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Abstract—IoT devices penetrate different aspects of our life
including critical services such as health monitoring, public
safety, and autonomous driving. Such safety-critical IoT systems
often consist of a large number of devices and need to withstand
a vast range of known denial-of-service (DoS) network attacks to
ensure reliable operation while offering low-latency information
dissemination. As the first solution to jointly achieve these
goals, we propose LIDOR, a secure and lightweight multihop
communication protocol designed to withstand all known variants
of packet dropping attacks. Specifically, LIDOR relies on an end-
to-end feedback mechanism to detect and react on unreliable
links and draws solely on efficient symmetric-key cryptographic
mechanisms to protect packets in transit. We show the overhead
of LIDOR analytically and provide the proof-of-convergence for
LIDOR which makes LIDOR resilient even to strong and hard-
to-detect wormhole-supported greyhole attacks. In addition, we
evaluate the performance via testbed experiments. The results
indicate that LIDOR improves reliability under DoS attacks by
up to 91 % and reduces network overhead by 32 % compared to
a state-of-the-art benchmark scheme.

I. INTRODUCTION

Safety-critical IoT systems has become an integrated part of
our professional and personal lives in the areas of health mon-
itoring, public safety, and autonomous driving. Such systems
require wireless networking solutions that are: (i) scalable,
(ii) robust and secure, and (iii) offer low latency (see Fig. 1).
To date, these objectives have been individually tackled, how-
ever, there is no comprehensive solution that addresses these
objectives jointly.

The key to scalability is using multi-hop communication
with low-overhead routing strategies [1]. In fact, existing
practical solutions such as Bluetooth Mesh [2], [3] rely on
multi-hop communication but their scalability is limited by
a flooding-based routing approach. Robustness and security

is achieved by protection against attacks on availability, i. e.,
denial-of-service (DoS) attacks. Furthermore, this protection
should be provided both on control plane and data plane. Prior
works on joint control and data plane protection [4]–[8] do not
provide a provably comprehensive solution against all well-
known variants of blackhole and greyhole DoS attacks. Finally,
low latency is important for safety-critical systems which
require timely dissemination of information. Low latency
can only be achieved via a low overhead routing protocol
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Fig. 1: Design objectives for safety-critical IoT

design and an efficient implementation especially when using
cryptographic operations.

In this paper, we propose LIDOR, a lightweight multi-
hop protocol that secures communication among IoT devices.
While LIDOR provides authenticated and (optionally) con-
fidential communication, more importantly, it uses an end-
to-end feedback mechanism to quickly detect and locally
repair broken paths, thus, comprehensively mitigating different
variants of DoS attacks. LIDOR’s path selection provably
converges even in the presence of hard-to-detect wormhole-
supported greyhole attacks. By leveraging symmetric-key
cryptographic primitives, we ensure efficient operation of
LIDOR even on embedded devices [9] leading to low end-
to-end delivery delays. We validate our proposal by running
testbed experiments. Our main contributions are:

• We present LIDOR, the first multi-hop communication
protocol that comprehensively protects against all well-
known variants of blackhole and greyhole attacks.

• We analytically prove that LIDOR’s communication over-
head is lower than Castor [8], which is the most secure
multi-hop solution in the state-of-the-art. Although Castor
is not the latest work on the topic, it is the strongest
work to date which provides protections against different
packet dropping attacks. Recent follow-up works pursue
solution for specific attacks only [10], [11].

• We provide analytical proof that LIDOR converges even
in the presence of a wormhole-supported greyhole attack.

• We implement a LIDOR prototype in C++ using
lightweight symmetric cryptographic primitives and make
it available as open source software.

• We conduct experiments in our testbed to validate our
analytical findings and show that LIDOR does not in-
cur additional overhead under attack and significantly
increases delivery rates under attack compared to the
Castor protocol.
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The rest of this paper is structured as follows: in Section II,
we give background information on DoS attacks and related
work. In Section III, we introduce our LIDOR protocol. We
provide analytical proofs for LIDOR’s overhead and conver-
gence in Section IV and Section V, respectively. In Section VI,
we shed light on our implementation on which we base our
experimental evaluation in Section VII. We discuss our results
in Section VIII and finally conclude in Section IX.

II. BACKGROUND

In this section, we first review major denial-of-service
attacks on multi-hop communication schemes and then discuss
existing secure multi-hop protocols that thwart (part of) the
attack space. We provide an overview of the protocols and
their attack resilience in Table I.

A. Denial-of-Service Attacks

We adopt the taxonomy of [12] for attacks on multi-
hop communication. We differentiate between attacks on the
control plane (path discovery) and attacks on the data plane
(payload transmission). Denial-of-Service (DoS) attacks on
multi-hop schemes aim to disrupt or completely prevent
communication between two target nodes. By manipulating
the path discovery mechanism, an attacker might be able to
divert traffic (spoofing or replay) or attract traffic towards
itself by exploiting performance-based distance metrics such
as hop count or round-trip time (rushing [13], tunneling, or
wormhole1 [14]). In addition, the attacker can operate under
multiple identities to evade detection (Sybil attack [15]). On
the data plane, the attacker can decide to drop all packets
(dropping), or to only drop temporarily or certain types of
packets (selective dropping). By combining attacks on control
and data plane, an attacker can create a devastating blackhole

or greyhole which essentially attracts and then (selectively)
drops packets. Note that, consequently, there are several flavors
of blackhole and greyhole attacks that depend on an supporting
attack on the control plane.

Regarding attacks aiming at resource starvation, Castor [8]
is the only solution that proposes a rate-limiting mechanism
tied to the node’s reliability to thwart flooding attacks. Since
LIDOR uses a similar reliability-based distance metric, adopt-
ing Castor’s mitigation would be straightforward, but is not
discussed in this paper.

B. Related Work

Initial works on routing protocols [16]–[20] only secure the
control plane of a communication protocol and, therefore, can-
not comprehensively protect against (selective) dropping at-
tacks. Similarly, protocols only protecting the data plane [21],
[22], can only detect packet loss but not react on it. Therefore,
the best approach against blackhole and greyhole attacks is a
holistic approach that protects both control and data plane.
We provide a summary of such holistic approaches in Table I.
As we are interested in a comprehensive DoS resilience,

1We consider rushing and tunneling to be weaker variants of the wormhole

attack, so we do not explicitly consider them in the following.

TABLE I: Resilience of holistic multi-hop protocols to dif-
ferent variants of (selective) packet dropping attacks. We
differentiate between resilient (✓), limited resilient (✓*), not
resilient (no mark) and unknown (?).
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2ACK [4] ✓ ?
ODSBR [5] ✓ ? ✓ ?

Sprout [6] ✓ ✓* ? ✓ ✓* ?
BTFR [7] ✓ ? ✓ ? ✓ ? ✓ ?
Castor [8] ✓ ✓ ✓ ✓ ✓

LIDOR ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

we briefly point out the drawbacks of each approach in the
following.

2ACK [4] selectively acknowledges data packets and is
thus vulnerable to all types of greyhole attacks. In addition,
the protocol is vulnerable to colluding attackers. ODSBR [5]
uses authentic end-to-end acknowledgments for data packets
and resorts to path probing to identify broken links. The
latter makes the protocol vulnerable to Sybil and wormhole
attacks where a large number of fictitious links are created
and all have to be explicitly identified. Sprout [6] uses path
probing to evaluate the quality of entire paths instead of
links. Since the protocol relies on source routing, the source
needs to be able to identify all other nodes. In addition,
Sprout was shown to perform worse than Castor under the
wormhole attack. BTFR [7] is similar to Sprout in design
(source routing and end-to-end acknowledgments). Castor [8]
has an elegant design to use end-to-end acknowledgments, and
achieves higher resilience against sophisticated attacks such
as blackholes and wormholes by incorporating an implicit and
independent route discovery.

Although Castor is not the latest work on the topic, it is
the strongest work to date which provides protections against
different packet dropping attacks. Follow-up works pursue
solutions for specific attacks, i. e., spoofing [11], greyhole [10],
[23] or Sybil [24]. Because of its comprehensiveness, we
opted for Castor [8] as our benchmark. Compared to Castor,
we significantly reduce the protocol overhead and complete
the protection scope to greyholes supported by replay and
wormhole attacks. Finally, we provide experimental evidence
on the practicality of our scheme.

III. LIDOR PROTOCOL

In this section, we first provide the requirements and a high-
level overview of the LIDOR protocol. Next, we describe the
protocol in detail, and, finally, highlight differences from the
benchmark protocol.

A. Requirements

Our security assumptions consist of a trust model and an
attacker model. We further require each node to perform
certain basic cryptographic operations. We elaborate on them
in the following.

Trust Model. LIDOR devises an end-to-end communication
scheme. Hence source and destination nodes need to trust each
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TABLE II: Symbols and Notations

SYMBOL NOTATION

s source node
d destination node
H flow identifier (root of Merkle tree)
l height of Merkle tree
n nonce
bk kth packet identifier

Ks,d key
m packet digest
σ authentication tag
fk flow authenticator for the kth packet
ak ACK authenticator (preimage of bk)
TACK ACK timeout

OB
k(O

L
k ) overhead for the kth packet for the benchmark (LIDOR) protocol

OB(OL) total overhead from all the packets of the flow for benchmark
(LIDOR) protocol

∆O difference between total overhead in benchmark and LIDOR
protocol

η number of hash values required
tk sending time of the kth packet
λn number of packets for which nonce is re-transmitted
pn probability of retransmission of nonce

µH
x,j average reliability metric for the jth neighbor of the node x for

the flow H

µ
all,H
x,j

(µfirst,H
H,j

) reliability metric for the jth neighbor of the node x for the flow
H for all ACKs (first ACK)

α
all,H
x,j

(αfirst,H
x,j

) proportion of all ACKs (first ACK) received successfully from the
jth neighbor of the node x for the flow H

β
all,H
x,j

(βfirst,H
x,j

) proportion of all ACKs (first ACK) received unsuccessfully from
the jth neighbor of the node x for the flow H

δ adaptivity parameter

ǫ suitable threshold on reliability
BM

x successive broadcast of M packets by the node x

BM successive broadcast of M packets by all the nodes in the network
Uy

x unicast of a packet from the node x to the node y
∆M the reliability metric of a node after M packets transmitted

successfully
Mmin(Mmax) Minimum (maximum) number of packets required to achieve

convergence
A number of attacker nodes in a relay layer
N number of non-attacker nodes in a relay layer
Gν minimum number of broadcasts required in terms of Γ and Υ
I number of hops
ξI number of packets unicast for I hops

other and be able to share a cryptographic key. LIDOR does
not enforce a specific mechanism for key establishment and
distribution similar to other works, e. g., they can be mediated
by a trusted third party that certifies public keys [5], [6], [8]
or via secure device pairing methods [25]. In the IoT scenario,
the device manufacturer could pre-deploy certified keys such
that devices from the same manufacturer could perform key
derivation without an active third party. However, we do
not assume trust relationships between source/destination and
other intermediate nodes. By not relying on a network-wide
key, LIDOR is robust to the compromise of individual nodes,
e. g., in case that certain device models expose vulnerabilities.

Adversary Model. In this work, we consider attacks on the
classic security triad confidentiality, integrity, and availability.
However, LIDOR focuses on DoS attacks. In particular, our
adversary is an entity controlling a portion of authenticated
nodes within the network. They can consequently take part in
normal network operations, but is not limited to, mounting lo-
calized jamming, packet injection, modification, and dropping
attacks; specific attacks on the forwarding protocol; or any
combination thereof (see Section II for details). However, the
attacker cannot break cryptographic primitives and we assume
that there is at least one attacker-free path between any source–

destination pair that wishes to communicate.

Node Capabilities. Each LIDOR node: (i) has access to a
pseudo-random number generator rng, (ii) can compute a
cryptographic hash function hash (·), (iii) has access to a
stream cipher prf (K,n) which takes a key K and some
nonce n as inputs, and (iv) can compute authentication tags
tag (K, ·) based on a shared key K. We discuss practical
candidate functions in Section VI-B.

B. LIDOR Overview

LIDOR leverages established concepts [8], [26], [27] to
provide DoS-resilient communication. At its core, LIDOR:
(i) uses an acknowledgment-based feedback mechanism to rate
the reliability of neighbors and effectively detect faulty links,
(ii) lets intermediate nodes individually decide whether to
conduct path exploration (broadcast) or exploitation (unicast)
to quickly react to changes in reliability, and (iii) separates
state of different flows that only source and destination nodes
can influence to prevent adversarial state pollution. With its
generic design, LIDOR is agnostic to the cause of disrup-
tions but will detect the existence of failures and react on
them. Thereby, LIDOR comprehensively thwarts any type of
dropping attack. Further, LIDOR solely relies on lightweight

symmetric cryptographic primitives (e. g., hash functions) [9]
that are also feasible on less powerful nodes. In particular,
we rely on a Merkle tree-based commitment scheme, where
all packets are committed to belong to the same flow and
the destination reveals the secret only after receiving it in
form of an acknowledgment. Since all intermediate nodes are
able to verify the secret, they can be sure that the destination
has received the packet if we receive the acknowledgment. In
the following, we describe LIDOR’s workflow in detail and
elaborate on packet format and processing.

C. LIDOR Workflow

Next, we elaborate on the protocol workflow of LIDOR. The
main processing steps are: (i) packet generation, (ii) packet
verification, (iii) packet forwarding, (iv) packet reception, and
(v) acknowledgment handling. We depict the various stages in
Fig. 2.

1) Packet Generation: LIDOR establishes flows for end-to-
end communication similar to [8]. The cryptographic material
securing each flow is drawn from a Merkle tree, an accepted
cryptographic tool for secure multi-hop communication [8],
[19], [26], [27]. We first introduce the packet format and then
discuss peculiarities of Merkle tree usage and construction.

Packet Format. The LIDOR PKT in Eq. (1) contains source
s and destination d identifiers, flow identifier H which is the
root of a Merkle tree of height l, the kth PKT identifier bk,
and an authentication tag σ. A nonce n is included until the
first ACK of the flow is received. The user payload may be
encrypted using the stream cipher prf (Ksd, hash (n+ k)).
The σ is computed over all fields except the flow authenticator
fk and length l′. Additional meta data (packet type, length of
hash values, and length of the entire packet) is excluded for
brevity.

PKT =
〈

s, d,H, bk, f
l′<l
k , n,P, σ

〉

(1)
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(a) The source (1) generates a packet and (3)
forwards it to its most reliable neighbor. If re-
liability is low, it probabilistically broadcasts
to all neighbors to explore new paths.

(b) Receiving nodes (2) discard duplicates
and verify that the packet belongs to a certain
flow. Then, they (3) make forwarding deci-
sions the same way the source node does.

(c) The destination (4) verifies the authen-
ticity of the packet and replies with an ac-
knowledgment on the reverse path. All re-
ceiving nodes (5) verify its authenticity and
update the reliability rating of their respective
neighbors. Neighbors which do not return an
acknowledgment receive a penalty.

Fig. 2: Overview of LIDOR’s protocol workflow showing which operations are made in which stage: (1) packet generation, (2)
packet verification, (3) packet forwarding, (4) packet reception, and (5) acknowledgment handling. Attacker nodes are marked
in red and drop all packets in this example.

H = hash (hash (. . . ) ||xl)

hash (hash (b1) ||x1)

hash (b1)

b1 = hash (a1)

a1

x1

·

·

xl

·

·

·

·

bw

aw

prf (Ksd, n)

Fig. 3: LIDOR Merkle tree generation. The leaf seeds ak are
drawn from a stream cipher prf (·, ·), which, in turn, is seeded
by a secret key Ksd and a public nonce n.

Merkle Tree Usage. LIDOR utilizes Merkle hash trees for
packet labeling, flow authentication, and proof of packet
reception. In particular, the idea is to use the input values for
the tree’s leaf nodes as packet identifiers bk and to commit to
them with the root H which is used as a flow identifier. The
packets identifiers, in turn, are computed from a secret ak as
bk = hash (ak). Since PKTs are end-to-end authenticated,
the destination node will only reveal the pre-image ak of the
packet identifier bk for authentic packets in the form of an
acknowledgment (ACK) (Section III-C4). Upon reception of
ak, intermediate nodes can deduce that the destination must
have received an authentic packet with bk.

Nonce-seeded Merkle Tree Construction. We construct the
LIDOR Merkle tree as follows: (i) we use a unique and
random nonce n and use it together with Ksd to seed a
cryptographically secure pseudo-random number generator
prf (·, ·), e. g., a stream cipher; and (ii) we “chop” the output
of prf (Ksd, n) into w blocks of size |hash (·) | to create all
ak for k = 1, . . . , w and construct the Merkle tree as shown in
Fig. 3. Our unique approach of seeding the Merkle tree with a
nonce n enables the source to share all secret values ak with
the destination by just communicating n. Together with the
shared key Ksd, the destination is able to repeat the Merkle

tree construction process and retrieve all ak. Without (i), the
source would need to communicate all ak individually in a
confidential manner that would waste bandwidth as done in
[8].

When creating the Merkle tree from n and Ksd, we need to
assert that n is never reused for any source–destination pair,
otherwise replay attacks are possible. Reasonable candidates
for n are timestamps or randomly chosen values drawn,
e. g., from a system-provided rng function. The drawback
of choosing timestamps as nonces is the additional attack
vector on time synchronization services such as NTP [28] or
GPS [29]. When choosing n purely at random, n must be large
enough to avoid nonce reuse due to the well-known “birthday
problem.” We choose to implement the second option with a
random 192-bit nonce.

The tree size w is optimally chosen such that it is equal
to the number of packets a source node wishes to transmit
for a certain flow. If this number is known a priori, w can
be approximated and fed into LIDOR as an optimization. In
all other cases, LIDOR has to rely on a default tree size.
However, choosing the default tree size incurs a trade-off:
(i) the length of the flow authenticator included in every
packet grows logarithmically with the tree size, but (ii) very
small trees cause frequent flow restarts, i. e., whenever all
bk have been used, a new tree must be created and the
route exploration process restarts. In the Section III-C2, we
propose a countermeasure for (i) in the form of an in-network
compression mechanism that can reduce the average overhead
of the flow authenticator to a constant factor (Section III-C2).

2) Packet Verification: Next, a node filters out the PKTs
that either have already been forwarded (i.e., duplicates) or
contain an invalid flow authenticator. In addition, a node
computes the minimal authenticator length for the next hop
node.

Duplicate Detection. Duplicate detection consists of two
steps. First, a node calculates a packet digest m using a
collision-resistant hash function of the incoming PKT (ex-
cluding the variable-length field fk). This serves for identi-
fying unique PKT copies which might have the same packet
identifier bk. If the node has already seen the pair 〈m, bk〉,
the PKT is dropped. To prevent replay attacks, each node
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keeps per-flow state to memorize which PKTs have already
been acknowledged for preventing replay attacks. A very low-
complexity and space-efficient implementation of such a data
structure is a zero-initialized bit vector. Setting bit k in the
bit vector signifies that the kth PKT of a certain flow is
acknowledged, and, thus, future replays of bk can be ignored.
Specifically, a node checks whether PKT k of the indicated
flow has already been acknowledged (kth bit set), and if
yes, discards it. The effectiveness of our replay protection
mechanism in shown Section VII.

Flow Authentication. The Merkle tree assures that all bk can
be authenticated to a single value, that is, the root H which
serves as a flow identifier. Intermediate nodes can validate
that bk belongs to H by traversing the tree from bk to the root
H ′ using intermediate tree nodes fk and checking that H ′ =
H . The flow authentication procedure has been described in
[8] and assures that only PKTs belonging to the flow will be
forwarded.

3) Packet Forwarding: Here, we describe the forwarding
decision that is based on a reliability metric. We further discuss
the in-network Merkle tree compression to reduce network
overhead and explain the purpose of the PKT timer.

Reliability Metric. In contrast to the per-destination routing
state used in classic MANET protocols, LIDOR keeps the
forwarding state per flow. In addition, LIDOR nodes maintain
separate per-neighbor reliability metrics for every encountered
flow. The reliability metric µH

i,j ∈ [0, 1] of a node i for its
neighbor j for the flow H is computed as a running average
of the PKT delivery rate (i. e., the number of valid ACKs
returned from a neighbor). It has been shown in [8], [30]
that this approach provides lightweight protection against any
type of accidental and deliberate packet loss including hard-
to-detect selective packet dropping, i. e., greyhole attacks. In
Section V, we discuss the calculation of the reliability metric
in detail. We further prove that previous approaches [8] are
not secure, i. e., they do not converge towards an attacker-free
path if attackers are present in the network. Also, we prove
that LIDOR’s approach converges.

Forwarding Decision. This decision is made probabilistically
based on the reliability metric. A node forwards a PKT with
probability 1− r using a broadcast transmission or with prob-
ability r using a unicast to the most reliable neighbor. Should
two or more neighbors have the same reliability metric, we
use the average round-trip time to break the tie. The intuition
is that we use broadcast for route exploration if no reliable
path exists, and otherwise unicast for route exploitation.

In-Network Merkle Tree Compression. The size of the
flow authenticator fk has a drastic impact on the protocol
overhead. fk grows linearly with the tree height l. In previous
works [8], [19], [31], all sibling nodes in the tree from the
leaf to the root (tree nodes x1, . . . , xl in Fig. 3) are included
in each packet. For large trees, this naïve approach generates
significant overhead. For instance, a tree of height l = 8
allowing to send 28 = 256 PKTs under that flow requires
the header to include 8 hash values for fk. In absolute terms,
these results in 8 × 16 = 128 bytes per PKT when using a
collision-resistant hash function with a 16-byte output.

H

·

·

b1

•

b2

•

·

b3

·

b4

l′ = 2 H

◦

◦

b1

◦

b2
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·

b3

·

b4

l′ = 0

H

◦

◦

b1

◦

b2

◦

·

b3

•

b4

l′ = 1 H

◦

◦

b1

◦

b2

◦

◦

b3

◦

b4

l′ = 0

Fig. 4: Exemplary Merkle tree (w = 4) visualizing optimal
flow authenticator lengths l′ for different PKT identifiers bk.
Bullets (•) indicate tree nodes that have to be included in
PKT k. Circles (◦) are known tree nodes sent in previous
PKTs. Dots (·) are unknown nodes but are not required to
authenticate bk. Thick lines indicate the verification path.

LIDOR employs a more efficient method: LIDOR nodes
incrementally construct the Merkle tree as they receive new
bk and fk values (note that intermediate nodes cannot construct
the entire tree from n since they do not possess Ksd). Starting
from the second received PKT, l′ < l new tree nodes are
required to authenticate the flow. The idea is visualized in
Fig. 4. In a stable network, the lower bound average of l′

is constant with (2l − 1)/2l < 1 which leads to an 8-fold
overhead reduction compared to sending the full authenticator
length.

In order to devise a practical distributed algorithm to cal-
culate l′, nodes need to keep track of the current Merkle tree
state of their neighbors. LIDOR nodes do this by leveraging
the ACKs received from their neighbors: when receiving ak
from neighbor h, a node knows that h has the kth leaf of the
Merkle tree, as well as the authenticated path from this leaf to
the root. Otherwise, h would have been unable to authenticate
and forward the kth PKT in the first place. To determine
minimal l′, i. e., the shortest possible flow authenticator length
for which the next-hop node will still be able to authenticate
bk, we use Algorithm 1. For broadcast PKTs, we set l′ to the
maximum among all neighbors, i. e., l′ = maxh l

′

h with l′h
being the minimal flow authenticator length for neighbor h.

This scheme assures that (i) a node can always authenticate
any PKT received from another correct node; and (ii) the
transmitted flow authenticator does not convey redundant
information, i. e., it is exactly as long as it needs to be for
minimal PKT overhead. Note that our scheme is agnostic to
packet loss and packet reordering.

Algorithm 1 Minimal Flow Authenticator Length
function MINAUTH(k, l, h)

l′ ← 0
while l′ < l do

kleft ← (k ⊕ (1≪ l)) ∧ (−1≪ l)
kright ← kleft + (1≪ l)− 1
for k′

∈ [kleft, kright] do

if h has acknowledged k′ then

return l′

l′ ← l′ + 1

return l
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In the rare case that a node loses state and is unable to
authenticate the flow because fk is too short, it may “bounce”
the PKT back to the sender with a unicast to request for a
retransmission with the complete fk. The receiving node then
removes the flag and returns the complete fk of length l to
the requester. This retransmission may only be done once per
neighbor and PKT to prevent DoS attacks where an attacker
would effectively circumvent the duplicate check.

Awaiting Response. When forwarding a PKT, a node starts
one timer for each new bk which expires after TACK. In addi-
tion to starting the timer, the tuple 〈m, bk, H〉 together with
the forwarding decision is added to a collection of previously
seen PKTs. This tuple serves the purpose of authenticating
ACKs (as described in Section III-C5) and it is discarded after
the PKT timer expires. If the timer expires and no ACK has
been received, the reliability metric for the next hop node is
decreased. To avoid premature false positives (timer expires
before ACK was returned) or late true positives (lost ACK
is detected too late), we employ an adaptive TCP-inspired
timeout calculation for TACK following the same approach as
in [26].

4) Packet Reception: In addition to verification, the des-
tination node checks the PKT’s σ. PKTs with an invalid σ
are discarded. For the first PKT of a flow, the destination
locally computes the full Merkle tree using the nonce n as
described in Section III-C1. For every PKT, the destination
selects ak from the Merkle tree and generates the appropriate
ACK (Eq. (2)) which consists of the packet digest m and the
ACK authenticator ak. The ACK is then returned to the sender.

ACK = 〈m, ak〉 (2)

5) ACK Handling: ACKs are primarily meant as secure
proofs of delivery used to update the neighbor reliability met-
rics. Upon ACK reception, a node calculates bk = hash (ak)
and checks whether the ACK belongs to a valid PKT, i. e.,
whether any PKT with m and bk has been forwarded before.
If not, the ACK is dropped. Otherwise, and if the sending
node matches the previous forwarding decision, the reliability
metric for the sending node is increased. The ACK is then
forwarded to the neighbors from which the node received
copies of the corresponding PKT. If we receive multiple
ACKs, only the first one is forwarded. In addition, a valid
ACK updates the bit vector used for duplicate detection and
neighbor Merkle tree state as described in Section III-C2.

D. Key Differences to Benchmark

We have described our LIDOR protocol in detail. In the
following, we discuss the distinct differences to the benchmark
protocol [8]. In particular, LIDOR differs from the benchmark
in the following key points:

• We employ an effective construction and in-network
compression of the Merkle tree. Especially with the in-
network compression, we are able to reduce the average
packet overhead from a logarithmic to a constant factor
(with respect to the tree size) in a static setting. We
provide the proofs in the overhead analysis in Section IV.

• We provide proper protection against replay attacks. In
particular, we keep a list of seen PKT identifiers even af-
ter the ACK timeout in form of a space-efficient bitvector
as described in Section III-C2.

• We design a reliability metric that will converge even in
the presence of a strong wormhole-supported greyhole
attack. We provide a proof for non-convergence of the
benchmark and a proof of convergence for LIDOR in
Section V for a static network topology.

IV. OVERHEAD ANALYSIS

In this section, we present a comparative analysis between
the overhead of the benchmark and LIDOR protocol for
a converged scenario. For the purpose of this analysis, we
consider the number of hash values in the flow authenticator
fk as the overhead of the system. The overhead is added for
each hop. In the converged scenario, a stabilized path exists
between the source and the destination. Thus, all the nodes in
the stabilized path will unicast the packet to their most reliable
neighbor. This implies that the recipient of consecutive packets
from a node remains the same.

Let I denote the number of hops between the source
and destination nodes. Let l be the height of Merkle Tree.
Therefore, the number of packets transmitted for a flow of
Merkle tree is given by 2l. Let |hash(.)| denote the size of
one hash value in bytes.

A. Benchmark Protocol

In the benchmark protocol, the source transmits all the
hash values for each packet. The total number of hash values
required for authenticating the packet is same as the height of
the Merkle tree, l. Let OB

k denote the overhead for the kth

packet of the flow. Then,

OB
k =

I
∑

i=1

l|hash(.)|+ |ek| ,

= I(l|hash(.)|+ |ek|) ,

where |ek| denotes the size of the hash value of an encrypted
ACK ek in bytesas used in [8]. Let OB denote the total
overhead of the benchmark protocol. Then,

OB =

2l
∑

k=1

OB
k = (2lI)(l|hash(.)|+ |ek|) . (3)

B. LIDOR Protocol

In LIDOR, the first packet of the flow carries a nonce which
is used by the destination node to re-construct the Merkle tree.
The intermediary nodes require l hash values of the Merkle
tree to verify if the packet belongs to the same flow. Thus, the
overhead for the first packet, denoted by OL

1 , is given by

OL
1 = Il|hash(.)|+ I|n| , (4)

where, |n| is the size of nonce in bytes. The number of hash
values required for authentication may reduce if the recipient
of the current packet had previously received one or more
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packets belonging to the same flow. Since the network is
converged which implies each node sends all the packets to
the same node, it can save upon the number of hash values
required for transmission as shown in Algorithm 1.

Let η denote the number of hash values required to be
transmitted when all the packets are sent to the same node,
where η is a non-negative integer in the range [0, l]. Then,

2l
∑

k=1

η = 2l − 1 . (5)

This implies that the total number of hash values to be
transmitted when all the packets are sent to the same node
is given by 2l − 1.

The nonce is retransmitted in future packets if tk+RTT >
tk+1 where tk is the sending time of the kth packet and
RTT denotes the round-trip-time. The best case is if the
nonce is transmitted only for the first packet. Whereas, the
worst case is if the nonce is transmitted for each packet of
the flow. Therefore, we assume that nonce is transmitted for
2 ≤ k ≤ λn packets, where λn(≤ 2l−1). Thus, the probability
of retransmission of nonce, denoted by pn, is given by

pn =
λn

2l − 1
.

Then, OL
k for 2 ≤ k ≤ 2l − 1 is given by

OL
k = I(η|hash(.)|+ pn|n|) . (6)

Let OL denote the overhead of LIDOR protocol for a flow.
Then, from (4), (5) and (6), we have

OL =





2l
∑

i=1

η



 I|hash(.)|+ (1 + (2l − 1)pn)I|n| ,

= I((2l − 1)|hash(.)|+ (1 + (2l − 1)pn)|n|) . (7)

Let ∆O denote the difference of the benchmark and LIDOR
protocol. From (3) and (7), ∆O is given by

∆O = I|hash(.)|
(

2l(l − 1) + 1
)

+
(

2l(|ek|)−
(

1 + (2l − 1)pn
)

|n|
)

.

V. CONVERGENCE ANALYSIS

In this section, we present the lower and upper bounds on
the number of packets required to achieve convergence in the
benchmark and LIDOR protocol under a greyhole attack.2 We
assume reliable wireless transmissions, i. e., there is no loss
on the channel. The network consists of attacker and non-
attacker nodes. Unlike a non-attacker node, the attacker node
drops the packet if the packet has been unicast to it. However,
both non-attacker and attacker node forward the packet and
provide ACK in case of broadcast.

Let s and d be the source and destination nodes respectively.
Let µH

s denote the maximum reliability value among all the
one-hop neighbors of s for the flow H . We say that the
network has achieved convergence when (i) the reliability of a

2Note that LIDOR and the benchmark are resilient to blackhole attacks.
An attacker that drops all packets would effectively remove itself from the
network.

non-attacker node is maximum, i.e., µH
s corresponds to a non-

attacker node (ii) µH
s does not decrease, (iii) µH

s ≥ 1 − ǫ,
where ǫ(≈ 0) is a suitable threshold on the reliability of
the network. Let BM

x denote the successive broadcast of
M packets by the node x and BM denotes the successive
broadcast of M packets by all the nodes. Let Uy

x denote the
unicast of a packet from the node x to the node y in the
system.

A. Non-Convergence of Benchmark Protocol

In this section, we present the convergence analysis for the
benchmark protocol. In the benchmark protocol, each node
computes a reliability metric for a flow H for jth neighbour.
Let µH

x,j denote the reliability metric computed by the node x
for its jth neighbor for the flow H . Then,

µH
x = max

j
µH
x,j .

Whereas, µH
x,j is given by

µH
x,j =

µall,H
x,j + µfirst,H

x,j

2
, (8)

where µall,H
x,j and µfirst,H

x,j denote the reliability of ‘all ACK’
and ‘first ACK’ respectively for the jth neighbor of the node
x and flow H . Then, µall,H

x,j is computed as

µall,H
x,j =

αall,H
x,j

αall,H
x,j + βall,H

x,j

, (9)

where αall,H
x,j and βall,H

x,j is the proportion of the packets
delivered successfully and unsuccessfully respectively for the
jth neighbor of the node x and flow H . The αall,H

x,j and βall,H
x,j

update for each unsuccessful transmission as

αall,H
x,j ← δαall,H

x,j ,

βall,H
x,j ← δβall,H

x,j + 1 . (10)

Whereas, αall,H
x,j and βall,H

x,j update for each successful delivery
as

αall,H
x,j ← δαall,H

x,j + 1 ,

βall,H
x,j ← δβall,H

x,j . (11)

The parameter δ controls the adaptability of the network and
0 < δ < 1. Similarly, µfirst,H

x,j can be computed as

µfirst,H
x,j =

αfirst,H
x,j

αfirst,H
x,j + βfirst,H

x,j

. (12)

The αfirst,H
x,j and βfirst,H

x,j update in the same manner as αall,H
x,j

and βall,H
x,j for both successful and unsuccessful transmission.

Initially, αall,H
x,j = αfirst,H

x,j = 0 ∀x, j and βall,H
x,j = βall,H

x,j =
1 ∀x, j. Let M denote the number of packets broadcast by the
source node. If we assume that all the packets are received
successfully, the reliability of the neighbors of the source
increase for all the packets. Let ∆M denote the reliability
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of the neighbors after the transmission of M packets. Then,
using (9) and (11), ∆M is given by

∆M =

(

∑M−1
i=0 δi
∑M

i=0 δ
i

)

. (13)

Let us consider that the nodes x1 and x2 connect s and
d via two hops. Let x1 be a non-attacker node and x2 be an
attacker node. Consider B1, Ux2

s , B1 as a packet transmission
scenario. We assume that x2 provides first ACK for both
broadcast. Then, using (8) – (13), we have

µH
s,x1

=
1

2
∆2 ,

µH
s,x2

=
δ2 + 1

δ3 + δ2 + δ + 1
=

1

1 + δ
.

Clearly, µH
s,x1

< µH
s,x2

. Therefore, if s selects to unicast, it
will unicast only to x2. Consider the case when s broadcast
after N − 1 successive B1, Uy

s transmissions and x2 always
provides the first ACK. Then, µH

s,x1
and µH

s,x2
after the N th

broadcast,

µH
s,x1

=
1

2
∆N ,

µH
s,x2

=

∑N−1
i=0 δ2i

∑2N−1
i=0 δi

=
1

1 + δ
. (14)

Let Z denote the difference of µH
s,x1

and µH
s,x2

. Using (14),
we have

Z =
1

2
∆N −

1

1 + δ
,

=
1− δN

2(1− δN+1)
−

1

1 + δ
,

=
(δ − 1)(1 + δN )

2(1 + δ)(1− δN+1)
. (15)

Since δ < 1, Z < 0 for any N , which implies µH
s,x1

< µH
s,x2

.
Thus, there is a possibility that the network gets stuck in the
loop of B1, Ux2

s when x2 only provides the first ACK. This
implies that there exists a possibility that s never converges
to the non-attacker neighbor, i.e. x1. Next, we describe the
convergence in the LIDOR protocol wherein each node will
converge to a non-attacker neighbor.

B. Convergence of LIDOR Protocol

LIDOR does not differentiate between µall,H
x,j and µfirst,H

x,j ,
i.e. µH

x,j = µall,H
x,j = µfirst,H

x,j and updates µH
x,j for all received

ACKs. However, the procedure of updating µall,H
x,j and the

procedure of selecting whether to broadcast or unicast a
packet is the same as in the benchmark. In case that two or
more neighbors have same reliability value, a round-trip time
estimation from past transmissions similar to TCP is used to
break the tie. Next, we present the convergence analysis with
and without attackers.

No Attackers. In this scenario, we assume that all nodes
are non-attacker. Initially, s broadcast the packet to all its
neighbors. Since, there is no loss, the reliability will increase
for all the neighbors of s. After the broadcast of a few packets,

s will perform unicast to the node with least round-trip-time.
Let x be the neighbor of s which has least round trip time.
Thus, once s performs unicast to x, the reliability of x becomes
more than the reliability of any other neighbor of s. Since the
reliability of x can only increase, s will perform unicast to x
with high probability and hence converge to x. This implies
the node which connects s and d in the least number of hops
and has the lowest round-trip time will be chosen as a unicast
forwarder.

Considering BM−1
s and Ux

s , we have µH
s = ∆M . Then,

from the definition of convergence, we have

µH
s = ∆M ≥ 1− ǫ, (16)

Substituting (13) into (16), we have
(

∑M−1
i=0 δi
∑M

i=0 δ
i

)

≥ 1− ǫ ,

δM ≤ ǫ
1− δM+1

1− δ
,

M ≥
1

ln(δ)
ln

(

ǫ

ǫδ + 1− δ

)

.

Let Mmin denote the minimum number of packets to attain
convergence for the source node in the absence of attackers.
Then,

Mmin =
1

ln(δ)

[

ln

(

ǫ

ǫδ + 1− δ

)]

. (17)

Attackers with 1 hop. In this scenario, we consider that s
and d has one layer of relay nodes between them, i.e. s and
d are connected in two hops via relay nodes. The layer of
relay nodes consists of N non-attacker and A attacker nodes.
Let xi denote the ith non-attacker node for i ∈ {1, 2, ..., N}.
Similarly, let xi denote the ith attacker node for i ∈ {N +
1, N+2, ..., N+A}. The reliability increases on the unicast for
each xi for i ∈ {1, 2, ..., N} whereas the reliability decreases
on the unicast for each xi for i ∈ {N +1, N +2, ..., N +A}.
Therefore, once xi for i ∈ {N +1, N +2, ..., N +A} receives
a unicast, its reliability decreases and hence it will not receive
any unicast in future.

We consider that s has transmitted M(> A) packets. Con-
sidering all possible combinations of broadcast and unicast, the
reliability of the most reliable non-attacker node lies between
[∆M−A,∆M ]. The reliability of ∆M corresponds to the best
case path wherein the most reliable node has received the first
unicast. It also corresponds to the sequence of M broadcasts,
which is less probable. The reliability of ∆M−A corresponds
to the worst case path wherein there had been a unicast to
each of the A attacker nodes. Then, the upper bound on the
number of packets required for convergence is computed by
considering the worst case reliability of the non-attacker node,
i.e., ∆M−A. Therefore, from the definition of convergence, we
have

∆M−A ≥ 1− ǫ . (18)

From (13), we have

∆M−A =

(

∑M−A−1
i=0 δi
∑M−A

i=0 δi

)

. (19)
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Let Mmax denote the number of packets required for conver-
gence in the worst case. Substituting (19) into (18), we have

∑M−A−1
i=0 δi
∑M−A

i=0 δi
≥ 1− ǫ ,

δM ≤
ǫδA

ǫδ + (1− δ)
,

Mmax =
1

ln(δ)

[

ln

(

ǫδA

ǫδ + (1− δ)

)]

. (20)

The lower bound on the number of packets required for con-
vergence is obtained by considering the best case reliability,
i.e. ∆M . Therefore, the lower bound on the number of packets
required for convergence, denoted by Mmin, is as given by (17).
From (17) and (20), we have

Mmax −Mmin =
1

ln(δ)

(

ln(ǫδA)− ln(ǫ))
)

,

=
1

ln(δ)
ln(δA) = A .

Thus, Mmax = Mmin + A. Since there are A attacker nodes
to which unicast can happen only once, the convergence gets
delayed by A packets if s happens to choose the worst case
path, i.e., s performs unicast to each attacker node.

Attackers with I hops. In this section, we present the analysis
for the network containing N non-attacker and A attacker
nodes for I − 1 layers of relay nodes between s and d.
Let us consider the network with I = 3. Let xi and yi
, where i ∈ {1, ..., N}, denote the ith non-attacker node
in the first and second layer of relay nodes respectively.
Let xi and yi , where i ∈ {N + 1, ..., N + A}, denote
the ith attacker node in the first and second layer of relay
nodes respectively. The µH

s,xi
for any non-attacker node (i.e.

i ∈ {1, ..., N}) decreases if xi unicast to any attacker node yj
where j ∈ {N + 1, ..., N + A}. Therefore, each non-attacker
node can have A unsuccessful unicast attempts. Therefore,
the worst case path for the network with I = 3 consists of A
iterative cycles of successive broadcast followed by a unicast
to each attacker node by the source node and an unsuccessful
attempt of each non-attacker node being unicast by the source
node. A unicast to each attacker node and a series of successive
follows the end of the iterative cycle. Let us consider N = 2
and A = 3. The worst case path for this network is BMmin , Ux3

s ,
Ux4

s , Ux5

s , Ux1

s Uy3

x1
, Ux2

s Uy3

x2
, BG1 , Ux3

s , Ux4

s , Ux5

s , Ux1

s Uy4

x1
,

Ux2

s Uy4

x2
, BG2 , Ux3

s , Ux4

s , Ux5

s , Ux1

s Uy5

x1
, Ux2

s Uy5

x2
, BG3 , Ux3

s ,
Ux4

s , Ux5

s .

The µH
s,xi
∀i decreases and becomes equal before BGν

s ,
where ν = {1, 2, 3}. Gν represents the minimum number
of broadcast to be performed by all the nodes such that
µH
s,xi
≥ 1− ǫ ∀i. Then, G1 is given by

G1 =
1

ln(δ)
ln





ǫ
1−δ

δMmin+1
(

1 + ǫδ
1−δ

)

+ 1



 . (21)

Whereas, Gν for any ν > 1 is given by

Γν =

ν−1
∑

m=1

(

δ(
∑ν−1

l=ν−m
Gl)+m

)

,

Υν = δMmin+ν+(
∑ν−1

l=1
Gl)
(

1 +
ǫδ

1− δ

)

+ 1 + Γν ,

Gν =
1

ln(δ)
ln

( ǫ
1−δ

Υν

)

. (22)

Then, using (21) and (22), the upper bound on the number of
packets required for convergence for a network with I = 3
hops is given by

Mmax = Mmin + (A+ 1)(A) +NA+

(

A
∑

ν=1

Gν

)

.

In general, for a network with I hops, (i) The number of
unsuccessful unicast attempts for each non-attacker nodes is
given by the number of unicast packets for the network with
I−1 hops. (ii) The number of unicast performed by the source
node to each attacker node is one additional the number of
unicast performed in the network with I − 1 hops. (iii) The
number of successive broadcasts is given by the number of
unicast for the network with I − 1 hops.

Let ξI denote the number of unicast packets in the network
with I hops. Then, ξ2 = A, ξ3 = A(A + 1) + NA, and
ξI = (N +A)ξI−1 +A.

On solving further, we obtain

ξI = (N +A)I−1ξ2 +

(

I−2
∑

i=0

(N +A)

)

A ,

= (N +A)I−1A+

(

I−2
∑

i=0

(N +A)

)

A ,

=

(

I−1
∑

i=0

(N +A)i

)

A ,

=

(

(N +A)I − 1

N +A− 1

)

A . (23)

Then, using (21), (22) and (23), the upper bound on the
number of packets required for network with I hops is given
by

Mmax = Mmin + ξI +





ξI−1
∑

ν=1

Gν



 . (24)

VI. IMPLEMENTATION

We choose the Click modular router [32] for LIDOR
implementation to allow for a realistic evaluation on both real
hardware and simulation. In this section, we discuss suitable
candidate functions for LIDOR’s crypto primitives and devise
a practical link-local broadcast authentication scheme based
on symmetric cryptography.
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TABLE III: Computation time in µs of several cryptographic
algorithms on various platforms for 1024-byte strings averaged
over 10000 runs. Ed25519 is a state-of-the-art elliptic-curve
signature scheme and included as a reference.

CLASS ALGORITHM ALIX APU NEXUS MAC

hash (·)
SHA-256 184 36 18 6
Blake2b 167 8 29 3

prf (·, ·) XSalsa20/20 97 12 12 5

tag (·, ·)
SipHash-2-4 66 4 8 1
HMAC-SHA-512 417 35 92 6
Ed25519 (verify) 8761 1479 815 168

A. Reference Platforms

We evaluate LIDOR on heterogeneous platforms with differ-
ent CPU architectures, processing capabilities, memory con-
figurations (256 MB to 16 GB RAM), and operating systems
(Debian Linux, Android 6, macOS 10.11). In particular, these
are: ALIX [33], APU [34], LG Nexus 5, and MacBook Pro
(early 2015).

B. Cryptographic Primitives

The choice of efficient cryptographic primitives is imper-
ative for any practical communication protocol. In LIDOR,
cryptographic operations consume the longest processing time
during packet forwarding and constitute the major portion
of the communication overhead. Our implementation relies
on primitives provided by the lightweight, cross-platform
libsodium (v1.0.11) [35]. A performance comparison between
different candidate algorithms on our reference platforms is
shown in Table III. The table also gives an intuition on why
public key crypto is unsuitable to be used on a per-PKT basis:
the cumulated forwarding delay would be unacceptably large.
We select LIDOR’s cryptographic primitives as follows:
• hash (·) is implemented as Blake2b with an output size

of 16 bytes. Note that the hash function used to construct
the Merkle tree does not need to be collision resistant but
only preimage and second-preimage resistant.3 Hence, a
128-bit security margin is sufficiently large.

• prf (Ksd, n) is implemented as XSalsa20/20, a stream
cipher using 256-bit keys and 192-bit nonces.

• tag (Ksd, ·) is implemented as SipHash-2-4 [36], which
generates small 8-byte authentication tags for short-input
(order of kilobytes) packets using a shared secret Ksd.

C. Practical One-hop Broadcast Authentication

LIDOR requires neighbor-to-neighbor communication to be
authenticated to prevent blackmailing and Sybil attacks. Cryp-
tographic methods to authenticate broadcast communication
are either based on digital signatures or on TESLA [37], which
is based on symmetric-key cryptography and delayed key
disclosure to achieve asymmetry. We deem both approaches
impractical since digital signatures are computationally expen-
sive; and TESLA requires time synchronization between all

3Collision resistance: given hash (·), it is hard to find x and x′ such that
hash (x) = hash (x′). Preimage resistance: given y, it is hard to find x
such that hash (x) = y. Second-preimage resistance: given x, it is hard to
find x′ 6= x such that hash (x) = hash (x′).

nodes, and introduces authentication delay which would im-
pede LIDOR’s reactiveness to path changes. The small output
size of SipHash enables us to implement a one-hop broadcast
authentication scheme based on symmetric-key cryptography
without TESLA’s deficiencies: a forwarding node computes
authentication tags for each neighbor h ∈ F (excluding the
sender) and appends all of them to the PKT. A receiving
node then tries to authenticate every tag. If any of them
succeeds, the PKT is processed, and otherwise discarded. The
expected number of SipHash calculations at a receiving node
is |F|/2, the communication overhead is |F| × |tag (·, ·) |. We
argue that this scheme is practical since: (i) the number of
neighbors is typically low compared to the total number of
nodes in the network (which is what TESLA was designed
for), so the communication and computational overhead for
transmitting and verifying all tags remains low on average;
and (ii) broadcasts are used for route exploration which rarely
occurs in established communication flows.

VII. EXPERIMENTS

Previous works [8], [27] have already shown that LIDOR’s
approach successfully thwarts several blackhole and greyhole
attack variants. Therefore, we focus on two specific variants
that have not been addressed so far. In this section, we
first describe our experiment and testbed setup, and then
evaluate the impact of a replay-supported and a wormhole-
supported greyhole attack. Finally, we include simulation-
based experiments to demonstrate scalability of LIDOR in a
larger node setup and with a variable number of attackers in
the network.

A. Testbed and Setup

Our testbed consists of 10 APU-based nodes [34] which
are distributed in an office environment. Figure 11 shows the
layout. For each of the following experiments, we use Wi-Fi
channel 14 to minimize interference with production networks.
Before each experiment, we synchronize all nodes to a local
NTP server via the nodes’ Ethernet interfaces and bound the
synchronization error to 0.1 ms resulting in a maximum error
in the end-to-end delay measurements of 0.2 ms. In addition,
each node filters its neighbors by RSSI with a threshold of -70
to avoid spurious links. We select source and destination nodes
to be at a maximum distance such that they are connected
via at a path of five hops. In all experiments, the source
injects 128-byte packets at a rate of 10 packets per second
for an entire flow of 256 packets. We repeat each experiment
100 times. For the wormhole scenario, the attacker nodes use
their wired Ethernet interface as a direct connection to tunnel
traffic between the nodes. We use the TPy framework [38] to
orchestrate our experiments.

B. Summary

We present a summary of our experiment results compar-
ing the performance of LIDOR to the benchmark in three
scenarios: 1) without attackers present, 2) with two attackers
mounting a replay-supported greyhole attack, and 3) with
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Fig. 9: Packet delivery rate under
wormhole-supported greyhole at-
tack.
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Fig. 10: Attacker selection under
wormhole-supported greyhole at-
tack.

two attackers mounting a wormhole-supported greyhole attack
where the wormhole endpoints are direct neighbors to the
source and destination, respectively. We show the packet
delivery rate in Fig. 5, the end-to-end delay in Fig. 6, and
the overhead Fig. 7. The figures show the mean and standard
deviation over the different runs.

In short, we see that LIDOR and the benchmark both
achieve perfect delivery rates in the benign case (Fig. 5). When
under attack, LIDOR’s reliability reduces only by 3.5 % for
both attacks, while the benchmark breaks down to 5.2 % and
64.1 %, respectively. Thereby, LIDOR achieves improvements
over the benchmark of 91 % and 32 %, respectively. In Fig. 6,
we see that the end-to-end delay is similar for the benchmark
(1.3 ms) and LIDOR (1.2 ms) under no attack which is to be
expected since they are both based on the same implementa-
tion. Under attack, the end-to-end delay increases. The reason
is that the attacker nodes are placed in a favorable position and
would allow faster delivery if they would be used as a next
hop. Furthermore, Fig. 7 shows the network-wide overhead
of a single packet. We see that LIDOR reduces this network
overhead by 35 % compared to the benchmark which is in
line with our overhead analysis in Section IV. In addition,
LIDOR’s median overhead does not increase under attack. For
the benchmark, the median overhead decreases under attack as
the packets are dropped early and do not traverse the entire
path from source to destination. In the following sections, we
investigate the results for the attack scenarios in more detail.

C. Replay-supported Greyhole Attack

In this section, we expose nodes to greyhole attackers that
concurrently replay expired PKTs and ACKs to reinforce their
appearance as reliable forwarders. We first sketch the attacker’s
behavior which tries to disrupt communication between s and
d. First, the attacker overhears and records any valid PKT–
ACK pair of some flow H between s and d. Then, the
attacker replays (i. e., broadcasts) PKT and ACK shortly after
one another at an interval of Trep (after an initial delay of
Trep). The attacker chooses Trep such that it is larger than the
ACK timeout, i. e., Trep > TACK. To ensure this, the attacker
conservatively sets Trep to 200 ms for each pair. We limit the
rate of replayed pairs to 10 per second to avoid DoS by
flooding.

Figure 5 shows the severe impact of lacking replay protec-
tion: the benchmark’s reliability drops to about 5.2 % which
renders the protocol unusable (which is also reflected in the
lower overhead of Castor in Fig. 7 as packets are dropped early
on the path). On the other hand, LIDOR performs extremely
well. There is a small drop in the median reliability which is
due to LIDOR having to route around the greyhole attackers.
Once the protocol has found a reliable path, it keeps using it.
This can be seen in Fig. 9, where only the first few packets
of each flow are less likely to be delivered.

D. Wormhole-supported Greyhole Attack

We investigate the impact of a wormhole-supported grey-
hole attack on both protocols. In Fig. 5, we have already seen
that the PDR of LIDOR slightly drops. In fact, only the first
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(a) Benchmark, k ∈ [0, 256[

(b) LIDOR, k ∈ [0, 256[

Fig. 11: Path convergence
without attack. See Fig. 12
for description.

(a) Benchmark, k ∈ [0, 32[ (b) Benchmark, k ∈ [32, 128[ (c) Benchmark, k ∈ [128, 256[

(d) LIDOR, k ∈ [0, 32[ (e) LIDOR, k ∈ [32, 128[ (f) LIDOR, k ∈ [128, 256[

Fig. 12: Path convergence under wormhole-supported greyhole attack. Showing unicast
transmissions. Flow from bottom right to top left. Red nodes are attackers. Edge thickness
idicates link usage frequency.

packets of each flow are dropped as LIDOR first needs to find
a valid path, i. e., it needs to converge. The delivery rate per
packet ID is shown in Fig. 9 where we see that after about
100 packets, the loss rate becomes zero. To verify that this
is, in fact, due to the attackers being selected, we depict the
relative frequency that an attacker was selected as the sole
forwarder (unicast) for a given packet ID in Fig. 10. The figure
confirms that attackers are no longer selected as forwarders
after about 100 packets. The benchmark protocol does not
perform as well. We see that while attacker selection decreases
and, thus, PDR increases within a flow (Figs. 9 and 10), the
benchmark does not completely reject the wormhole attacker
as a viable forwarder. For an even more detailed analysis,
we show the network graph including forwarding decisions
and the resulting path selection for different portions of a
flow in Fig. 12. The figure shows the average over all 100
experiment runs. For comparison, Fig. 11 shows the path
selection without an attack. Figures 12a and 12d show that
both protocols are “fooled” by the fast link that the wormhole
offers for the first packets, i. e., a path including the wormhole
has the lowest round-trip time. While the benchmark prefers a
non-adversarial path, it still uses the wormhole in a significant
number of cases (Fig. 12c). In contrast, LIDOR completely
avoids the attackers for packets in the second half of the flow
(Fig. 12f).

E. Scalability

In the following, we demonstrate scalability of LIDOR and
show the impact of a variable number of attackers on both
protocols. We chose a simulator for this purpose to (i) increase
the number of nodes, (ii) control hop length via the topology,
and (iii) vary the number of attackers. The simulations are
performed in ns-3.25 which allows us to integrate our Click
integration of the protocols in the simulator environment
(Section VI) We use a setup with 102 nodes consisting of a

single source–destination pair that is connected via a 10-hop
corridor [39], where each hop “layer” consists of 10 nodes. In
all experiments, the source injects 128-byte packets at a rate
of 2 packets per second for an entire flow of 1024 packets.
We repeat each experiment 10 times. We provide results when
0, 10, 20, 30, 40, or 50 of the nodes act as replay-attackers.
We exclude the results for the benchmark with more than 20
attackers due to its poor performance.

Figures 13 to 15 show the resulting packet delivery rate,
delay, and per-packet overhead. We make several observations.
First, we see that the benchmark is unable to provide a reliable
service even in the presence of a small number of replay
attackers. Second, LIDOR is able to maintain a reliable service
even when half of the intermediate nodes (50) act as attackers
(see Fig. 13). Third, we observe that the attackers have only
a minor effect on the end-to-end delay and overhead of the
protocol (see Figs. 14 and 15).

VIII. DISCUSSION

In this section, we elaborate on our analytical and ex-
perimental results; draw a conjecture for the applicability
in large-scale IoT deployments; discuss the possibility for
100 % reliable communication; and highlight possible other
application domains.

A. Convergence: Analysis vs. Experiments

Our analysis in this work shows that LIDOR converges
under attack while the benchmark does not. Our experiments
confirm that LIDOR converges. However, they do not nec-
essarily show that the benchmark does not converge either.
In fact, the benchmark seems to be able to slowly approach
a converged state (see Fig. 9). Note that the non-convergent
cases for benchmark are statistically rare which explains its
overall good performance. However rare, these occurrences
can comprise the security of the network.
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Fig. 13: Packet delivery rate with
different numbers of attackers
(simulation with 102 nodes)
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Fig. 15: Per-packet overhead with
different numbers of attackers
(simulation with 102 nodes)

B. Energy Consumption

Energy consumption is key for the practical deployment
of LIDOR in the IoT context. To quantify LIDOR’s security
overhead, we analyze the number of cryptographic operations
(hashing and tagging) involved in transferring an entire flow
of size w (tree with N = 2l − 1 nodes) over a converged I-
hop path. In particular, we identify the costs for tree generation
EH = (N+w)Ehash, flow verification Ef = NEhash, packet
digest calculation Em = wEhash, ACK verification EA =
wEhash, and packet tagging or tag verification Et = wEtag .
The composite cost N is the sum of the cost for the source
Es = EH + Em + EA + 2Et, destination Ed = EH + 2Et,
and all intermediate nodes Ei = Ef +Em+EA+2Et on the
path. In particular,

E = Es + (I − 1)Ei + Ed

= ((I + 1)N + (2I + 2)w)Ehash + (2I + 2)wEtag .
(25)

If the platform- and primitive-dependent values for Ehash and
Etag are known or can be approximated from the required
CPU cycles (e. g., [40]), Eq. (25) allows us to calculate
LIDOR’s security-related energy overhead.

C. Feasibility for Large-scale IoT Deployments

While LIDOR is not able to exceed the theoretic limits of
scalability in wireless multihop networks [41], we attempt
our best to keep network overhead as low as possible. In
particular, we show that LIDOR’s overhead is generally lower
than the benchmark which is due to our in-network Merkle
tree compression mechanism. In addition, its overhead does
not increase under attack which means that attacks (Section II)
do not impede scalability. In addition, we show the feasibility
of a comprehensively DoS-resilient communication protocol
in the IoT context by implementing LIDOR in a computa-
tionally efficient manner: in spite of per-packet cryptographic
operations, we achieve end-to-end delays in the order of 1 ms
in our 5-hop testbed which confirms that the computational
overhead is negligible.

D. Towards 100 % Reliability

While LIDOR already performs exceptional under attack,
we are aware that we still encounter a certain amount of packet

loss. By design, LIDOR tries to be resilient to all causes of
packet loss but does not employ measures to compensate for
loss once it occurred. We are aware that some applications
might require a 100 %-reliable transport. We could increase
the reliability of a communication by introducing redundancy
in form of packet transmissions reactively. Thanks to the end-
to-end feedback, the source knows if the destination received
a certain packet and could issue a retransmission (using a new
packet ID) to the destination. Such a mechanism could be
implemented as a LIDOR-aware transport overlay that receives
feedback from the network layer and takes care of end-to-end
retransmissions.

E. Further Application Domains

While we focus on IoT in this paper, LIDOR’s adaptivity
to any kind of packet dropping allows for applications in
more dynamic scenarios including public safety [27] or highly-
dynamic UAV-based networks [42]. However, an experimental
evaluation for these types of networks is still missing.

IX. CONCLUSION

The provisioning of robust and secure communication is
crucial for safety-critical IoT applications. In this article, we
proposed LIDOR, which is multi-hop communication protocol
with an efficient end-to-end acknowledgment-based feedback
mechanism tailored to IoT devices. To the best of our knowl-
edge, LIDOR is the first algorithm of its kind with proven
convergence in presence of DoS attacks. Convergence is in fact
important since "non-convergent" property of a scheme can
itself be used to create DoS. We have performed extensive ex-
periments in our premises. These experiments have confirmed
the resilience of LIDOR against replay and wormhole attacks.
Specifically, LIDOR outperforms the benchmark scheme by
91 % under replay attack and 32 % under wormhole attack in
terms of packet delivery ratio and reduces overhead by 35 % in
the benign scenario and does not increase significantly under
attack. The current proof-of-convergence is valid for known

packet dropping attack variants, i.e., the attacker always drops
unicast packets to cause maximum harm. Our experiments in-
dicated that LIDOR converges even in a wormhole-supported
greyhole attack. We intend to generalize the current proof to
arbitrary packet dropping strategies, which would mean that
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LIDOR converges to any future and still unknown dropping
attacks. Finally, for better reproducibility, we make the source
code of our implementation publicly available [43].
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