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In this paper we analyti
ally 
ompute the strength of nonlinear intera
tions in a triad, and the

energy ex
hanges between wavenumber shells in in
ompressible �uid turbulen
e. The 
omputation

has been done using �rst-order perturbative �eld theory. In three dimension, magnitude of triad

intera
tions is large for nonlo
al triads, and small for lo
al triads. However, the shell-to-shell

energy transfer rate is found to be lo
al and forward. This result is due to the fa
t that the

nonlo
al triads o

upy mu
h less Fourier spa
e volume than the lo
al ones. The analyti
al results

on three-dimensional shell-to-shell energy transfer mat
h with their numeri
al 
ounterparts. In

two-dimensional turbulen
e, the energy transfer rates to the near-by shells are forward, but to the

distant shells are ba
kward; the 
umulative e�e
t is an inverse 
as
ade of energy.
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I. INTRODUCTION

Many equations in physi
s, e.g., S
hrodinger equation and di�usion equation, are lo
al in real spa
e. Here, to

time-advan
e a variable at a point, we need the values of the variables and their �nite-order derivatives at the same

point. It is well known that in
ompressible Navier-Stokes (NS) equation,

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (1)

∇ · u = 0, (2)

is nonlo
al in real spa
e [1, 2℄. Here u and p are the velo
ity and pressure �elds respe
tively, and ν is the kinemati


vis
osity. The nonlo
ality is due to the pressure term of Eq. (1), whi
h is obtained by taking the divergen
e of

in
ompressible Navier-Stokes (NS) equation [2℄

∇2p = −∇ · {u · ∇u} . (3)

Hen
e,

p(x, t) = −
∫ ∇′ · {u(x′, t) · ∇′u(x′, t)}

|x− x′| , (4)

whi
h is nonlo
al be
ause p(x, t) depends on the velo
ity �eld at x′ 6= x.

In Fourier spa
e, in
ompressible NS equation is

∂ui(k)

∂t
+ νk2ui(k) = − i

2
Pijm(k)

∫

dp

(2π)d
uj(p)um(q), (5)

kiui(k) = 0, (6)

where

Pijm(k) = kj

(

δim − kikm
k2

)

+ km

(

δij −
kikj
k2

)

,

k = p+ q, and d is the spa
e dimensionality. Note that the fa
tor −kikjkm/k2 of Pijm(k) is due to the pressure term.

To determine u(k, t+dt) we need the values of �eld ui(p) where k− p 
ould be quite large. Hen
e, in
ompressible NS
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equation in nonlo
al in Fourier spa
e also [2, 3℄. The basi
 unit of nonlinear intera
tions in turbulen
e, 
alled triad

intera
tions, involve three ve
tors (k,p,q) with k = p+ q. These triad intera
tions yield energy transfers among the

parti
ipating modes. The strength of triad intera
tion is measured using energy ex
hanges in the triad.

The energy transfers between two wavenumber shells 
an be 
omputed using the triad intera
tions. One of the key

ingredient of Kolmogorov's phenomenology of turbulen
e is �lo
al� shell-to-shell energy transfer. That is, maximum

energy is transferred from a wavenumber shell to the next wavenumber shell. This observation has been veri�ed in

numeri
al simulations [4, 5℄. This result is surprising in view of nonlo
al intera
tions in both real and Fourier spa
e.

In this paper, we 
ompute the strength of triad intera
tion, and shell-to-shell energy transfer in in
ompressible �uid

turbulen
e using �eld-theoreti
 te
hnique.

There have been many attempts in the past to 
ompute the strength of triad intera
tions and the energy transfers

in �uid turbulen
e. Krai
hnan [6℄ 
omputed these quantities in both 2D and 3D turbulen
e using �almost Markovian

Galilean invariant� turbulen
e model. He showed the in 3D 35% of the total energy transfer a
ross a unit wavenumber

sphere involves triads in whi
h the smallest wavenumber is more than one-half of the middle wavenumber. Hen
e, shell-

to-shell energy transfer in 3D turbulen
e is lo
al in wavenumber spa
e. Later Domaradzki and Rogallo [5℄ numeri
ally


omputed the above quantities and observed that energy transfers in shells are always lo
al, but the triad intera
tions

are nonlo
al, i.e., triads having three wavenumbers of very di�erent magnitudes have large magnitudes. This is

su

in
tly des
ribed by Domaradzki and Rogallo as �nonlo
al intera
tions and lo
al energy transfer�. Domaradzki

and Rogallo found their numeri
al results to be in an ex
ellent agreement with their own Eddy-damped quasi-normal

Markovian (EDQNM) 
al
ulation. They 
onje
tured that the observed energy transfer as being 
aused by triads

with at least one wavenumber in the energy-
ontaining range. Ohkitani and Kida [7℄ analyzed the triad intera
tions


arefully and 
on
luded that the nonlo
al intera
tion is strong, but the energy ex
hange o

urs predominantly between


omparable s
ales. They 
laimed that the third mode of mu
h larger s
ale is indi�erent to the energy transfer as

if it were a 
atalizer in a 
hemi
al rea
tion. Zhou [4℄ numeri
ally 
omputed the energy transfers using di�erent

wavenumber summation s
heme, and found the energy transfers to be lo
al. Wale�e [8℄ did a similar analysis using

a de
omposition of the velo
ity �eld in terms of heli
al modes. Kishida et al. [9℄ used wavelet basis to address the

same problem and obtained similar results. For review on this topi
, refer to Zhou and Speziale [10℄. In the present

paper we re-look at some of the above 
onje
tures.

In all the above papers, turbulent intera
tions are measured using a fun
tion S(k|p, q) (usually 
alled transfer

fun
tion) that denotes the sum of energy transfers from mode p and q to mode k [11℄. Dar et al. [12, 13℄ point out

that the energy transfer from one shell to another shell 
an not be a

urately 
omputed using S(k|p, q), essentially
be
ause the third mode of the intera
tion 
ould lie outside both the shells under 
onsideration. To over
ome this

di�
ulty, Dar et al. [12℄ modi�ed the above formulation. They used a new fun
tion S(k|p|q), 
alled mode-to-mode

energy transfer rate, for the energy transfer from mode p to mode k, with mode q a
ting as a mediator, and showed

that the shell-to-shell energy transfer 
an be 
orre
tly 
omputed by this formalism. The 
omputation of S(k|p|q) is
done either numeri
ally or using �eld-theoreti
 methods. Kishida et al. [9℄ used similar formalism as Dar et al. [12℄ for

wavelets and numeri
ally 
omputed the shell-to-shell energy transfer rates. In the present paper we quantify the triad

intera
tions using S(k|p|q), and 
ompute them using �eld-theoreti
 method. We also 
al
ulate the energy transfer

rates between wavenumber shells using a �rst-order perturbation theory. Our analyti
 arguments justify Domaradzki

and Rogallo's [5℄, Zhou's [4℄, and Ohkitani and Kida's [7℄ numeri
al results that the turbulent intera
tion is nonlo
al,

but the shell-to-shell energy transfer is lo
al.

In this paper we also 
ompute mode-to-mode energy transfer rate S(k|p|q) for spa
e dimension other than 2. For

d = 2, S(k|p|q) < 0 for most of p < k, unlike 3D 
ase. This property of S(k|p|q) is the reason for the inverse energy


as
ade. We �nd that the transition from ba
kward to forward energy transfer takes pla
e at dc = 2.25.
The organization of our paper is as follows: in Se
. 2 we 
ompute S(k|p|q) in the inertial range using �rst-order

�eld theory. It is shown that nonlinear intera
tions in in
ompressible NS are nonlo
al. The nature of S(k|p|q) for 2D
and 3D are 
ontrasted. Se
. 3 
ontains estimates of the shell-to-shell energy transfer for neighbouring and distant

shells; sin
e the maximal energy transfer takes pla
e between neighbouring shells, the shell-to-shell energy transfer is

said to be lo
al. In Se
s. 4 and 5 we 
ompute shell-to-shell energy transfer rates in 3D and 2D respe
tively. Se
tion 4

also 
ontains a 
omparison of analyti
al results with their numeri
al 
ounterparts. Se
tion 6 
ontains an elementary

dis
ussion on the energy transfer rates in Burgers turbulen
e. Se
tion 7 
ontains 
on
lusions.

II. NONLOCAL INTERACTIONS IN INCOMPRESSIBLE FLUID TURBULENCE

Krai
hnan [6℄ has 
omputed magnitudes of triad intera
tions using transfer fun
tion S(k′|p, q) (k′ + p + q = 0).
In the following dis
ussion we will 
ompute the strength of triad intera
tion using Dar et al.'s mode-to-mode energy

transfer rate S(k′|p|q) [12℄
S(k′|p|q) = −ℑ ([k′ · u(q)] [u(k′) · u(p)]) (7)
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Figure 1: The intera
ting triad (k,p,q)/k = (1, v, w) under the 
ondition k = p+ q is represented by a point (v, w) in the

hat
hed region. The axis (v′, w′) are in
lined to axis (v, w) by 45 degrees. Note that the lo
al wavenumbers are v ≈ 1, w ≈ 1
or v′ ≈ w′ ≈ 1/

√
2.

that represents energy transfer mode from p to mode k, with mode q a
ting as a mediator. Here ℑ represents

the imaginary part of the argument. Here we 
ompute the ensemble average of S, 〈S(k′|p|q)〉, using the standard

�eld-theoreti
 te
hnique [11, 14, 15℄. We expand the 〈S(k′|p|q)〉 [Eq. (7)℄ to �rst order in perturbation (see Verma

[13, 16, 17℄ for details). We assume the �ow to be homogeneous and isotropi
.

Following the standard �eld-theoreti
 pro
edure, we perform average of S(k′|p|q) and obtain an expression for the

energy transfer rate from mode p to mode k, with mode q as a mediator

〈S(k′|p|q))〉 = T1(k, p, q)C(p)C(q) + T2(k, p, q)C(k)C(q) + T3(k, p, q)C(k)C(p)

ν(k)k2 + ν(p)p2 + ν(q)q2
, (8)

where C(k) is the equal-time 
orrelation fun
tion, and ν(k) is the e�e
tive vis
osity. The fun
tions Ti(k, p, q) are

given by

T1(k, p, q) = kp
(

(d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + x2z
)

, (9)

T2(k, p, q) = −kp
(

(d− 3)z + (d− 2)xy + 2z3 + 2xyz2 + y2z
)

, (10)

T3(k, p, q) = −kq
(

xz − 2xy2z − yz2
)

, (11)

where d is the spa
e dimensionality, and x, y, z are the 
osines of angles between (p,q), (k,q), and (k,p) respe
tively.
We take Kolmogorov's spe
trum for the 
orrelation fun
tion, i. e.,

C(k) =
2 (2π)

d

Sd(d− 1)

KKo |Π|2/3 k−5/3

kd−1
, (12)

and renormalized vis
osity of M
Comb and Watt [18℄ for ν(k) to be

ν(k) =
√

KKoν
∗ |Π|1/3 k−4/3, (13)

where KKo is Kolmogorov's 
onstant, Π is the energy �ux, and ν∗ is a 
onstant related to the renormalized vis
osity

[18, 19℄. Note that in 2D �uid turbulen
e, Π is negative for the wavenumber region with 5/3 spe
tral index. M
Comb

and Watt [18, 19℄ have 
omputed ν∗ using renormalization te
hnique. Here we take KKo = 1.6, ν∗ = 0.38 for 3D,

and KKo = 6.3, ν∗ = −0.6 for 2D.

The intera
tions are self-similar in the inertial range, whi
h is the region of our interest. Therefore, it is su�
ient

to analyze S(k′|p|q) for triangles (1, p/k, q/k) = (1, v, w). Sin
e, |k − p| ≤ q ≤ k + p, |1 − v| ≤ w ≤ 1 + v, hen
e any
intera
ting triad (1, v, w) is represented by a point (v, w) in the hat
hed region of Fig. 1 [11℄.

The lo
al wavenumbers are v ≈ 1, w ≈ 1, while the rest are 
alled nonlo
al wavenumbers. We substitute C(k) and
ν(k) in Eq. (8), whi
h yields

〈S(v, w)〉 =

[

4(2π)2dK
3/2
KoΠ

S2
d(d− 1)2k2dν∗

]

∗

t1(v, w)(vw)
−5/3−(d−1) + t2(v, w)w

−5/3−(d−1) + t3(v, w)v
−5/3−(d−1)

1 + v2/3 + w2/3
(14)



4

Figure 2: Density plot of 〈S(v′, w′)〉 of Eq. (8) without the bra
keted fa
tor for (a) 3D (b) 2D.

where ti(v, w) = Ti(k, p, q)/k
2
. For 
onvenien
e, 〈S(v′, w′)〉 are represented in terms of new variables (v′, w′) measured

from the rotated axis shown in the �gure 1. It is easy to show that v = 1 + (v′ − w′)/
√
2, w = (v′ + w′)/

√
2.

Fig. 2 illustrates density plots of 〈S(v′, w′)〉 without the bra
keted fa
tor. Fig. (a) shows the plot for 3D, while Fig.

(b) shows the one for 2D. Note that 〈S(v′(v, w), w′(v, w))〉 is the energy transferred from mode p = v to mode k = 1.
In the white region (positive), energy is transferred from mode p to mode k, while in the dark regions (negative),

mode p re
eives energy from mode k. The value of S at (v, w) = (1, 1), or (v′, w′) = (1/
√
2, 1/

√
2) is zero in both 2D

and 3D.

In 3D the triads with v ≈ 0, w → 1 (v′ ≈ 0, w′ ≈
√
2: the top-left 
orner in v′-w′

plot) have large and positive 〈S〉,
implying that the large wavelength modes give a large amount of energy to the modes near k ≈ 1. These observations
prove that the nonlinear intera
tions in in
ompressible NS are nonlo
al in Fourier spa
e. In 2D, the triad with v ≈ 0
have large-negative 〈S〉 implying that the large wavelength modes take energy from the modes near k ≈ 1. These

observations indi
ate that the intera
tions in 2D turbulen
e are nonlo
al as well, but the large wavelength modes are

the sink of energy.

Another 
ommon behaviour in both the dimensions is for w → 0, v ≈ 1 (v′ ≈ 0, w′ ≈ 0, bottom-left 
orner in v′-w′

plot). Here 〈S〉 ≫ 0 for v < 1, but 〈S〉 ≪ 0 for v > 1. This implies that for these types of triads, the p modes with

magnitudes less than k always give energy to the k modes, while the p modes with p > k always take energy from the

k modes. When p, q are mu
h larger than k (v, w → ∞), 〈S〉 is small, implying that they intera
t weakly with k ≈ 1.
In 3D, 〈S〉 for most of these modes are negative implying that they re
eive energy from k = 1. In 2D, however, 〈S〉
for a large fra
tion of these triads are positive; hen
e they supply energy to k = 1.
The energy 
as
ade is ba
kward in 2D. This is due to the above mentioned ba
kward energy transfer from k = 1

mode to the smaller wavenumber modes (〈S(v ≈ 0, w ≈ 1)〉 < 0), and ba
kward energy transfer from large v, w modes

to k = 1 mode (〈S(v, w ≫ 1)〉 > 0). It is interesting to 
ontrast this behaviour with 3D 
ase where 〈S(v, w)〉 is

somewhat opposite to 2D 
ase.

The fun
tion 〈S(v, w)〉 in the region with v → 0 is primarily positive for d = 3, but is negative for d = 2. The

transition of negative 〈S〉 to positive 〈S〉 for the region with v → 0 o

urs near dc = 2.25. Please refer to Fig. 3(a)

for the illustration. It 
an be shown using �eld-theoreti
 
al
ulation that the renormalized vis
osity vanishes near

dc = 2.25, and the dire
tion of energy 
as
ade 
hanges from negative to positive at d = dc. Fournier and Fris
h [20℄

report dc = 2.05 whi
h di�ers a bit from our dc. The di�eren
e 
ould be be
ause of the fa
t that Fournier and Fris
h

[20℄ use 
ombined energy transfer S(k|p, q) for their EDQNM 
al
ulation. In Fig. 3(b) we also show the density plot

of 〈S(v, w)〉 for d = 100. This is a representative illustration for large spa
e dimensions.

The fun
tion 〈S(v, w)〉 
an be estimated in the limiting 
ases using the method given in Appendix of Leslie [11℄. In

the nonlo
al region with v → 0 (naturally, w ≈ 1),

〈S(v, w)〉 ∝ v
4
3
−d. (15)

Clearly, S(v, w) → ∞ for both 2D and 3D. This observation is 
onsistent with our earlier observation that intera
tions

are nonlo
al. However when v ≈ w ≈ 1, we �nd that

〈S(v, w)〉 ∝
{

−(v − 1) for d = 3
8
3

[

(v − 1)2 − 1
2 (w − 1)2 − 1

2 (v − 1)(w − 1)
]

for d = 2
(16)
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Figure 3: Density plot of 〈S(v′, w′)〉 of Eq. (8) for (a) d = 2.25 and (b) d = 100.

This result shows that the intera
tions within the lo
al triads (v ≈ 1, w ≈ 1) are weak. In 3D, among these triads,

the ones with v < 1 or p < k have 〈S〉 > 0, hen
e the energy transfer is from mode p to mode k; the sign of 〈S〉,

onsequently the sign of energy transfer, is reversed for the modes with v > 1. However in 2D, S is somewhat 
omplex

in the neighbourhood of v = w = 1.
For v ≈ 1 and w → 0,

〈S(v, w)〉 ∝ w
1
3
−d, (17)

whi
h again diverges. When v, w → ∞,

〈S(v, w)〉 ∝ v−
4
3
−d.

implying that intera
tions with large wavenumber modes are weak.

The above estimates are 
onsistent with the graphi
al plots shown in Figs. 2 and 3. After this dis
ussion, we move

on to 
ompute the shell-to-shell energy transfer rates in �uid turbulen
e.

III. LOCAL SHELL-TO SHELL ENERGY TRANSFER IN INCOMPRESSIBLE FLUID TURBULENCE

The wavenumber spa
e is divided into shells (k0s
n, k0s

n+1), where s > 1, and n 
an take both positive and negative

values. The energy transfer rate from mth shell (k0s
m, k0s

m+1) to nth shell (k0s
n, k0s

n+1) is given by [12℄

Tnm =
∑

k0sn≤k≤k0sn+1

∑

k0sm≤p≤k0sm+1

〈S(k|p|q)〉 . (18)

If the shell-to-Shell energy transfer rate is maximum for the nearest neighbours, and de
reases monotoni
ally with

the in
rease of |n−m|, then the shell-to-shell energy transfer is said to be lo
al.

If the amplitudes of the Fourier modes u(k) are available, either from experiments and or from numeri
al simulations,

then we 
an easily 
ompute the shell-to-shell energy transfer rates using Eqs. (7, 18). In this paper, we 
ompute the

energy transfer rates between the wavenumbers shells to �rst order in perturbation [11, 13℄ that yields

Tnm =

∫

k0sn≤k≤k0sn+1

dk

(2π)d

∫

k0sm≤p≤k0sm+1

dp

(2π)d

T1(k, p, q)C(p)C(q) + T2(k, p, q)C(k)C(q) + T3(k, p, q)C(k)C(p)

ν(k)k2 + ν(p)p2 + ν(q)q2
(19)

We nondimensionalize the above equations using [11℄

k =
a

u
; p =

a

u
v; q =

a

u
w, (20)
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where a is an arbitrary 
onstant wavenumber. For our 
al
ulation we 
hoose a = k0s
n−1

. Three dimensional integral

under the 
onstraint that k′ + p+ q = 0 is given by [11℄

∫

p+q+k=0

dp = Sd−1

∫

dpdq
(pq

k

)d−2

(sinα)
d−3

. (21)

Using these substitutions, we obtain

Tnm

|Π| = K3/2
u

4Sd−1

(d− 1)2Sdν∗

∫ 1

s−1

du

u

∫ usm−n+1

usm−n

dv

∫ 1+v

|1−v|

dw (vw)
d−2

(sinα)
d−3

F (v, w), (22)

where F (v, w) is given by

F (v, w) =
t1(v, w)(vw)

− 2
3
−d + t2(v, w)w

− 2
3
−d + t3(v, w)v

− 2
3
−d

(1 + v2/3 + w2/3)
(23)

with ti(v, w) = Ti(k, kv, kw)/k
2
. Eq. (22) provides us with the shell-to-shell energy transfer rates with relative to

energy �ux Π. Clearly, Tnm depends only on n−m, or Tnm = Tn−i,m−i where i is an integer. Hen
e, the shell-to-shell

energy transfer is self-similar.

Now let us estimate the shell-to-shell energy transfer rates when m ≪ n. The triads (1, v, w) with v → 0 parti
ipate
in this energy transfer. As seen in previous se
tion, for these triads S(v, w) ∝ w(4/3)−d

. Therefore,

Tnm ∼
∫

du

u

∫

dvvd−2v
4
3
−d

∫ 1+v

|1−v|

dwwd−2

∼ v
4/3
0 ,

where v0 is the outer radius of shell m. Sin
e v0 → 0, Tnm vanishes. Hen
e, we are able to show that shell-to-shell

energy transfer between distant shells in negligible in spite of large intera
tions between distant wavenumbers. This

result is essentially due to small volume of v or m-th shell.

We 
an also 
ompute the shell-to-shell energy transfer rates for 
lose-by shells. Here the parti
ipating triads will

satisfy v ≈ w ≈ 1. As shown in the earlier se
tion, S(v, w) ≈ −(v − 1) for these triads. Therefore,

Tnm ∝
∫

du

u

∫

dv

∫

dw(vw)(v − 1), (24)

with n ≈ m. Sin
e our bins are uniform in logarithmi
 s
ale, the volume of wavenumber shells is of the order of 1

when v ≈ w ≈ 1. Also the range of v− 1 is of the order of v, whi
h is 
lose to 1. Therefore Tnm will be �nite. Hen
e,

the shell-to-shell energy transfer rates between 
lose-by shells is �nite. This result is 
onsistent with the lo
al energy

transfer assumption of Kolmogorov.

For 
lose-by shells, p ≈ k, but q 
an take any value from |k − p| to k + p. However, it 
an be easily shown that

the mode p in the triads with q ≪ k do not 
ontribute signi�
antly to the shell-to-shell energy transfer. Sin
e,

S(v, w) ∝ w
1
3
−d

for w → 0,

Tnm ∼
∫

du

u

∫

dµµ

∫

dwwd−2w
1
3
−dw (25)

∼ w
1/3
0 , (26)

where v = 1 + µw, and dv = µdw. Clearly the above integral goes to zero. That is, the shell-to-shell energy transfer

between 
lose-by shells re
eive insigni�
ant 
ontribution from the triads satisfying q ≪ p ≈ k.
In this se
tion we showed using the limiting values of S(k|p|q) that the shell-to-shell energy transfer is lo
al in spite

of nonlo
al intera
tions among wavenumber modes. However, Tnm 
an be easily 
omputed for the shells in the inertial

range. In the next se
tion we will do these 
al
ulations.

IV. COMPUTATION OF SHELL-TO-SHELL ENERGY TRANSFER IN 3D

The shell-to-shell energy transfer rates have been 
al
ulated earlier by Ohkitani and Kida [7℄, and Zhou and Speziale

[10℄ using numeri
al simulation and EDQNM approximation with S(k|p, q). In this se
tion we 
ompute the shell-to-

shell normalized energy transfer rates Tnm/Π in three dimensions using Eq. (22). We take s = 21/4. The integration
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Figure 4: Plot of normalized shell-to-shell energy transfer Tnm/Π vs n − m for d = 3. The nth shell is (k0s
n, k0s

n+1) with

s = 21/4. The energy transfer is maximum for n = m±1, hen
e the energy transfer is lo
al. The energy transfer is also forward.

has been done numeri
ally using Gauss-quadrature method. The 
onstants ν∗ = 0.38 and K = 1.6 have been taken

from M
Comb and Watt [18℄ and Verma [13, 19℄. The shell-to-shell energy transfer is self-similar, i. e., Tnm is fun
tion

of n−m. Therefore we 
ompute Tnm/Π for various n−m. Fig. 4 
ontains this plot. Note that the shells m and n
have been assumed to be inside the inertial range.

From Fig. 4 we 
an infer that the transfer rates Tnm in the inertial range are negative for n < m, and positive for

n > m. Hen
e a shell gains energy from the smaller wavenumber shells, and loses energy to the higher wavenumber

shells. This means that the energy 
as
ades from the smaller wavenumbers to the higher wavenumbers (forward). The

most signi�
ant energy transfer takes pla
e from m to m+ 1. Hen
e, the shell-to-shell energy transfer is forward and

lo
al, 
onsistent with Kolmogorov's pi
ture of turbulen
e. Note that the energy transfer is lo
al in spite of nonlo
al

triad intera
tions.

To validate our theoreti
al 
al
ulations, we have also 
omputed the shell-to-shell energy transfer rates using the data

from Dire
t Numeri
al Simulation on a 5123 grid. The 
omputation was performed when the turbulen
e was well devel-

oped. The Reynold's number using Taylor's mi
ros
ale was 64.8, and skewness was −0.54. We divide the wavenumber

spa
e into 15 shells with boundaries at wavenumbers (2, 4, 8, 11.3, 13.5, 16, 19, 22.6, 26.9, 32, 38.1, 64, 76.1, 108, 128, 256).
In the inertial range (k ≈ 10− 35) , the shell boundaries are kn = 2(n+11)/4

. Please refer to Dar et al. [12℄ for details

on numeri
al pro
edure. Fig. 5 shows the plots of Tnm/Π vs. n − m for m = 4..9, whi
h are in the inertial range

shells. The plots show self-similarity, lo
al, and forward energy transfer for the inertial range shells. The numeri
al

and theoreti
al values are in 
lose agreement.

For thi
ker shells s = 21/2, the ratio of the smallest to largest wavenumber of the triad is 2
√
2. For these shells,

energy transfer to the nearest neighbouring shell is 
lose to 35%. These numbers are 
onsistent with Krai
hnan [6℄

and Zhou's [4℄ results.

In the next se
tion we will dis
uss shell-to-shell energy transfer in 2D turbulen
e.

V. SHELL-TO-SHELL ENERGY TRANSFER IN 2D FLUID TURBULENCE

We 
ompute the shell-to-shell energy transfer in 2D following the same pro
edure as given above. The wavenumber

range 
onsidered is in the inverse 
as
ade regime (E(k) ∝ k−5/3
). We take ν∗ = −0.6 and K = 6.3 [6, 13℄. As shown

in Fig. 6, the energy transfer rates from the shell m to the three neighbouring shells (m+1,m+2,m+3) are forward,
and the transfers are negative for all shells n > m+ 3. The above result is very similar to Dar et al. [12℄'s numeri
al

�nding on 2D MHD turbulen
e (Fig. 10 of Dar et al. [12℄). The negative energy transfer from the distant shells are
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Figure 5: Plots of normalized shell-to-shell energy transfer Tnm/Π vs. n −m for m from 4 to 9. The plots 
ollapse on ea
h

other indi
ating self-similarity.
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Figure 6: Plot of normalized shell-to-shell energy transfer Tnm/ |Π| vs n − m for d = 2 in the inertial range. The energy

transfer rate from the shell m to the shells m+ 1, m+ 2, m+ 3 is forward, but m+ 4 onward it is negative. The net e�e
t of

all these transfer is the inverse energy �ux Π.

due to negative 〈S(v, w)〉 for v → 0 (top-left of Fig. 2(b)), and positive 〈S(v, w)〉 for v, w ≫ 1. The negative 〈S(v, w)〉
for v → 0 indi
ate that large-wavelength modes re
eive energy from mode k = 1, and positive 〈S(v, w)〉 for v, w ≫ 1
indi
ate that small-wavelength modes give energy to mode k = 1. A 
areful inspe
tion of Fig. 2(b) indi
ates that the

forward energy transfer to shells (m+ 1,m+ 2,m+ 3) is due to a narrow region near v = w = 1, or v′ = w′ = 1/
√
2,

where energy transfer is from lower wavenumber to higher number.

The above results on shell-to-shell energy transfer is 
onsistent with the energy �ux pi
ture. Note that

Π =

∞
∑

n=m+1

(n−m)Tnm.

When we perform the

∑∞
n=m+1(n−m)(Tnm/|Π|), we obtain −1, 
onsistent with the inverse 
as
ade of energy in 2D

turbulen
e.
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To summarize, in 2D �uid turbulen
e, the shell-to-shell energy transfer to the neighbouring shells in forward, but

the energy transfer is ba
kward for the distant shells. The above behaviour is due to forward lo
al transfer and

ba
kward nonlo
al transfers des
ribed in Se
tion 2.

In the next se
tion we will 
ontrast the energy transfers in in
ompressible �uid turbulen
e with relative to Burgers

turbulen
e (
ompressible limit).

VI. LOCALITY ISSUES IN BURGERS TURBULENCE

As dis
ussed in the introdu
tion, Navier-Stokes equation is nonlo
al in real spa
e due to pressure. In Burgers

equation

∂u

∂t
+ (u · ∇)u = ν∇2u

the pressure term is dropped with an impli
it assumption that the �ow velo
ity is mu
h greater than sound speed,

or the sound speed is very small. This is the opposite limit of in
ompressible NS where the sound speed is in�nite.

Hen
e a very di�erent behaviour is expe
ted for Burgers equation [1℄. Clearly, to time-advan
e the velo
ity �eld of

Burgers equation at a point, we need lo
al �eld, and its �rst and se
ond derivative. Hen
e, Burgers equation is lo
al

in real-spa
e, and nonlo
al in Fourier spa
e.

The formula for mode-to-mode energy transfer S(k′|p|q) (Eq. [7℄) is not appli
able for Burgers equation be
ause it

is 
ompressible (∇·u 6= 0) [12, 13℄. Therefore, the shell-to-shell energy transfer 
annot be 
omputed a

urately. Note

however that energy �ux 
an be 
omputed for Burgers equation. The energy �ux is multifra
tal, and Π(k) ∝ k−1/2
.

Therefore, E(k) ∝ Π2/3k−5/3 = k−2
[1, 21℄.

VII. CONCLUSIONS

It is known that the nonlinear intera
tions in in
ompressible Navier-Stokes equation is nonlo
al in real spa
e due

to the pressure term. In this paper we investigated lo
ality in Fourier spa
e by 
omputing the strength of triad

intera
tions using the formula for the mode-to-mode energy transfer. Our 
al
ulation is based on �rst-order �eld-

theoreti
 te
hnique. We take Kolmogorov's 5/3 powerlaw for the energy spe
trum, and the renormalized vis
osity for

the e�e
tive vis
osity. It has been shown that the magnitudes of intera
tions for the nonlo
al triads k ≈ p ≫ q and

k ≈ q ≫ p are large, while the intera
tions are small for the lo
al triads k ≈ p ≈ q. This result shows that nonlinear
intera
tions in in
ompressible �uid turbulen
e is nonlo
al in Fourier spa
e as well.

The shell-to-shell energy transfer rates have been investigated by many resear
hers and ourselves. It is a 
ommon

wisdom that the shell-to-shell energy transfer is lo
al, that is, maximum energy transfer takes pla
e between nearest

shells. We �nd that lo
al shell-to-shell energy transfer is 
ompatible with the nonlo
al triad intera
tions be
ause the

lo
al triads o

upy more Fourier spa
e volume as 
ompared to nonlo
al (k ≈ q ≫ p) ones. The lo
al shell-to-shell

energy transfer via nonlo
al triad intera
tions is 
onsistent, as seen by Domaradzki and Rogallo [5℄, Zhou [4℄, Ohkitani

and Kida [7℄, and Zhou and Speziale [10℄ in their numeri
al simulations and EDQNM 
al
ulations. We have ourselves


omputed shell-to-shell energy transfer numeri
ally; our theoreti
al results mat
h with numeri
al results very well. In

this paper we show this behaviour analyti
ally. The role of the smallest wavenumber mode in the triad is somewhat


onfusing in earlier papers. We have resolved some of these issues.

We observe interesting behaviour in two dimensions. The shell-to-shell energy transfer rates to the nearby shells are

forward, whereas the transfer rates to the far o� shells are ba
kward. The net e�e
t is a negative energy �ux. This

theoreti
al result is 
onsistent with Dar et al.'s numeri
al �nding [12℄. The inverse 
as
ade of energy is 
onsistent

with the ba
kward nonlo
al energy transfer in mode-to-mode pi
ture [S(k|p|q)℄. We also show that the transition

from ba
kward energy transfer to forward transfer takes pla
e at dc ≈ 2.25.
The 
ontribution of lo
al triads to the e�e
tive or renormalized vis
osity has been debated in turbulen
e literature.

In Yakhot and Orszag's [22℄ renormalization theory, the renormalized vis
osity gets 
ontribution from highly nonlo
al

wavenumber triads. Krai
hnan [23, 24℄ �rst raised the above obje
tion, and proposed some alternatives. The lo
al

energy transfer and and nonlo
al triad intera
tion results dis
ussed in this paper 
ould be of relevan
e for this issue;

this aspe
t needs further investigation.

To 
on
lude, an appli
ation of �eld-theoreti
 te
hniques to turbulen
e yields interesting results regarding triad

intera
tions and shell-to-shell energy transfers. The method des
ribed here has also been applied to magnetohydrody-

nami
 turbulen
e, and the results are presented in Verma et al. [25℄. Further investigations of lo
ality in 
ompressible
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turbulen
e, and other areas of turbulen
e will provide us useful 
lues in furthering our understanding of turbulen
e.
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