

are approximately accurate. Similarly, from the Table XI,

the MAE for the proposed power computation is 8.2492 ×
10−6 ≈ 2−17. Therefore, considering 62-bit output, 52 bits are

approximately accurate in the proposed power computation.

From the Table XI, the MAE for the state of the power

computation [14] is 9.5642 × 10−4 ≈ 2−10. Therefore 45 bits

are accurate in 62-bit output.

F. Discussion on Floating-Point Exponentiation Units

The power computation method was presented in [22]

for floating-point numbers based on logarithm- exponential

relation in (1b). A fair comparison is not possible between

the proposed approach and [22] on a uniform platform due

to the following reasons. The approach in [22] performs

the power computation for floating point numbers where as

proposed approach performs the computation for fixed point

numbers. The another reason is implementation technology

node used are different in proposed approach and [22]. How-

ever, to provide more insight to the readers in this subsection,

we tabulated the comparison results between the proposed

approach and [22] in Table XII. In [22], the logarithm and

exponential computations are performed using a second order

polynomial approximation. The polynomial approximation

methods will be implemented using Look up tables for low-

precision. From the Table XII, it can be noted that the approach

in [22] requires 7 BRAMs where as the proposed approach

requires 0 BRAMs. For higher precision, a generic polynomial

approximation approach has been used which increase the

resource consumption. A generalized Hyperbolic CORDIC

algorithm is presented in [23] to compute arbitrary logarithm

and exponential computations. The CORDIC approach has

significant advantage over approximation approach in terms

of area and power consumption for logarithm and exponen-

tial computations when high precision is required [23]. The

proposed approach computes logarithm and exponential com-

putations using CORDIC. Therefore, the proposed approach

will have significant advantage over the approach in [22] when

high precision is required.

V. CONCLUSION

In this paper, we proposed a low complexity N th root and

N th power computation architecture design methodology for

real time applications. The state of the art approaches [9], [14]

performs the N th root and N th power computation based

on natural logarithm-exponential relation using Hyperbolic

CORDIC. In the state of the art approaches [9], [14],

the CORDIC negative index boundary (m) poses limitation on

R and N values and also increases the hardware complexity

and latency. The proposed approach performs the R
1
N and RN

computations based on the binary logarithm- binary logarithm

relation shown in [8]. The proposed approach is independent of

the CORDIC negative index boundary (m) which reduces the

hardware complexity and latency. Subsequently, low complex-

ity architectures have been designed for N th root computation

and N th power computation using VHDL and synthesized

under the T SMC40 − nm CMOS technology @ 1 G H z

frequency. The synthesis results shows that the proposed

N th root architecture saves 19.38% on chip area and 15.86%

power consumption when compared with the state of the art

N th root architecture [9]. Similarly, the proposed N th power

architecture saves 38% on chip area, 35.67% power consump-

tion when compared with the state of the art N th power

architecture [14]. The proposed approach for R
1
N computation

is one order superior and the proposed approach for RN

computation is two order superior in terms of maximum

absolute error and mean absolute error when compared with

the respective state of the art approaches [9], [14]. The critical

path for the proposed approach is same as the state of the art

approach. The throughput of the proposed approach is 100%.
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