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In this paper we analytially ompute the strength of nonlinear interations in a triad, and the

energy exhanges between wavenumber shells in inompressible �uid turbulene. The omputation

has been done using �rst-order perturbative �eld theory. In three dimension, magnitude of triad

interations is large for nonloal triads, and small for loal triads. However, the shell-to-shell

energy transfer rate is found to be loal and forward. This result is due to the fat that the

nonloal triads oupy muh less Fourier spae volume than the loal ones. The analytial results

on three-dimensional shell-to-shell energy transfer math with their numerial ounterparts. In

two-dimensional turbulene, the energy transfer rates to the near-by shells are forward, but to the

distant shells are bakward; the umulative e�et is an inverse asade of energy.
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I. INTRODUCTION

Many equations in physis, e.g., Shrodinger equation and di�usion equation, are loal in real spae. Here, to

time-advane a variable at a point, we need the values of the variables and their �nite-order derivatives at the same

point. It is well known that inompressible Navier-Stokes (NS) equation,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (1)

∇ · u = 0, (2)

is nonloal in real spae [1, 2℄. Here u and p are the veloity and pressure �elds respetively, and ν is the kinemati

visosity. The nonloality is due to the pressure term of Eq. (1), whih is obtained by taking the divergene of

inompressible Navier-Stokes (NS) equation [2℄

∇2p = −∇ · {u · ∇u} . (3)

Hene,

p(x, t) = −
∫ ∇′ · {u(x′, t) · ∇′u(x′, t)}

|x− x′| , (4)

whih is nonloal beause p(x, t) depends on the veloity �eld at x′ 6= x.

In Fourier spae, inompressible NS equation is

∂ui(k)

∂t
+ νk2ui(k) = − i

2
Pijm(k)

∫

dp

(2π)d
uj(p)um(q), (5)

kiui(k) = 0, (6)

where

Pijm(k) = kj

(

δim − kikm
k2

)

+ km

(

δij −
kikj
k2

)

,

k = p+ q, and d is the spae dimensionality. Note that the fator −kikjkm/k2 of Pijm(k) is due to the pressure term.

To determine u(k, t+dt) we need the values of �eld ui(p) where k− p ould be quite large. Hene, inompressible NS
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equation in nonloal in Fourier spae also [2, 3℄. The basi unit of nonlinear interations in turbulene, alled triad

interations, involve three vetors (k,p,q) with k = p+ q. These triad interations yield energy transfers among the

partiipating modes. The strength of triad interation is measured using energy exhanges in the triad.

The energy transfers between two wavenumber shells an be omputed using the triad interations. One of the key

ingredient of Kolmogorov's phenomenology of turbulene is �loal� shell-to-shell energy transfer. That is, maximum

energy is transferred from a wavenumber shell to the next wavenumber shell. This observation has been veri�ed in

numerial simulations [4, 5℄. This result is surprising in view of nonloal interations in both real and Fourier spae.

In this paper, we ompute the strength of triad interation, and shell-to-shell energy transfer in inompressible �uid

turbulene using �eld-theoreti tehnique.

There have been many attempts in the past to ompute the strength of triad interations and the energy transfers

in �uid turbulene. Kraihnan [6℄ omputed these quantities in both 2D and 3D turbulene using �almost Markovian

Galilean invariant� turbulene model. He showed the in 3D 35% of the total energy transfer aross a unit wavenumber

sphere involves triads in whih the smallest wavenumber is more than one-half of the middle wavenumber. Hene, shell-

to-shell energy transfer in 3D turbulene is loal in wavenumber spae. Later Domaradzki and Rogallo [5℄ numerially

omputed the above quantities and observed that energy transfers in shells are always loal, but the triad interations

are nonloal, i.e., triads having three wavenumbers of very di�erent magnitudes have large magnitudes. This is

suintly desribed by Domaradzki and Rogallo as �nonloal interations and loal energy transfer�. Domaradzki

and Rogallo found their numerial results to be in an exellent agreement with their own Eddy-damped quasi-normal

Markovian (EDQNM) alulation. They onjetured that the observed energy transfer as being aused by triads

with at least one wavenumber in the energy-ontaining range. Ohkitani and Kida [7℄ analyzed the triad interations

arefully and onluded that the nonloal interation is strong, but the energy exhange ours predominantly between

omparable sales. They laimed that the third mode of muh larger sale is indi�erent to the energy transfer as

if it were a atalizer in a hemial reation. Zhou [4℄ numerially omputed the energy transfers using di�erent

wavenumber summation sheme, and found the energy transfers to be loal. Wale�e [8℄ did a similar analysis using

a deomposition of the veloity �eld in terms of helial modes. Kishida et al. [9℄ used wavelet basis to address the

same problem and obtained similar results. For review on this topi, refer to Zhou and Speziale [10℄. In the present

paper we re-look at some of the above onjetures.

In all the above papers, turbulent interations are measured using a funtion S(k|p, q) (usually alled transfer

funtion) that denotes the sum of energy transfers from mode p and q to mode k [11℄. Dar et al. [12, 13℄ point out

that the energy transfer from one shell to another shell an not be aurately omputed using S(k|p, q), essentially
beause the third mode of the interation ould lie outside both the shells under onsideration. To overome this

di�ulty, Dar et al. [12℄ modi�ed the above formulation. They used a new funtion S(k|p|q), alled mode-to-mode

energy transfer rate, for the energy transfer from mode p to mode k, with mode q ating as a mediator, and showed

that the shell-to-shell energy transfer an be orretly omputed by this formalism. The omputation of S(k|p|q) is
done either numerially or using �eld-theoreti methods. Kishida et al. [9℄ used similar formalism as Dar et al. [12℄ for

wavelets and numerially omputed the shell-to-shell energy transfer rates. In the present paper we quantify the triad

interations using S(k|p|q), and ompute them using �eld-theoreti method. We also alulate the energy transfer

rates between wavenumber shells using a �rst-order perturbation theory. Our analyti arguments justify Domaradzki

and Rogallo's [5℄, Zhou's [4℄, and Ohkitani and Kida's [7℄ numerial results that the turbulent interation is nonloal,

but the shell-to-shell energy transfer is loal.

In this paper we also ompute mode-to-mode energy transfer rate S(k|p|q) for spae dimension other than 2. For

d = 2, S(k|p|q) < 0 for most of p < k, unlike 3D ase. This property of S(k|p|q) is the reason for the inverse energy

asade. We �nd that the transition from bakward to forward energy transfer takes plae at dc = 2.25.
The organization of our paper is as follows: in Se. 2 we ompute S(k|p|q) in the inertial range using �rst-order

�eld theory. It is shown that nonlinear interations in inompressible NS are nonloal. The nature of S(k|p|q) for 2D
and 3D are ontrasted. Se. 3 ontains estimates of the shell-to-shell energy transfer for neighbouring and distant

shells; sine the maximal energy transfer takes plae between neighbouring shells, the shell-to-shell energy transfer is

said to be loal. In Ses. 4 and 5 we ompute shell-to-shell energy transfer rates in 3D and 2D respetively. Setion 4

also ontains a omparison of analytial results with their numerial ounterparts. Setion 6 ontains an elementary

disussion on the energy transfer rates in Burgers turbulene. Setion 7 ontains onlusions.

II. NONLOCAL INTERACTIONS IN INCOMPRESSIBLE FLUID TURBULENCE

Kraihnan [6℄ has omputed magnitudes of triad interations using transfer funtion S(k′|p, q) (k′ + p + q = 0).
In the following disussion we will ompute the strength of triad interation using Dar et al.'s mode-to-mode energy

transfer rate S(k′|p|q) [12℄
S(k′|p|q) = −ℑ ([k′ · u(q)] [u(k′) · u(p)]) (7)



3

Figure 1: The interating triad (k,p,q)/k = (1, v, w) under the ondition k = p+ q is represented by a point (v, w) in the

hathed region. The axis (v′, w′) are inlined to axis (v, w) by 45 degrees. Note that the loal wavenumbers are v ≈ 1, w ≈ 1
or v′ ≈ w′ ≈ 1/

√
2.

that represents energy transfer mode from p to mode k, with mode q ating as a mediator. Here ℑ represents

the imaginary part of the argument. Here we ompute the ensemble average of S, 〈S(k′|p|q)〉, using the standard

�eld-theoreti tehnique [11, 14, 15℄. We expand the 〈S(k′|p|q)〉 [Eq. (7)℄ to �rst order in perturbation (see Verma

[13, 16, 17℄ for details). We assume the �ow to be homogeneous and isotropi.

Following the standard �eld-theoreti proedure, we perform average of S(k′|p|q) and obtain an expression for the

energy transfer rate from mode p to mode k, with mode q as a mediator

〈S(k′|p|q))〉 = T1(k, p, q)C(p)C(q) + T2(k, p, q)C(k)C(q) + T3(k, p, q)C(k)C(p)

ν(k)k2 + ν(p)p2 + ν(q)q2
, (8)

where C(k) is the equal-time orrelation funtion, and ν(k) is the e�etive visosity. The funtions Ti(k, p, q) are

given by

T1(k, p, q) = kp
(

(d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + x2z
)

, (9)

T2(k, p, q) = −kp
(

(d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + y2z
)

, (10)

T3(k, p, q) = −kq
(

xz − 2xy2z − yz2
)

, (11)

where d is the spae dimensionality, and x, y, z are the osines of angles between (p,q), (k,q), and (k,p) respetively.
We take Kolmogorov's spetrum for the orrelation funtion, i. e.,

C(k) =
2 (2π)

d

Sd(d− 1)

KKo |Π|2/3 k−5/3

kd−1
, (12)

and renormalized visosity of MComb and Watt [18℄ for ν(k) to be

ν(k) =
√

KKoν
∗ |Π|1/3 k−4/3, (13)

where KKo is Kolmogorov's onstant, Π is the energy �ux, and ν∗ is a onstant related to the renormalized visosity

[18, 19℄. Note that in 2D �uid turbulene, Π is negative for the wavenumber region with 5/3 spetral index. MComb

and Watt [18, 19℄ have omputed ν∗ using renormalization tehnique. Here we take KKo = 1.6, ν∗ = 0.38 for 3D,

and KKo = 6.3, ν∗ = −0.6 for 2D.

The interations are self-similar in the inertial range, whih is the region of our interest. Therefore, it is su�ient

to analyze S(k′|p|q) for triangles (1, p/k, q/k) = (1, v, w). Sine, |k − p| ≤ q ≤ k + p, |1 − v| ≤ w ≤ 1 + v, hene any
interating triad (1, v, w) is represented by a point (v, w) in the hathed region of Fig. 1 [11℄.

The loal wavenumbers are v ≈ 1, w ≈ 1, while the rest are alled nonloal wavenumbers. We substitute C(k) and
ν(k) in Eq. (8), whih yields

〈S(v, w)〉 =

[

4(2π)2dK
3/2
KoΠ

S2
d(d− 1)2k2dν∗

]

∗

t1(v, w)(vw)
−5/3−(d−1) + t2(v, w)w

−5/3−(d−1) + t3(v, w)v
−5/3−(d−1)

1 + v2/3 + w2/3
(14)
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Figure 2: Density plot of 〈S(v′, w′)〉 of Eq. (8) without the braketed fator for (a) 3D (b) 2D.

where ti(v, w) = Ti(k, p, q)/k
2
. For onveniene, 〈S(v′, w′)〉 are represented in terms of new variables (v′, w′) measured

from the rotated axis shown in the �gure 1. It is easy to show that v = 1 + (v′ − w′)/
√
2, w = (v′ + w′)/

√
2.

Fig. 2 illustrates density plots of 〈S(v′, w′)〉 without the braketed fator. Fig. (a) shows the plot for 3D, while Fig.

(b) shows the one for 2D. Note that 〈S(v′(v, w), w′(v, w))〉 is the energy transferred from mode p = v to mode k = 1.
In the white region (positive), energy is transferred from mode p to mode k, while in the dark regions (negative),

mode p reeives energy from mode k. The value of S at (v, w) = (1, 1), or (v′, w′) = (1/
√
2, 1/

√
2) is zero in both 2D

and 3D.

In 3D the triads with v ≈ 0, w → 1 (v′ ≈ 0, w′ ≈
√
2: the top-left orner in v′-w′

plot) have large and positive 〈S〉,
implying that the large wavelength modes give a large amount of energy to the modes near k ≈ 1. These observations
prove that the nonlinear interations in inompressible NS are nonloal in Fourier spae. In 2D, the triad with v ≈ 0
have large-negative 〈S〉 implying that the large wavelength modes take energy from the modes near k ≈ 1. These

observations indiate that the interations in 2D turbulene are nonloal as well, but the large wavelength modes are

the sink of energy.

Another ommon behaviour in both the dimensions is for w → 0, v ≈ 1 (v′ ≈ 0, w′ ≈ 0, bottom-left orner in v′-w′

plot). Here 〈S〉 ≫ 0 for v < 1, but 〈S〉 ≪ 0 for v > 1. This implies that for these types of triads, the p modes with

magnitudes less than k always give energy to the k modes, while the p modes with p > k always take energy from the

k modes. When p, q are muh larger than k (v, w → ∞), 〈S〉 is small, implying that they interat weakly with k ≈ 1.
In 3D, 〈S〉 for most of these modes are negative implying that they reeive energy from k = 1. In 2D, however, 〈S〉
for a large fration of these triads are positive; hene they supply energy to k = 1.
The energy asade is bakward in 2D. This is due to the above mentioned bakward energy transfer from k = 1

mode to the smaller wavenumber modes (〈S(v ≈ 0, w ≈ 1)〉 < 0), and bakward energy transfer from large v, w modes

to k = 1 mode (〈S(v, w ≫ 1)〉 > 0). It is interesting to ontrast this behaviour with 3D ase where 〈S(v, w)〉 is

somewhat opposite to 2D ase.

The funtion 〈S(v, w)〉 in the region with v → 0 is primarily positive for d = 3, but is negative for d = 2. The

transition of negative 〈S〉 to positive 〈S〉 for the region with v → 0 ours near dc = 2.25. Please refer to Fig. 3(a)

for the illustration. It an be shown using �eld-theoreti alulation that the renormalized visosity vanishes near

dc = 2.25, and the diretion of energy asade hanges from negative to positive at d = dc. Fournier and Frish [20℄

report dc = 2.05 whih di�ers a bit from our dc. The di�erene ould be beause of the fat that Fournier and Frish

[20℄ use ombined energy transfer S(k|p, q) for their EDQNM alulation. In Fig. 3(b) we also show the density plot

of 〈S(v, w)〉 for d = 100. This is a representative illustration for large spae dimensions.

The funtion 〈S(v, w)〉 an be estimated in the limiting ases using the method given in Appendix of Leslie [11℄. In

the nonloal region with v → 0 (naturally, w ≈ 1),

〈S(v, w)〉 ∝ v
4
3
−d. (15)

Clearly, S(v, w) → ∞ for both 2D and 3D. This observation is onsistent with our earlier observation that interations

are nonloal. However when v ≈ w ≈ 1, we �nd that

〈S(v, w)〉 ∝
{

−(v − 1) for d = 3
8
3

[

(v − 1)2 − 1
2 (w − 1)2 − 1

2 (v − 1)(w − 1)
]

for d = 2
(16)
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Figure 3: Density plot of 〈S(v′, w′)〉 of Eq. (8) for (a) d = 2.25 and (b) d = 100.

This result shows that the interations within the loal triads (v ≈ 1, w ≈ 1) are weak. In 3D, among these triads,

the ones with v < 1 or p < k have 〈S〉 > 0, hene the energy transfer is from mode p to mode k; the sign of 〈S〉,
onsequently the sign of energy transfer, is reversed for the modes with v > 1. However in 2D, S is somewhat omplex

in the neighbourhood of v = w = 1.
For v ≈ 1 and w → 0,

〈S(v, w)〉 ∝ w
1
3
−d, (17)

whih again diverges. When v, w → ∞,

〈S(v, w)〉 ∝ v−
4
3
−d.

implying that interations with large wavenumber modes are weak.

The above estimates are onsistent with the graphial plots shown in Figs. 2 and 3. After this disussion, we move

on to ompute the shell-to-shell energy transfer rates in �uid turbulene.

III. LOCAL SHELL-TO SHELL ENERGY TRANSFER IN INCOMPRESSIBLE FLUID TURBULENCE

The wavenumber spae is divided into shells (k0s
n, k0s

n+1), where s > 1, and n an take both positive and negative

values. The energy transfer rate from mth shell (k0s
m, k0s

m+1) to nth shell (k0s
n, k0s

n+1) is given by [12℄

Tnm =
∑

k0sn≤k≤k0sn+1

∑

k0sm≤p≤k0sm+1

〈S(k|p|q)〉 . (18)

If the shell-to-Shell energy transfer rate is maximum for the nearest neighbours, and dereases monotonially with

the inrease of |n−m|, then the shell-to-shell energy transfer is said to be loal.

If the amplitudes of the Fourier modes u(k) are available, either from experiments and or from numerial simulations,

then we an easily ompute the shell-to-shell energy transfer rates using Eqs. (7, 18). In this paper, we ompute the

energy transfer rates between the wavenumbers shells to �rst order in perturbation [11, 13℄ that yields

Tnm =

∫

k0sn≤k≤k0sn+1

dk

(2π)d

∫

k0sm≤p≤k0sm+1

dp

(2π)d

T1(k, p, q)C(p)C(q) + T2(k, p, q)C(k)C(q) + T3(k, p, q)C(k)C(p)

ν(k)k2 + ν(p)p2 + ν(q)q2
(19)

We nondimensionalize the above equations using [11℄

k =
a

u
; p =

a

u
v; q =

a

u
w, (20)
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where a is an arbitrary onstant wavenumber. For our alulation we hoose a = k0s
n−1

. Three dimensional integral

under the onstraint that k′ + p+ q = 0 is given by [11℄

∫

p+q+k=0

dp = Sd−1

∫

dpdq
(pq

k

)d−2

(sinα)
d−3

. (21)

Using these substitutions, we obtain

Tnm

|Π| = K3/2
u

4Sd−1

(d− 1)2Sdν∗

∫ 1

s−1

du

u

∫ usm−n+1

usm−n

dv

∫ 1+v

|1−v|

dw (vw)
d−2

(sinα)
d−3

F (v, w), (22)

where F (v, w) is given by

F (v, w) =
t1(v, w)(vw)

− 2
3
−d + t2(v, w)w

− 2
3
−d + t3(v, w)v

− 2
3
−d

(1 + v2/3 + w2/3)
(23)

with ti(v, w) = Ti(k, kv, kw)/k
2
. Eq. (22) provides us with the shell-to-shell energy transfer rates with relative to

energy �ux Π. Clearly, Tnm depends only on n−m, or Tnm = Tn−i,m−i where i is an integer. Hene, the shell-to-shell

energy transfer is self-similar.

Now let us estimate the shell-to-shell energy transfer rates when m ≪ n. The triads (1, v, w) with v → 0 partiipate
in this energy transfer. As seen in previous setion, for these triads S(v, w) ∝ w(4/3)−d

. Therefore,

Tnm ∼
∫

du

u

∫

dvvd−2v
4
3
−d

∫ 1+v

|1−v|

dwwd−2

∼ v
4/3
0 ,

where v0 is the outer radius of shell m. Sine v0 → 0, Tnm vanishes. Hene, we are able to show that shell-to-shell

energy transfer between distant shells in negligible in spite of large interations between distant wavenumbers. This

result is essentially due to small volume of v or m-th shell.

We an also ompute the shell-to-shell energy transfer rates for lose-by shells. Here the partiipating triads will

satisfy v ≈ w ≈ 1. As shown in the earlier setion, S(v, w) ≈ −(v − 1) for these triads. Therefore,

Tnm ∝
∫

du

u

∫

dv

∫

dw(vw)(v − 1), (24)

with n ≈ m. Sine our bins are uniform in logarithmi sale, the volume of wavenumber shells is of the order of 1

when v ≈ w ≈ 1. Also the range of v− 1 is of the order of v, whih is lose to 1. Therefore Tnm will be �nite. Hene,

the shell-to-shell energy transfer rates between lose-by shells is �nite. This result is onsistent with the loal energy

transfer assumption of Kolmogorov.

For lose-by shells, p ≈ k, but q an take any value from |k − p| to k + p. However, it an be easily shown that

the mode p in the triads with q ≪ k do not ontribute signi�antly to the shell-to-shell energy transfer. Sine,

S(v, w) ∝ w
1
3
−d

for w → 0,

Tnm ∼
∫

du

u

∫

dµµ

∫

dwwd−2w
1
3
−dw (25)

∼ w
1/3
0 , (26)

where v = 1 + µw, and dv = µdw. Clearly the above integral goes to zero. That is, the shell-to-shell energy transfer

between lose-by shells reeive insigni�ant ontribution from the triads satisfying q ≪ p ≈ k.
In this setion we showed using the limiting values of S(k|p|q) that the shell-to-shell energy transfer is loal in spite

of nonloal interations among wavenumber modes. However, Tnm an be easily omputed for the shells in the inertial

range. In the next setion we will do these alulations.

IV. COMPUTATION OF SHELL-TO-SHELL ENERGY TRANSFER IN 3D

The shell-to-shell energy transfer rates have been alulated earlier by Ohkitani and Kida [7℄, and Zhou and Speziale

[10℄ using numerial simulation and EDQNM approximation with S(k|p, q). In this setion we ompute the shell-to-

shell normalized energy transfer rates Tnm/Π in three dimensions using Eq. (22). We take s = 21/4. The integration
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Figure 4: Plot of normalized shell-to-shell energy transfer Tnm/Π vs n − m for d = 3. The nth shell is (k0s
n, k0s

n+1) with

s = 21/4. The energy transfer is maximum for n = m±1, hene the energy transfer is loal. The energy transfer is also forward.

has been done numerially using Gauss-quadrature method. The onstants ν∗ = 0.38 and K = 1.6 have been taken

from MComb and Watt [18℄ and Verma [13, 19℄. The shell-to-shell energy transfer is self-similar, i. e., Tnm is funtion

of n−m. Therefore we ompute Tnm/Π for various n−m. Fig. 4 ontains this plot. Note that the shells m and n
have been assumed to be inside the inertial range.

From Fig. 4 we an infer that the transfer rates Tnm in the inertial range are negative for n < m, and positive for

n > m. Hene a shell gains energy from the smaller wavenumber shells, and loses energy to the higher wavenumber

shells. This means that the energy asades from the smaller wavenumbers to the higher wavenumbers (forward). The

most signi�ant energy transfer takes plae from m to m+ 1. Hene, the shell-to-shell energy transfer is forward and

loal, onsistent with Kolmogorov's piture of turbulene. Note that the energy transfer is loal in spite of nonloal

triad interations.

To validate our theoretial alulations, we have also omputed the shell-to-shell energy transfer rates using the data

from Diret Numerial Simulation on a 5123 grid. The omputation was performed when the turbulene was well devel-

oped. The Reynold's number using Taylor's mirosale was 64.8, and skewness was −0.54. We divide the wavenumber

spae into 15 shells with boundaries at wavenumbers (2, 4, 8, 11.3, 13.5, 16, 19, 22.6, 26.9, 32, 38.1, 64, 76.1, 108, 128, 256).
In the inertial range (k ≈ 10− 35) , the shell boundaries are kn = 2(n+11)/4

. Please refer to Dar et al. [12℄ for details

on numerial proedure. Fig. 5 shows the plots of Tnm/Π vs. n − m for m = 4..9, whih are in the inertial range

shells. The plots show self-similarity, loal, and forward energy transfer for the inertial range shells. The numerial

and theoretial values are in lose agreement.

For thiker shells s = 21/2, the ratio of the smallest to largest wavenumber of the triad is 2
√
2. For these shells,

energy transfer to the nearest neighbouring shell is lose to 35%. These numbers are onsistent with Kraihnan [6℄

and Zhou's [4℄ results.

In the next setion we will disuss shell-to-shell energy transfer in 2D turbulene.

V. SHELL-TO-SHELL ENERGY TRANSFER IN 2D FLUID TURBULENCE

We ompute the shell-to-shell energy transfer in 2D following the same proedure as given above. The wavenumber

range onsidered is in the inverse asade regime (E(k) ∝ k−5/3
). We take ν∗ = −0.6 and K = 6.3 [6, 13℄. As shown

in Fig. 6, the energy transfer rates from the shell m to the three neighbouring shells (m+1,m+2,m+3) are forward,
and the transfers are negative for all shells n > m+ 3. The above result is very similar to Dar et al. [12℄'s numerial

�nding on 2D MHD turbulene (Fig. 10 of Dar et al. [12℄). The negative energy transfer from the distant shells are



8

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

n-m

T
nm

/Π

4
5
6
7
8
9

Figure 5: Plots of normalized shell-to-shell energy transfer Tnm/Π vs. n −m for m from 4 to 9. The plots ollapse on eah

other indiating self-similarity.
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Figure 6: Plot of normalized shell-to-shell energy transfer Tnm/ |Π| vs n − m for d = 2 in the inertial range. The energy

transfer rate from the shell m to the shells m+ 1, m+ 2, m+ 3 is forward, but m+ 4 onward it is negative. The net e�et of

all these transfer is the inverse energy �ux Π.

due to negative 〈S(v, w)〉 for v → 0 (top-left of Fig. 2(b)), and positive 〈S(v, w)〉 for v, w ≫ 1. The negative 〈S(v, w)〉
for v → 0 indiate that large-wavelength modes reeive energy from mode k = 1, and positive 〈S(v, w)〉 for v, w ≫ 1
indiate that small-wavelength modes give energy to mode k = 1. A areful inspetion of Fig. 2(b) indiates that the

forward energy transfer to shells (m+ 1,m+ 2,m+ 3) is due to a narrow region near v = w = 1, or v′ = w′ = 1/
√
2,

where energy transfer is from lower wavenumber to higher number.

The above results on shell-to-shell energy transfer is onsistent with the energy �ux piture. Note that

Π =

∞
∑

n=m+1

(n−m)Tnm.

When we perform the

∑∞
n=m+1(n−m)(Tnm/|Π|), we obtain −1, onsistent with the inverse asade of energy in 2D

turbulene.
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To summarize, in 2D �uid turbulene, the shell-to-shell energy transfer to the neighbouring shells in forward, but

the energy transfer is bakward for the distant shells. The above behaviour is due to forward loal transfer and

bakward nonloal transfers desribed in Setion 2.

In the next setion we will ontrast the energy transfers in inompressible �uid turbulene with relative to Burgers

turbulene (ompressible limit).

VI. LOCALITY ISSUES IN BURGERS TURBULENCE

As disussed in the introdution, Navier-Stokes equation is nonloal in real spae due to pressure. In Burgers

equation

∂u

∂t
+ (u · ∇)u = ν∇2u

the pressure term is dropped with an impliit assumption that the �ow veloity is muh greater than sound speed,

or the sound speed is very small. This is the opposite limit of inompressible NS where the sound speed is in�nite.

Hene a very di�erent behaviour is expeted for Burgers equation [1℄. Clearly, to time-advane the veloity �eld of

Burgers equation at a point, we need loal �eld, and its �rst and seond derivative. Hene, Burgers equation is loal

in real-spae, and nonloal in Fourier spae.

The formula for mode-to-mode energy transfer S(k′|p|q) (Eq. [7℄) is not appliable for Burgers equation beause it

is ompressible (∇·u 6= 0) [12, 13℄. Therefore, the shell-to-shell energy transfer annot be omputed aurately. Note

however that energy �ux an be omputed for Burgers equation. The energy �ux is multifratal, and Π(k) ∝ k−1/2
.

Therefore, E(k) ∝ Π2/3k−5/3 = k−2
[1, 21℄.

VII. CONCLUSIONS

It is known that the nonlinear interations in inompressible Navier-Stokes equation is nonloal in real spae due

to the pressure term. In this paper we investigated loality in Fourier spae by omputing the strength of triad

interations using the formula for the mode-to-mode energy transfer. Our alulation is based on �rst-order �eld-

theoreti tehnique. We take Kolmogorov's 5/3 powerlaw for the energy spetrum, and the renormalized visosity for

the e�etive visosity. It has been shown that the magnitudes of interations for the nonloal triads k ≈ p ≫ q and

k ≈ q ≫ p are large, while the interations are small for the loal triads k ≈ p ≈ q. This result shows that nonlinear
interations in inompressible �uid turbulene is nonloal in Fourier spae as well.

The shell-to-shell energy transfer rates have been investigated by many researhers and ourselves. It is a ommon

wisdom that the shell-to-shell energy transfer is loal, that is, maximum energy transfer takes plae between nearest

shells. We �nd that loal shell-to-shell energy transfer is ompatible with the nonloal triad interations beause the

loal triads oupy more Fourier spae volume as ompared to nonloal (k ≈ q ≫ p) ones. The loal shell-to-shell

energy transfer via nonloal triad interations is onsistent, as seen by Domaradzki and Rogallo [5℄, Zhou [4℄, Ohkitani

and Kida [7℄, and Zhou and Speziale [10℄ in their numerial simulations and EDQNM alulations. We have ourselves

omputed shell-to-shell energy transfer numerially; our theoretial results math with numerial results very well. In

this paper we show this behaviour analytially. The role of the smallest wavenumber mode in the triad is somewhat

onfusing in earlier papers. We have resolved some of these issues.

We observe interesting behaviour in two dimensions. The shell-to-shell energy transfer rates to the nearby shells are

forward, whereas the transfer rates to the far o� shells are bakward. The net e�et is a negative energy �ux. This

theoretial result is onsistent with Dar et al.'s numerial �nding [12℄. The inverse asade of energy is onsistent

with the bakward nonloal energy transfer in mode-to-mode piture [S(k|p|q)℄. We also show that the transition

from bakward energy transfer to forward transfer takes plae at dc ≈ 2.25.
The ontribution of loal triads to the e�etive or renormalized visosity has been debated in turbulene literature.

In Yakhot and Orszag's [22℄ renormalization theory, the renormalized visosity gets ontribution from highly nonloal

wavenumber triads. Kraihnan [23, 24℄ �rst raised the above objetion, and proposed some alternatives. The loal

energy transfer and and nonloal triad interation results disussed in this paper ould be of relevane for this issue;

this aspet needs further investigation.

To onlude, an appliation of �eld-theoreti tehniques to turbulene yields interesting results regarding triad

interations and shell-to-shell energy transfers. The method desribed here has also been applied to magnetohydrody-

nami turbulene, and the results are presented in Verma et al. [25℄. Further investigations of loality in ompressible
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turbulene, and other areas of turbulene will provide us useful lues in furthering our understanding of turbulene.
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