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Abstract Let A be a complex Banach algebra with unit e. Let p be a non trivial

idempotent element in A and e[ 0: For a 2 A; it is proved that the interior of the

level set of ðp; e� pÞ � e pseudo spectrum of a is empty in the unbounded com-

ponent of ðp; e� pÞ resolvent set of a. An example is constructed to show that the

condition ‘unbounded component’ can not be dropped. Further, it is proved this

‘unbounded component’ can be dropped in the case when A is B(X) where X is a

complex uniformly convex Banach space. That is, if T 2 BðXÞ then interior of the

level set of ðp; I � pÞ � e pseudo spectrum is empty in ðp; I � pÞ resolvent set of T.

Keywords Analytic vector valued map � ðp; qÞ � e pseudo spectrum � Complex

uniformly convex Banach space

Mathematics Subject Classification Primary 46H05; Secondary 47A10 �
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1 Introduction

Let f be a complex valued analytic function defined on an open connected subset X

of C: If f is non constant then by maximum modulus theorem, |f| can not be constant

on X: This need not to be true for general analytic Banach algebra valued functions.

We first see the definition of analytic Banach algebra valued function. Let A be a

complex Banach algebra with unit e and X be an open subset of C:
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Definition 1 ([11], Definition 3.2) A map f : X ! A is said to be differentiable at

the point l 2 X if there exists an element f 0ðlÞ 2 A such that

lim
k!l

f ðkÞ � f ðlÞ

k� l
� f 0ðlÞ

�

�

�

�

�

�

�

�

¼ 0:

If f is differentiable at every point in X then f is said to be analytic in X:

Consider X ¼ C; A ¼ M2ðCÞ :¼ A : A ¼
a11 a12
a21 a22

� �

where aij 2 C

� �

with

norm kAk1 ¼ max1� j� 2f
P2

i¼1 jaijjg: Define w : C ! M2ðCÞ bywðkÞ ¼
k 0

0 1

� �

:

Clearly w is analytic and for any l 2 C; w0ðlÞ ¼
1 0

0 0

� �

: Moreover kwðkÞk1 is

constant on the open set fk 2 C : jkj\1g: Hence, the norm of general Banach

algebra valued analytic maps may be constant or need not to be constant in an open

connected subset of C: We shall identify k � e as k for any k 2 C: Recall that for

a 2 A; the resolvent set is defined as fk 2 C : ða� kÞ is invertible inAg and it is

denoted by qðaÞ: Complement of qðaÞ is called spectrum of a, which is denoted by

rðaÞ: It is a well known fact that rðaÞ is a nonempty compact subset of C and hence

qðaÞ is a nonempty open subset of C: Globevnik in [8] studied about the norm

constant value of the map,

R : qðaÞ ! A byRðkÞ ¼ a� kð Þ�1

in the open subset of qðaÞ: He proved in [8, Proposition 1, Proposition 2],

(a) for any a 2 A; kða� kÞ�1k can not attain local maximum in any unbounded

component of qðaÞ:

(b) If X be a complex uniformly convex Banach space and T 2 BðXÞ then kðT �

kÞ�1k can not attain local maximum in any open subset of qðTÞ:

One can find, some more answers related to this question in [3–5]. Shargorodsky in

[13, Theorem 3.1] showed, there exists an invertible bounded linear operator T

acting on the Banach space l1ðZÞ with norm kxk� ¼ supk 6¼0 jxkj þ jx0j where x ¼

ðxkÞk2Z; such that kðT � kÞ�1k is constant in an open neighborhood of k ¼ 0:

The main aim of this paper is to investigate and classify the possible cases, when

the norm of the (p, q) resolvent map (see Definition 3) is not constant in an open

connected subset of the (p, q) resolvent set (see Definition 3).

Consider two idempotent elements p; q 2 A i.e. p2 ¼ p and q2 ¼ q:

Definition 2 ([10, Definition 1.1]) Let a 2 A: An element b 2 A satisfying,

bab ¼ b; ba ¼ p and 1� ab ¼ q

will be called a (p, q) outer generalized inverse of a and it is denoted by a
ð2Þ
p;q:
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In [10], Kolundžija introduced the concept of the ðp; qÞ � e-pseudo spectrum of a

in A: Let e[ 0 and a 2 A: The ðp; qÞ � e-pseudo spectrum is defined as

K
ð2Þ
ðp;qÞ�e

ðaÞ :¼ fk 2 C : ða� kÞð2Þp;q does not exist or kða� kÞð2Þp;qk� eg:

In the same article, Kolundžija discusses about ðp; qÞ � e-pseudo spectrum of ele-

ments of the Banach algebra which are in the block matrix form. For the geometric

understanding of ðp; qÞ � e-pseudo spectrum, because of the inequalities in

ðp; qÞ � e-pseudo spectrum and in order to understand it, one has to know more

about its boundary set. It is clear that the boundary sets are subsets of the set (see

Theorem 5),

L
ð2Þ
ðp;qÞ�e

ðaÞ ¼ fk 2 C : kða� kÞð2Þp;qk ¼ eg:

The above set is called level set of ðp; qÞ � e pseudo spectrum. In computational

point of view, if we are sure that the level sets do not contain any interior point then

it can help us to trace out the boundary sets of K
ð2Þ
ðp;qÞ�e

ðaÞ: Because of the reasons so

far discussed, this paper studies the interior property of L
ð2Þ
ðp;e�pÞ�e

ðaÞ for given

a 2 A:

Preliminary section of this note concentrates on the non emptiness of K
ð2Þ
ðp;e�pÞ�e

ðaÞ

and the analyticity of ðp; e� pÞ resolvent map. Section 3 of this paper focus on the

interior property of the level set of ðp; e� pÞ � e pseudo spectrum set. Theorems

which are in this section (Theorems 6, 7) are extended version of the results of

Globevnik. Using these results we prove ðp; qÞ � e pseudo spectrum has finite

number of components and each component has nonempty intersection with (p, q)

spectrum (Theorem 8). Example is constructed to show that L
ð2Þ
ðp;e�pÞ�e

ðaÞ may have

nonempty interior (Example 4) for some Banach algebra A and a 2 A:

Throughout this paper, Bðk; rÞ denotes the open disk in the complex plane with

center k and radius r[ 0 and B(X) denotes the set of all bounded linear operators

defined on the complex Banach space X.

2 Preliminaries

In this section, we introduce some basic definitions, terminologies and results which

are related to ðp; e� pÞ resolvent set and ðp; e� pÞ � e pseudo spectrum and the

major goal is to show the non-emptiness of these sets.

Definition 3 For an element a 2 A; the (p, q)-resolvent set is defined as

qð2Þp;qðaÞ :¼ fk 2 C : ða� kÞð2Þp;q existsg:

The complement of the set q
ð2Þ
p;qðaÞ is called (p, q)-spectrum and it is denoted by

r
ð2Þ
p;qðaÞ: The map k 7! ða� kÞð2Þp;q defined from q

ð2Þ
p;qðaÞ to A is called the (p, q)-

resolvent map.
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From now onwards, we consider the idempotent p 6¼ 0 and p 6¼ e and we fix the

idempotent element q :¼ e� p: If k 2 q
ð2Þ
p;qðaÞ then we denote the element ða� kÞð2Þp;q

by RaðkÞ:

Note 1 For given a 2 A; if RaðkÞ exists for some k 2 C then from Definition 2,

½RaðkÞ�ða� kÞ ¼ p and ða� kÞ½RaðkÞ� ¼ p: ð1Þ

By Eq. (1), ap ¼ pa: Consequently, if ap 6¼ pa then r
ð2Þ
p;qðaÞ ¼ C: Because of this

reason, in the rest of the paper we assume ap ¼ pa for given a 2 A:

Note 2 If RaðkÞ exists for some k 2 C then by Eq. (1), RaðkÞ and a commutes and

½ða� kÞn�ð2Þp;q exists for any n 2 N: Moreover, ½ða� kÞn�ð2Þp;q ¼ ½RaðkÞ�
n
:

Note 3 If k 2 r
ð2Þ
p;qðaÞ then we assume that kRaðkÞk ¼ 1: It is well known that

qðaÞ for any a 2 A is nonempty open subset of A; the following lemma and

Theorem prove the same for (p, q) resolvent set.

Lemma 1 Let a 2 A: If k 2 qðaÞ then k 2 q
ð2Þ
p;qðaÞ:

Proof It is easy to see that RaðkÞ ¼ pða� kÞ�1
for any k 2 qðaÞ:

Theorem 1 The set q
ð2Þ
p;qðaÞ is a nonempty open subset of C; for any a 2 A:

Proof By Lemma 1, q
ð2Þ
p;qðaÞ is nonempty. Take l 2 q

ð2Þ
p;qðaÞ; for any k 2 C satisfies

jl� kj\
1

RaðlÞk k

we have eþ ½RaðlÞ�ðða� kÞ � ða� lÞÞ is invertible. From Eq. (1),

ða� kÞ½RaðlÞ�ða� lÞ ¼ ða� lÞ½RaðlÞ�ða� kÞ:

Hence by Theorem 4.1 in [6], k 2 q
ð2Þ
p;qðaÞ:

The following corollary shows the norm of the (p, q) resolvent is very large in the

neighborhood of an element from the (p, q) spectrum set.

Corollary 1 Let fkng be a sequence from q
ð2Þ
p;qðaÞ: If kn ! k for some k 2 r

ð2Þ
p;qðaÞ

then kRaðknÞk ! 1:

Proof Suppose kRa knð Þk�M for some M 2 R then 1
kRaðknÞk

� 1
M
: Since kn ! k;

for the real number 1
Mþ1

; there exists n0 2 N such that

jk� knj\
1

M þ 1
\

1

M
�

1

RaðknÞk k
for all n� n0:

By Theorem 1, k 2 q
ð2Þ
p;qðaÞ: This is a contradiction.
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Theorem 2 The map f : q
ð2Þ
p;qðaÞ ! A defined by f ðkÞ ¼ ½RaðkÞ�

n
is analytic for

each n 2 N:

Proof We first prove this theorem for n ¼ 1: For any k; l 2 q
ð2Þ
p;qðaÞ; by

Theorem 4.2 (a) in [6],

½RaðkÞ� � ½RaðlÞ� ¼ ðk� lÞ½RaðkÞ�½RaðlÞ�: ð2Þ

Fix l 2 q
ð2Þ
p;qðaÞ and consider the open set Bðl; 1

kRaðlÞk
Þ: By Theorem 1, Bðl; 1

kRaðlÞk
Þ is

a subset of q
ð2Þ
p;qðaÞ: Since e� ½RaðlÞ�ðk� lÞ is invertible for any k 2 Bðl; 1

kRaðlÞk
Þ

and from Eq. (2),

RaðkÞ ¼
X

1

n¼0

ðk� lÞn½RaðlÞ�
nþ1

:

Hence the map k 7!RaðkÞ is analytic. The map k 7! ½RaðkÞ�
n
is also analytic because

it is the product of n analytic functions of the form k 7! ½RaðkÞ�:

The following are some examples of (p, q)-resolvent set and (p, q)-spectrum for

given a 2 A and p 2 A:

Example 1 Let a ¼ k for some k 2 C: It is easy to see, q
ð2Þ
p;qðaÞ ¼ Cnfkg and

r
ð2Þ
p;qðaÞ ¼ fkg:

Our next example shows that q
ð2Þ
p;qðaÞ may have multiple components.

Example 2 Consider the set E ¼ fz 2 C : 1� jzj � 2g [ fz 2 C : 3� jzj � 4g:

Take the operator T 2 Bð‘2ðNÞÞ with,

Tðe2i�1Þ ¼ rie2i�1 and Tðe2iÞ ¼ qie2i for all i 2 N

where ei : i 2 Nf g is the standard orthonormal basis for ‘2ðNÞ; fri 2 C : i 2 Ng is

countable dense subsets of fz 2 C : 1� jzj � 2g and fqi 2 C : i 2 Ng is a count-

able dense subset of fz 2 C : 3� jzj � 4g: Take the projection operator

P 2 B ‘2ðNÞð Þ

Pðe2i�1Þ ¼ e2i�1 and Pðe2iÞ ¼ 0 for all i 2 N

Take Q ¼ I � P: It is evident that PT ¼ TP and rðTÞ ¼ E: By Lemma 1,

fz 2 C : jzj[ 4g [ fz 2 C : 2\jzj\3g [ fz 2 C : jzj\1g � q
ð2Þ
ðP;QÞðTÞ:

We prove, fz 2 C : 1� jzj � 2g 	 r
ð2Þ
ðP;QÞðTÞ: Suppose RTðriÞ exists for some ri; then

from the equation RTðriÞ½ �ðT � riÞ ¼ P;
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KerðT � riÞ \ RanðPÞ ¼ f0g:

where KerðT � riÞ denotes the null space of T � ri and Ran(P) denotes the range

space of P. But for every i 2 N;

e2i�1 2 KerðT � riÞ \ RanðPÞ

which is a contradiction. Hence fri 2 C : i 2 Ng � r
ð2Þ
ðP;QÞðTÞ: Since fri 2 C : i 2

Ng is dense in fz 2 C : 1� jzj � 2g and q
ð2Þ
ðP;QÞðTÞ is open,

fz 2 C : 1� jzj � 2g 	 r
ð2Þ
ðP;QÞðTÞ

From this we also conclude, q
ð2Þ
ðP;QÞðTÞ has more than one component.

Our next objective is to prove, ðp; qÞ � e pseudo spectrum is non empty. We

achieve this with the aid of the results we observed so far.

Definition 4 ([10, Definition 3.3]) Let e[ 0: The ðp; qÞ � e-pseudospectrum of an

element a 2 A is defined as

K
ð2Þ
ðp;qÞ�e

ðaÞ ¼ fk 2 C : ða� kÞð2Þp;q does not exist ðorÞ kða� kÞð2Þp;qk� eg:

In the following is an example, we find the ðp; qÞ � e pseudo spectrum explicitly.

Example 3 Consider the Banach algebra B C
nð Þ where C

n is the Euclidean space.

Let T 2 B C
nð Þ such that TðeiÞ ¼ aiei for some ai 2 C and the projection operator

P 2 BðCnÞ defined as Pðe1Þ ¼ e1 and PðeiÞ ¼ 0 for all i ¼ 2 to n: For any k 2
Cnfa1g; we define the operator SðkÞ 2 B C

nð Þ by

½SðkÞ�ðeiÞ ¼

1

a1 � k
e1 for i ¼ 1

0 otherwise:

8

<

:

It is easy to see, R
ð2Þ
ðP;I�PÞðkÞ ¼ SðkÞ for any k 2 Cnfa1g: Hence

K
ð2Þ
ðP;I�PÞ�e

ðTÞ ¼ k 2 C : jk� a1j �
1

e

� �

:

Theorem 3 The set K
ð2Þ
ðp;qÞ�e

ðaÞ is a compact subset of C:

Proof We know, K
ð2Þ
ðp;qÞ�e

ðaÞ ¼ r
ð2Þ
p;qðaÞ [ k 2 C j RaðkÞk k� ef g: By Theorem 1,

r
ð2Þ
p;qðaÞ is closed. The set k 2 C : RaðkÞk k� ef g is closed, because the map

k 7! RaðkÞk k is continuous. By Lemma 1, for any k 2 qðaÞ \ K
ð2Þ
ðp;qÞ�e

ðaÞ with

jkj[ kak; we have
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e� RaðkÞk k ¼ kpða� kÞ�1k�kpk
1

jkj � kak
:

The above equation implies, jkj � kpk
e
þ kak: Hence K

ð2Þ
ðp;qÞ�e

ðaÞ is compact.

Theorem 4 The set r
ð2Þ
p;qðaÞ is a nonempty subset of C: In particular, K

ð2Þ
ðp;qÞ�e

ðaÞ is

a nonempty subset of C:

Proof Suppose r
ð2Þ
p;qðaÞ ¼ ; then K

ð2Þ
ðp;qÞ�e

ðaÞ ¼ fk 2 q
ð2Þ
p;qðaÞ : kRaðkÞk� eg: Since

K
ð2Þ
ðp;qÞ�e

ðaÞ is compact, there exists M[ 0 such that kRaðkÞk�M for all k 2

K
ð2Þ
ðp;qÞ�e

ðaÞ: Consequently,

RaðkÞk k�M for every k 2 C: ð3Þ

Since q
ð2Þ
p;qðaÞ ¼ C and the map k 7!RaðkÞ is analytic and bounded on C; by The-

orem 19.1 in [1], there exists a constant K such that

RaðkÞk k 
 K for all k 2 C:

If K ¼ 0 then RaðkÞ ¼ 0; this implies p ¼ 0; which is a contradiction to our

assumption p 6¼ 0: If K[ 0 then K
ð2Þ
ðp;qÞ�K

ðaÞ is unbounded, which is a contradiction

to Theorem 3. Hence r
ð2Þ
p;qðaÞ 6¼ ;: By Definition 4, r

ð2Þ
p;qðaÞ 	 K

ð2Þ
ðp;qÞ�e

ðaÞ: Thus

K
ð2Þ
ðp;qÞ�e

ðaÞ 6¼ ;:

Theorem 5 Let a 2 A and e[ 0: Then K
ð2Þ
ðp;qÞ�e

ðaÞ has no isolated points.

Proof Every point in r
ð2Þ
ðp;qÞ að Þ is an interior point of K

ð2Þ
ðp;qÞ�e

ðaÞ: Otherwise, there

exists a sequence fkng with kn 2 q
ð2Þ
ðp;qÞðaÞ and kRaðknÞk\e such that kn ! k: This

is a contradiction to Corollary 1. Since the map k 7! RaðkÞk k is continuous, the set

fk 2 q
ð2Þ
ðp;qÞðaÞ : kRaðkÞk[ eg ð4Þ

is open and hence every k which satisfies RaðkÞk k[ e is an interior point of

K
ð2Þ
ðp;qÞ�e

ðaÞ: Next, we consider a point l 2 K
ð2Þ
ðp;qÞ�e

ðaÞ such that RaðlÞk k ¼ e: If l is

an isolated point then there exists an r[ 0 such that RaðkÞk k\e for every k 2
Bðl; rÞ: Take X0 ¼ X ¼ Bðl; rÞ define the following map

F : X0 ! A defined by FðkÞ ¼ Ra kð Þ:

We apply Theorem 2.1 in [13] and it gives us kRaðlÞk\e; which is a contradiction.
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3 Level sets of (p, q)-outer generalized pseudo spectrum

This section focuses on L
ð2Þ
ðp;qÞ�e

ðaÞ: By proving a version of maximum modulus

principle (see Theorem 6) to the (p, q) resolvent map, we prove that L
ð2Þ
ðp;qÞ�e

ðaÞ has

empty interior in the unbounded component of q
ð2Þ
p;qðaÞ: We observed a similar kind

of result to any non scalar operator T acting on the complex uniformly convex

Banach space X irrespective of the size of component of q
ð2Þ
p;qðTÞ: With the help of

these results, we also look at some topological property (see Theorem 8) of

K
ð2Þ
ðp;qÞ�e

ðaÞ:

Note 4 The set L
ð2Þ
ðp;qÞ�e

ðaÞ is non empty. Otherwise K
ð2Þ
ðp;qÞ�e

ðaÞ is a nonempty open

as well as closed subset of C: This is a contradiction to the fact C is connected.

Note 5 Let l be a point of the boundary of K
ð2Þ
ðp;qÞ�e

ðaÞ: By Theorem, 3

RaðlÞk k� e: Suppose RaðlÞk k[ e; then by Theorem 5, l is an interior point of

K
ð2Þ
ðp;qÞ�e

ðaÞ: This is a contradiction to l is a boundary point. Hence l 2 L
ð2Þ
ðp;qÞ�e

ðaÞ:

Consequently, boundary set of K
ð2Þ
ðp;qÞ�e

ðaÞ is a subset of L
ð2Þ
ðp;qÞ�e

ðaÞ: The following

is a form of maximum modulus principle to the map k 7! ½RaðkÞ�
n
:

Theorem 6 Let a 2 A; X be an open subset in the unbounded component of

q
ð2Þ
ðp;qÞðaÞ and n 2 N: For some M[ 0; suppose k½ða� kÞn�ð2Þp;qk�M for all k 2 X;

then k½ða� kÞn�ð2Þp;qk\M for all k 2 X:

Proof Let us take the unbounded component of q
ð2Þ
ðp;qÞðaÞ be X0: By note 2, for any

n 2 N; ½ða� kÞn�ð2Þp;q ¼ RaðkÞ½ �n for all k 2 X0: We note the following,

fk 2 C : k½RaðkÞ�
nk�Mg 	 k 2 C : RaðkÞk k�M

1
n

n o

:

By Theorem 3, k 2 C : RaðkÞk k�M
1
n

n o

is bounded and hence

fk 2 C : k½RaðkÞ�
nk\Mg \ X0 6¼ ;:

Take l 2 fk 2 C : k½RaðkÞ�
nk\Mg \ X0: Proof follows by applying theorem 2.1 in

[13] to the analytic function k 7! RaðkÞ½ �n defined from X0 to A; the open set X and

to the point l:

Corollary 2 Let a 2 A and e[ 0: Then L
ð2Þ
ðp;qÞ�e

ðaÞ has empty interior in the

unbounded component of q
ð2Þ
ðp;qÞðaÞ

Proof Follows from Theorem 6, by applying n ¼ 1:
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Our next aim is to prove the interior of L
ð2Þ
ðp;qÞ�e

ðTÞ is empty in any component of

q
ð2Þ
p;qðTÞ where T 2 BðXÞ and X is complex uniformly convex Banach space. We

prove that, if k½RTðkÞ�
nk is constant in an open set of q

ð2Þ
p;qðTÞ then it is the global

minimum of k½RTðkÞ�
nk for all k 2 q

ð2Þ
p;qðTÞ: The following is the definition of

complex uniformly convex Banach space, with the help of Lemma 2, we obtain the

required result.

Definition 5 ([13, Definition 2.4 (ii)]) A complex Banach space X is said to be

complex uniformly convex (uniformly convex) if for every e[ 0 there exists d[ 0

such that

x; y 2 X; kyk� e and kxþ fyk� 1; 8f 2 Cðf 2 RÞ; with jfj � 1 ) kxk� 1� d:

It is so obvious that every uniformly convex Banach space is complex uniformly

convex Banach space and hence Lp (with 1\p\1) spaces are complex uniformly

convex Banach spaces. In [7], Theorem 1, Globvink showed L1 space is complex

uniformly convex. The Banach space L1 is not complex uniformly convex Banach

space.

Lemma 2 ([9, Lemma 1.1]) Let k 7! f ðkÞ ¼ a0 þ a1kþ a2k
2 þ � � � be a function

with values in a complex Banach space X, defined and analytic in a neighbourhood

of the point 0 in the complex plane. If kf ðkÞk 
 ka0k in a neighbourhood of the

point 0, then for each ai ði ¼ 1; 2; . . .Þ an ri[ 0 exists such that

ka0 þ kaik�ka0kðjkj � riÞ:

Proof of the following theorem goes similar to the proof of the Theorem 3.4 in

[2].

Theorem 7 Let T 2 BðXÞ where X be a complex uniformly convex Banach space

and n 2 N: If k½ðT � kÞn�ð2Þp;qk ¼ 1 in an open subset U of q
ð2Þ
p;qðTÞ then k½ðT �

kÞn�ð2Þp;qk� 1 for all k 2 q
ð2Þ
p;qðTÞ:

Proof We know, ðT � kÞn½ �
ð2Þ
p;q ¼ RTðkÞ½ �n: By Theorem 2, for every fixed k0 2 U;

there exists an r[ 0 such that the map,

f : Bð0; rÞ ! BðXÞ defined by f ðkÞ ¼ ½RTðkþ k0Þ�
n

is analytic at 0. Moreover, for any k 2 Bð0; rÞ;

½RTðkþ k0Þ�
n ¼

X

1

i¼0

½RTðk0Þ�
iþ1

ki

" #n

¼ ½RTðk0Þ�
n þ n½RTðk0Þ�

nþ1
kþ Oðk2Þ:

Take a0 ¼ ½RTðk0Þ�
n
and a1 ¼ n½RTðk0Þ�

nþ1
: Since kf ðkÞk ¼ ka0k; by Lemma 2,

there exists r1[ 0 such that
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k½RTðk0Þ�
n þ kn½RTðk0Þ�

nþ1k� 1 for all jkj � r1:

Hence for any k 2 Bð0; 1Þ;

k½RTðk0Þ�
n þ r1kn½RTðk0Þ�

nþ1k� 1: ð5Þ

There exists a sequence fekg from X with kekk ¼ 1; such that

lim
k!1

k½RTðk0Þ�
nðekÞk ¼ k½RTðk0Þ�

nk ¼ 1: ð6Þ

Equation (5) implies,

k½RTðk0Þ�
nðekÞ þ r1kn½RTðk0Þ�

nþ1ðekÞk� 1: ð7Þ

Take xk ¼ RTðk0Þ½ �n ekð Þ and yk ¼ r1n RTðk0Þ½ �nþ1
ekð Þ:

We claim that limk!1 kykk ¼ 0: Suppose kykk� e for some e[ 0 then by

Eq. (7),

xk þ kykk k� 1 for all k 2 Bð0; 1Þ: ð8Þ

From the definition of complex uniformly convex Banach space, there exists d[ 0

such that

kxkk� 1� d:

This is a contradiction to Eq. (6). Hence,

lim
k!1

kykk ¼ lim
k!1

kr1n½RTðk0Þ�
nþ1ðekÞk ¼ 0:

Therefore,

lim
k!1

k½RTðk0Þ�
nþ1ðekÞk ¼ 0: ð9Þ

For any k 2 q
ð2Þ
p;qðaÞ; by Theorem 4.2 (a) in [6]

RTðkÞ�RTðk0Þ ¼ ðk� k0Þ½RTðkÞ�½RTðk0Þ� ¼ ðk� k0Þ½Iþðk� k0Þ½RTðkÞ��½RTðk0Þ�
2
:

ð10Þ

where I denotes the identity operator on B(X). From Eq. (10), it is easy to see,

½RTðkÞ�
n � ½RTðk0Þ�

n ¼ Bn½RTðk0Þ�
nþ1 ð11Þ

where Bn :¼
Pn�1

j¼0

n

jþ 1

� �

ðk� k0Þ
jþ1ðI þ ðk� k0ÞRTðkÞÞ

jþ1ðRTðk0ÞÞ
j
: Since the

operator Bn is bounded and from the Eqs. (6), (9),
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lim
k!1

k½RTðkÞ�
nðekÞk� lim

k!1
k½RTðk0Þ�

nðekÞk � lim
k!1

kBn½RTðk0Þ�
nþ1ðekÞk

� lim
k!1

k½RTðk0Þ�
nðekÞk � kBnk lim

k!1
k½RTðk0Þ�

nþ1ðekÞk

¼ 1:

Hence the theorem follows.

Corollary 3 Let M[ 0; T 2 BðXÞ where X be a complex uniformly convex

Banach space and n 2 N: If k½ðT � kÞn�ð2Þp;qk ¼ M in an open subset U of q
ð2Þ
p;qðTÞ then

k½ðT � kÞn�ð2Þp;qk�M for all k 2 q
ð2Þ
p;qðTÞ:

Proof Suppose k½ðT � kÞn�ð2Þp;qk ¼ M in an open subset U of q
ð2Þ
p;qðTÞ; then

M
1
nT �M

1
nk

� �nh ið2Þ

p;q

�

�

�

�

�

�

�

�

¼ 1 for all k 2 U: ð12Þ

Consider the operator S :¼ M
1
nT: From Eq. (12), for each l 2 M

1
nU; we obtain

k½ðS� lÞn�ð2Þp;qk ¼ 1: By Theorem 7, k½ðS� lÞn�ð2Þp;qk� 1 for all l 2 q
ð2Þ
p;qðSÞ: Thus

k½ðT � kÞn�ð2Þp;qk�M for all k 2 q
ð2Þ
p;qðTÞ:

Corollary 4 Let X be a complex uniformly convex Banach space. If T 2 BðXÞ then

L
ð2Þ
ðp;qÞ�e

ðTÞ has empty interior in q
ð2Þ
ðp;qÞðTÞ:

Proof Immediate from Corollary 3 by applying n ¼ 1:

Theorem 8 Let X be a complex uniformly convex Banach space, T 2 BðXÞ: Then

K
ð2Þ
ðp;qÞ�e

ðTÞ has finite number of components and every component of K
ð2Þ
ðp;qÞ�e

ðTÞ

contains an element from r
ð2Þ
p;qðTÞ:

Proof Let E be a component of K
ð2Þ
ðp;qÞ�e

ðTÞ: We first prove the following,

if E \ fk 2 C : kRTðkÞk[ eg 6¼ ; then E \ rð2Þp;qðTÞ 6¼ ;:

Assume to the contrary that E is a component and E \ fk 2 C : kRTðkÞk[ eg 6¼ ;

but E \ r
ð2Þ
p;qðTÞ ¼ ;: Consider the set

G :¼ EnðL
ð2Þ
ðp;qÞ�e

ðTÞÞ ¼ E \ ðL
ð2Þ
ðp;qÞ�e

ðTÞÞc:

Note that, G 	 fk 2 C : kRTðkÞk[ eg 	 ðL
ð2Þ
ðp;qÞ�e

ðTÞÞc: We prove that G is open in

C: Let l 2 G: Since k 2 C : kRTðkÞk[ ef g is open, there exists rl[ 0 such that

Bðl; rlÞ 	 fk 2 C : kRTðkÞk[ eg 	 ðL
ð2Þ
ðp;qÞ�e

ðTÞÞc
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Since E is a component, l 2 E and Bðl; rlÞ is connected, we have Bðl; rlÞ 	 E: By

the definition of G, Bðl; rlÞ 	 G; it follows that G is open in C: Let l 2 G; hence

there exists F 2 BðXÞ� such that F RTðlÞð Þ ¼ RTðlÞk k: Define

w : G ! C by wðkÞ ¼ FðRTðkÞÞ:

Clearly w is well defined, analytic and also continuous on G (closure of G). For any

boundary point k of G we have RTðkÞk k ¼ e; hence jw kð Þj � e but at the point l; we

have jwðlÞj ¼ F RTðlÞð Þj j ¼ RTðlÞk k[ e: This is a contradiction to Maximum

Modulus Theorem.

By Corollary 1, for each k 2 r
ð2Þ
p;qðTÞ; there exists rk[ 0 with B k; rkð Þ 	

K
ð2Þ
ðp;qÞ�e

ðTÞ and fBðk; rkÞ : k 2 r
ð2Þ
p;qðTÞg is an open cover for r

ð2Þ
p;qðTÞ: Since r

ð2Þ
p;qðTÞ

is compact, there exists fk1; k2; . . .; kng such that r
ð2Þ
p;qðTÞ 	

Sn
i¼1 Bðki; rkiÞ: Conse-

quently, there exists components C1;C2; . . .;Cm of K
ð2Þ
ðp;qÞ�e

ðTÞ with m� n and each

Ci contains atleast one Bðki; rkiÞ such that

rð2Þp;qðTÞ 	
[

n

i¼1

Bðki; rkiÞ 	
[

m

i¼1

Ci:

We claim that fk 2 C : kRTðkÞk[ eg 	
Sm

i¼1 Ci: For l 2 fk 2 C : kRTðkÞk[ eg;
there exists r[ 0 such that Bðl; rÞ 	 fk 2 C : kRTðkÞk[ eg hence Bðl; rÞ 	 E for

some connected component E of K
ð2Þ
ðp;qÞ�e

ðTÞ: We proved that E \ r
ð2Þ
p;qðTÞ 6¼ ;; it

follows that E 	
Sm

i¼1 Ci: Thus

fk 2 C : kRTðkÞk[ eg 	
[

m

i¼1

Ci:

Since each Ci is closed in C and by Theorem 5, Corollary 4, we have

k 2 C : RTðkÞk k[ ef g ¼ K
ð2Þ
ðp;qÞ�e

ðTÞ ¼
[

m

i¼1

Ci:

Hence the theorem follows.

The following is an example for interior of L
ð2Þ
ðp;qÞ�e

ðaÞ can be nonempty in the

bounded component of q
ð2Þ
p;qðaÞ:

Example 4 Consider the Banach space ‘1ðZÞ with norm

kxk� ¼ jx0j þ sup
n6¼0

jxnj where x ¼ ð. . .; x�2; x�1;
x0 ; x1; x2; . . .Þ;

and the box represents the zeroth coordinate of an element in ‘1ðZÞ: For M[ 2;

take an operator A 2 Bð‘1ðZÞÞ such that
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A . . .; x�2; x�1;
x0 ; x1; x2; . . .

� �

¼ . . .; x�2; x�1; x0;
x1
M ; x2; x3; . . .

� �

: ð13Þ

Take R :¼ min 1
M
; 1
2
� 1

M

	 


and from Theorem 3.1 in [13], we know that

kðA� kÞ�1k ¼ kðA� kÞ�1ðe0Þk� ¼ M ð14Þ

where e0 ¼ . . .; 0; 0; 1 ; 0; 0; . . .

� �

and k 2 C such that jkj\R: Consider the

Banach space X ¼ ‘1ðZÞ � ‘1ðZÞ with norm kðx; yÞk ¼ ðkxk2� þ kyk2�Þ
1
2: By The-

orem 1.8.6 in [12], X is a Banach space. We take the following operators

T : X ! X defined by Tðx; yÞ ¼ ðAðxÞ;AðyÞÞ

where A is an operator defined in Eq. (13) and

P : X ! X defined by Pðx; yÞ ¼ ðx; 0Þ:

It is easy to see that P2 ¼ P and PT ¼ TP: By Theorem 1.8.12 in [12], rðTÞ ¼ rðAÞ
and so we get,

RTðkÞ ¼ ðT � kÞ�1
P for all k 2 fk 2 C : jkj\Rg

For any ðx; yÞ 2 X with kðx; yÞk ¼ 1; we have

kðT � kÞ�1
Pðx; yÞk ¼ kðT � kÞ�1ðx; 0Þk ¼ kðA� kÞ�1ðxÞk� �Mkxk� �Mkðx; yÞk:

ð15Þ

and particularly for the unit vector ðe0; 0Þ 2 X; we have

kðT � kÞ�1
Pðe0; 0Þk ¼ kðT � kÞ�1ðe0; 0Þk ¼ kðA� kÞ�1ðe0Þk� ¼ M ¼ Mk e0; 0ð Þk:

ð16Þ

From Eqs. (15) and (16), we get kðT � kÞ�1
Pk ¼ M for each k in fk 2 C : jkj\Rg:

Thus interior of fk 2 C : kRTðkÞk ¼ Mg is non empty.
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3. Böttcher, A., S.M. Grudsky, and B. Silbermann. 1997. Norms of inverses, spectra, and pseudospectra

of large truncated Wiener-Hopf operators and Toeplitz matrices. New York Journal of Mathematics

3:1–31.
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