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Based on mesoscale lattice Boltzmann simulations with the “Shan-Chen” model, we explore the
influence of thermocapillarity on the break-up properties of fluid threads in a microfluidic T-junction,
where a dispersed phase is injected perpendicularly into a main channel containing a continuous
phase, and the latter induces periodic break-up of droplets due to the cross-flowing. Temperature
effects are investigated by switching on/off both positive/negative temperature gradients along the
main channel direction, thus promoting a different thread dynamics with anticipated/delayed break-
up. Numerical simulations are performed at changing the flow-rates of both the continuous and
dispersed phases, as well as the relative importance of viscous forces, surface tension forces and
thermocapillary stresses. The range of parameters is broad enough to characterize the effects of
thermocapillarity on different mechanisms of break-up in the confined T-junction, including the
so-called “squeezing” and “dripping” regimes, previously identified in the literature. Some simple
scaling arguments are proposed to rationalize the observed behaviour, and to provide quantitative
guidelines on how to predict the droplet size after break-up.
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I. INTRODUCTION

Droplet control and production in microfluidic devices has gained a considerable importance, due to the ample
variety of applications involved. Droplets can indeed transport very small volumes of fluids, where reagents can be
stored and analyzed for a variety of microfluidic applications [1–19]. In this context, droplet manipulation based on
thermocapillary stresses has also been established [13, 14, 16–23]. Thermocapillary stresses arise because of a surface
tension gradient induced by temperature differences, with the surface tension at the interface between two fluids being
a decreasing function of the temperature in most of the practical situations encountered [13, 14, 16, 22, 24]. The
resulting “Marangoni flows” induce droplet motion from the regions of high surface tension to the regions of low surface
tension. The focus of this paper is on mesoscopic numerical simulations to quantify the effects of thermocapillary
forces on geometry mediated droplet production in confined channels. For the confined channel, we use a T-junction
geometry [25, 26], where a dispersed (d) phase is injected from a side channel perpendicularly into a main channel
containing a continuous (c) phase. The (periodic) production of droplets is then induced by cross-flowing and is
affected by the Capillary number Ca - which quantifies the importance of the viscous forces with respect to the
surface tension forces - and by the flow-rate ratio φ = Qd/Qc of the two immiscible fluids [11, 25, 27–30]. Distinct
mechanisms of droplet formation have been identified [11, 25]: these include both the so-called “squeezing” and
“dripping” regimes [11, 25, 26, 31]. Specifically, in the squeezing mechanism the break-up process is determined by
the build-up of pressure in the main channel caused by the obstruction of the dispersed phase entering from the side
channel [11, 25]. In the dripping regime, instead, shear forces start do be relevant and promote a smaller droplet size
if compared to the squeezing regime [11, 25]. The Newtonian problem has been very well characterized in a series of
papers in the literature, both experimentally and numerically (see [11, 25–27, 31, 32] and references therein). In this
paper, we aim to take a step forward, by exploring the influence of thermocapillarity on the dynamics and break-up
properties of fluid threads in the confined T-junction geometry. Our numerical approach is based on lattice Boltzmann
(LB) models [33–36], which proved to be very flexible numerical tools for the simulation of a wide variety of problems
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involving droplets dynamics in microfluidic geometries [28–30, 32, 37–40, 40–44]. LB allows to solve the diffuse-
interface hydrodynamic equations of a binary mixture of two components [45–50] in presence of phase segregation,
which confines “pure” fluids to different regions, separated by a non ideal interface with a positive surface tension.
Multiphase flows with thermocapillary effects have already been investigated in the context of the LB methodology.
In particular, Liu et al. [17–19, 23, 51, 52] developed LB multiphase models to account for thermocapillary flows.
The LB model proposed by Liu et al. [17–19, 23] relies on an “improved color-fluid” LB scheme [53], in which the
non-ideal forces and the thermocapillary stresses are introduced using the idea of “continuum surface force” [17–
19, 23, 51]. The authors have successfully described droplets dynamics and migration, and the effects of localized
heating sources in confined environments. Our study differs from the works by Liu et al. [17–19, 23, 51, 52] both in
terms of the LB methodology and in terms of the physical problem considered. From the methodological side, the
corresponding modelling for the thermocapillary flows is developed on the top of the “Shan-Chen” model for non-ideal
binary mixtures [54–58]. This may be useful, for example, in those situations where structured fluids and emulsion
droplets [57, 59] need to be simulated.
The paper is organized as follows. In section II we will present the necessary mathematical background for the problem
studied, showing the equations that we consider in both the continuous and dispersed phases. In subsections IIA-II C
we will recall the basic details of the LB scheme that we use to solve the fluid dynamical equations. In subsection II B we
will illustrate the construction of the thermocapillary coupling on the top of the “Shan-Chen” model. In section III we
will apply the numerical methodology to the confined T-junction geometry, and we will provide quantitative details
on how the thermocapillary effects influence the transition from the squeezing dominated regime to the dripping
dominated regime. We will finally rationalize the observed behaviour and provide quantitative guidelines on how to
predict the droplet size after break-up. Conclusions will follow in section V. Useful benchmark tests and validation
studies will be discussed in Appendix A. Some technical details on the problem of the motion of a cylindrical droplet
subject to a uniform temperature gradient are reported in Appendix B.

II. CONTINUUM EQUATIONS AND NUMERICAL METHOD

The equations we consider in the continuous and dispersed phase are the Navier-Stokes (NS) equations in the form
(subscripts c/d refer to the continuous/dispersed phase)

ρi [∂tui + (ui ·∇)ui] = −∇Pb,i +∇ ·
(

ηi(∇ui + (∇ui)
T )
)

i = c, d. (1)

Here, u and η are the velocity and the dynamic viscosity, respectively. ρ is the total density, Pb the bulk pressure, and
(∇u)T the transpose of (∇u). Immiscibility between the dispersed phase and the continuous phase is introduced using
the so-called “Shan-Chen” model [54–56, 60], which ensures phase separation with the formation of stable (diffuse)
interfaces between the two phases with a positive surface tension σ. An additional interface force is introduced due
to the temperature-dependent surface tension σ = σ(T ). The associated interfacial force is most conveniently written
in the limit of a sharp interface, using the differential operator ∇S = (δ− n̂ n̂) ·∇, providing projection tangentially
to the interface [17–19, 23]

F = ∇ · (σ(T )(δ − n̂ n̂)δS) = σ C δS n+ (∇Sσ)δS (2)

where δS is the Dirac delta function and C is the (local) curvature at the interface [17–19, 23]. Equivalent expressions
of (2) for the general case of diffuse interfaces are provided in subsection II B. In presence of thermocapillarity, we
need to relate the surface tension to the temperature. For the sake of simplicity, we only consider a linear relation
between the surface tension and the temperature σ(T ) = σ0 + σT (T − T0), where T0 is a reference temperature, σ0

is the surface tension at T0, σT = dσ/dT is the rate of change of surface tension with temperature and is an input
parameter in our numerical simulations. Together with the macroscopic NS equations (1), we have considered the
following advection-diffusion equation (i.e. passive-scalar equation) for the temperature field in both the continuous
and the dispersed phase [61]

∂tTi + (ui ·∇)Ti = ∇ · (κ(T )
i ∇Ti) i = c, d (3)

where κ(T ) is the thermal diffusivity. Equations (1)-(3) are solved by means of an algorithm combining a multi-
component LB model coupled to an LB solver for the advection-diffusion equation (3). Technical details on the
multicomponent LB and the advection-diffusion LB scheme are not new, hence they are just briefly recalled in subsec-
tions IIA and IIC. In subsection II B, instead, we will discuss more extensively on the modelling of thermocapillary
effects, since it constitutes a novelty from the methodological point of view for the paper.



3

A. Modelling of Multicomponent Fluid

The multicomponent LB takes into account the evolution dynamics of the discretized probability density function
fℓs(x, t) to find at position x and time t a fluid particle of component ℓ = A,B with velocity cs. The numerical
simulations described in the paper make use of the D3Q19 model [81] whose discrete velocity set is given by

cs =











(0, 0, 0) s = 0

(±1, 0, 0), (0, 0,±1), (0,±1, 0), s = 1 . . . 6

(±1,±1, 0), (0,±1,±1), (±1, 0,±1) s = 7 . . . 18

. (4)

A majority of one of the two components then identifies the dispersed and the continuous phases in the hydrodynamic
equations (1). The LB dynamics accounts (over a unitary time step) for both the relaxation and the streaming of
fℓs(x, t) [34]:

fℓs(x+ cs, t+ 1)− fℓs(x, t) =
∑

j

Asj(fℓj − f
(eq)
ℓj ) + Sg

ℓs (5)

where the matrix terms Asj (the same for both components) drive the relaxation towards the local equilibrium [34]

f
(eq)
ℓs = wsρℓ

[

1 +
u · cs
c2S

+
uu : (cscs − δ)

2c4S

]

(6)

where cS = 1/
√
3 is the isothermal speed of sound, u is the fluid velocity, and the weights ws are given by ws = 1/3

for s = 0, ws = 1/18 for s = 1 . . . 6 and ws = 1/36 for s = 7 . . . 18. We work in the framework of the multiple
relaxation time (MRT) models [62–65]. This offers the particular advantage to control the various processes (mass
diffusion, momentum diffusion, etc) independently. The MRT models make use of a “mode space” identified with
a suitable basis vectors bk (k = 0, ..., 18), hence the “modes” calculated as Mℓk =

∑

s bksfℓs (k = 0, ..., 18) [62–65].
The collisional term then describes a linear relaxation of the modes, Mℓk → (1+ ak)Mℓk +Mg

ℓk, where the relaxation
frequencies −ak are related to the transport coefficients in the hydrodynamic equations (see also below). The lowest
order modes are directly linked to the hydrodynamic variables as follows. The density of both components (ρℓ) and
the total density (ρ) coincide with the zero-th order modes

ρℓ = Mℓ0 =
∑

s

fℓs ρ =
∑

ℓ

Mℓ0 =
∑

ℓ

ρℓ

while the next three modes (Mℓ1,Mℓ2,Mℓ3) define the velocity of the mixture

u = (ux, uy, uz) ≡
1

ρ

∑

ℓ

(Mℓ1,Mℓ2,Mℓ3) +
(gx, gy, gz)

2ρ
=

1

ρ

∑

ℓ

∑

s

(fℓscsx, fℓscsy, fℓscsz) +
(gx, gy, gz)

2ρ
. (7)

The higher order modes refer to the viscous stress tensor, and also other modes which do not show-up in the hy-
drodynamic limit [62–65]. The term Sg

ℓs is a forcing source embedding the effects of a forcing term with density
gℓ [62, 64, 65]. The term g =

∑

ℓ gℓ in Eq. (7) is the total force. Given the relaxation frequencies of the momentum
(−aM), bulk (−ab) and shear (−as) modes, the forcing source that ensures the correct recovery of the hydrodynamic
equations can be computed exactly [65]. The hydrodynamic evolution is obtained by considering the long-wavelength
limit [34, 66] of the equations for the coarse-grained density and momentum. One can indeed show that the LB
scheme reproduces the continuity equations and the NS equations [62, 64, 65]:

∂tρℓ +∇ · (ρℓu) = ∇ ·Dℓ, (8)

ρ [∂tu+ (u ·∇)u] = −∇p+∇ ·
[

ηs

(

∇u+ (∇u)T − 2

3
δ(∇ · u)

)

+ ηbδ(∇ · u)
]

+ g. (9)

The viscosity coefficients are determined by the relaxation frequencies of the bulk and shear modes in (5) as ηs =

−ρc2S

(

1
as

+ 1
2

)

and ηb = − 2
3ρc

2
S

(

1
ab

+ 1
2

)

. In equations (9), p =
∑

ℓ pℓ =
∑

ℓ c
2
Sρℓ represents the internal (ideal)

pressure of the mixture, while the quantityDℓ is the diffusion flux of one component into the other (see [65] for detailed
expressions). Regarding the internal forces, the “Shan-Chen” interaction model [54–56, 65] for multicomponent LB
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schemes is used, where the force experienced by the particles of the ℓ-th species at x, is due to the particles of the
other species at the neighbouring locations compatible with the lattice links

gℓ(x) = −gABρℓ(x)
∑

s

∑

ℓ′ 6=ℓ

wsρℓ′(x+ cs)cs ℓ = A,B (10)

where gAB is a parameter that regulates the intensity of phase segregating interactions. For simplicity, the sum in
equation (10) extends over a set of interaction links cs coinciding with those of the LB dynamic (5). For the purposes
of this paper, the effect of the internal forces is more conveniently analyzed with the help of the interaction pressure
tensor P (int) [58], whose gradient is minus the internal forces, i.e., g = −∇ · P (int). The interaction pressure tensor
modifies the total pressure tensor of the model, i.e.,

P (TOT) = p δ + P (int). (11)

An explicit expression for P (int) can be derived directly on the lattice [56, 58]. For the case of multicomponent fluids,
it reads [58]

P (int)(x) =
1

2
gABρA(x)

∑

s

wsρB(x+ cs)cscs +
1

2
gABρB(x)

∑

s

wsρA(x+ cs)cscs. (12)

Upon Taylor expanding the expression (12), we get (we drop the x-dependency for simplicity)

P (TOT) =

(

p+ c2SgABρAρB +
1

4
c4SgABρA∆ρB +

1

4
c4SgABρB∆ρA

)

δ+
1

2
c4SgABρA∇∇ρB +

1

2
c4SgABρB∇∇ρA+O(∇4)

(13)
where we recognize a bulk pressure contribution, Pb = p+c2SgABρAρB , and other contributions which are proportional
to the derivatives of both densities. These gradient terms establish a diffuse interface with a positive surface tension
(see also section II B) whenever phase separation occurs in the model [57]. Wetting properties are introduced in the
model by imposing specific values of the density in contact with the wall as described in [67, 68]. The numerical
simulations presented are carried out with gAB = 1.5 lbu (lattice Boltzmann units, henceforth) in (10), corresponding
to a surface tension σ = 0.08 lbu and associated bulk densities ρA = 2.1 lbu and ρB = 0.12 lbu in the A-rich phase.
The relaxation frequencies are set to as = ab = −1.0 lbu, thus reproducing the viscous stress tensor given in Eqs. (1)
with ηc,d = 0.28 lbu.

B. Modelling of Thermocapillary Effects

In order to model the thermocapillary effects with a temperature-dependent surface tension, suitable terms need
to be introduced on the top the bare pressure tensor of the model (12). To this aim, we focus the attention on the
mechanical balance equations at a curved two-dimensional (for simplicity) interface. In what follows, the local radius
of curvature will be denoted with R. First of all, we notice that there exists a “gauge invariance” in the definition of
the pressure tensor [69], in that we can define P (int) modulo a tensor with zero divergence. Specifically, if we introduce
the pressure tensor

P (0) =gAB

[

−c4S∇ρA ·∇ρB − 1

2
c4SρB∆ρA − 1

2
c4SρA∆ρB

]

δ+

1

2
gABc

4
SρA∇∇ρB +

1

2
gABc

4
SρB∇∇ρA +

1

2
gABc

4
S∇ρA∇ρB +

1

2
gABc

4
S∇ρB∇ρA

(14)

one can easily verify that (14) has zero divergence, meaning that the pressure tensor

P̃ (int) = P (int) − P (0)

brings the same physics of the pressure tensor P (int). For our purposes, we then use the pressure tensor P̃ (TOT) =
P (TOT) − P (0). Some straightforward algebraic calculations reveal the following relation between P̃ (TOT) and the
normal n̂ at the non-ideal interface

P̃ (TOT) = P (TOT) − P (0) =

[

Pb +
3

4
gABc

4
SρA∆ρB +

3

4
gABc

4
SρB∆ρA

]

δ − gABc
4
S |∇ρA||∇ρB | (δ − n̂n̂) (15)
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where we have used ∇ρA ·∇ρB = −|∇ρA||∇ρB | and also the property of the normal n̂

n̂ = − ∇ρA
|∇ρA|

=
∇ρB
|∇ρB |

which is taken to point from the A-rich into the B-rich phase. We then introduce the tensor

T = δ − n̂n̂

with the property to project along the tangential direction t̂, perpendicularly to n̂, i.e. T · n̂ = 0. For our curved
interface, we can then compute the pressure tensor in the directions normal (N) and tangential (T) to the interface
and obtain

P̃N = Pb +
3

4
gABc

4
S (ρA∆ρB + ρB∆ρA) P̃T = Pb +

3

4
gABc

4
S (ρA∆ρB + ρB∆ρA)− gABc

4
S |∇ρA||∇ρB | (16)

so that

P̃N − P̃T = gABc
4
S |∇ρA||∇ρB | (17)

and the pressure tensor can be rewritten as [70]

P̃ (TOT) = P̃Nδ − T (P̃N − P̃T ). (18)

When analyzing the equilibrium properties (∇ · P̃ (TOT) = 0) with this decomposition, the mechanical balance at the
interface is better understood. Indeed we get

∇ · P̃ (TOT) = n̂ (∇nP̃N ) +
n̂

R
(P̃N − P̃T )− t̂∇t(P̃N − P̃T ) (19)

where we have introduced the gradients along the tangential and normal direction, i.e. ∇n = n̂ · ∇, ∇t = t̂ · ∇.
Further, we have used that ∇ · T = − 1

R
n̂ and also assumed that the gradient of the density fields is perpendicular

to the interface (i.e. directed along n̂). When we deal with cases with homogeneous and isotropic surface tension,
Eq. (19) leads to the well known Laplace equation. To see this point, let us specialize our equations to the case of
a cylindrical droplet described in polar coordinates, with the center of coordinates coinciding with the center of the
droplet (r = 0). Because of the cylindrical symmetry, we can neglect the term t̂∇t(P̃N − P̃T ) to obtain

∇ · P̃ (TOT) = n̂ (∇nP̃N ) +
n̂

R
(P̃N − P̃T ) = 0. (20)

Integrating in the normal (i.e. radial) direction, we get

P
(out)
b − P

(in)
b +

1

R

∫ ∞

0

(P̃N − P̃T ) dr = 0

that is the usual Laplace law written for the bulk pressure Pb evaluated in the outer (out, r = ∞) and inner (in,
r = 0) regions. The surface tension σ follows

σ =

∫ ∞

0

(P̃N − P̃T ) dr.

In order to construct a force driven by gradients in the surface tension, we introduce “on the top” of the total pressure
tensor P̃ (TOT) a temperature-dependent term. In particular, following [60], and relying on the MRT schemes, we have
added the new term to the stress modes of the multicomponent model, in such a way that the resulting hydrodynamic
Eqs (1) with the coupling (2) are recovered in the limit of a thin interface. The choice for the temperature-dependent
term is quite phenomenological [17–19, 23]: it is chosen to be proportional to the squared gradient of the “order
parameter”, the latter taken as the density difference ρd = ρA − ρB , and is also proportional to a temperature-
dependent prefactor

P̃ (TOT) → P̃ (TOT) − c4SA(T )|∇ρd|2T .
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From (16)-(17), it follows that the difference between the normal and tangential component of the pressure tensor

changes as (P̃N − P̃T ) → (P̃N − P̃T ) + c4SA(T )|∇ρd|2. Hence, the balance equation at a curved interface is modified
as

∇ · P̃ (TOT) = n̂
(

∇nP̃N

)

+
n̂

R
(P̃N − P̃T + c4SA(T )|∇ρd|2)− t̂∇t(P̃N − P̃T + c4SA(T )|∇ρd|2) (21)

that is producing a temperature dependent surface tension

σ(T ) =

∫ ∞

0

(PN − PT ) dr +

∫ ∞

0

c4SA(T )|∇ρd|2 dr

while the term t̂∇t(P̃N − P̃T + c4SA(T )|∇ρd|2) is tangential at the interface and is responsible for the Marangoni
effects triggered by the tangential variation of the surface tension σ(T ) [17–19, 23]. The simplest choice for A(T )
reproducing the motion of a curved interface from cold to hot regions is [17–19, 23]

A(T ) = G0 −GTT (22)

where G0 is a constant and GT > 0. With this choice, the surface tension is larger in regions where the temperature
is lower.

C. Modelling of Advection-Diffusion Equation for the Temperature Field

For the temperature dynamics, following [61], we add another set of populations gs(x, t). At difference with the
multicomponent case, instead of using the MRT approach, the collisional part of the LB dynamics is now taken to be
a BGK relaxation dynamics for simplicity

gs(x+ cs, t+ 1)− gs(x, t) = − 1

τg
(gs − g(eq)s ) (23)

where τg is a characteristic time governing the relaxation dynamics towards the local equilibrium distribution

g(eq)s = wsT

[

1 +
u · cs
c2S

+
uu : (cscs − δ)

2c4S

]

. (24)

As in the case of the multicomponent part of the model, the hydrodynamic evolution for the temperature results from
the long-wavelength limit [34, 66] of the equations for the coarse-grained temperature fields, the latter computed as

the “density” of the gs population, i.e. T =
∑

s gs. One can show that Eqs (3) are recovered with κ
(T )
c,d = c2S(τg−1/2).

Let us also note that, in order to get the right hydrodynamic limit of the temperature evolution, an extra body-force
term is in principle needed in order to avoid spurious terms in the continuum limit [71]. The importance of this term
may depend on the applications. In all our simulations, we have checked that it is negligible. Notice that for more
complex cases where thermal effects may enter the equation of state, one can also devise different strategies [72, 73].

III. T-JUNCTION SET-UP

In this section we report the main details for the T-junction set-up used for the numerical simulations. The T-
junction is embedded in a rectangular parallelepiped with size Lx × Ly × H, and both the main and side channels
have a square cross-section resolved with H × H = 32 × 32 lattice cells. The resolution used for H is chosen to
be compatible with those used for the successful benchmark tests described in Appendix A. The main channel and
the side channel lengths are resolved with a Lx = 640 lattice cells and Ly = 160 lattice cells, respectively. All the
simulation details are summarized in table I. In order to highlight the thermocapillary effects in the transition from
squeezing to dripping, at changing a variety of flow-rates in both the continuous and dispersed phases, we decided to

keep the viscous ratio λ = ηd/ηc and thermal diffusivity ratio χ = κ
(T )
c /κ

(T )
d fixed to unity. Moreover, the Reynolds

number, Re = ρvcH/ηc, is small, hence it is expected a minor influence on the thread deformation and break-up [74].
We then choose the following dimensionless numbers [25, 27, 31] to fully characterize the system. First, the Capillary
number Ca that is calculated in the continuous phase

Ca =
ηcvc
σ

(25)
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and the flow-rate ratio

φ =
vd
vc

=
Qd

Qc
(26)

where Qd = vdH
2 and Qc = vcH

2 are the flow-rates at the two inlets of the side and main channel. We emphasize
that the flow-rates are input parameters for the T-Junction set-up. In addition to the two control parameters Ca and
φ, to quantify the effects of thermocapillarity, we use the Marangoni number

Ma =
H∆σH

κ
(T )
c ηc

(27)

where ∆σH represents the variation in the surface tension over a distance H (see also Appendix B). In the outlet,
we impose a fixed pressure and also use Neumann-type boundary conditions for the velocity fields. A Dirichlet-type
boundary condition is set at the inlets of the main and side channel, by imposing the pressure gradient computed
from the exact solution of a Stokes flow in a square duct [38]. As for the temperature boundary conditions, we set
a constant temperature at the inlet (T = Tinlet) and outlet (T = Toutlet) of the main channel. In contact with the
walls of the main and side channels, we set a Dirichlet-type boundary condition for the temperature field that is a
space-dependent one: it coincides with the linear profile going from Tinlet to Toutlet. In the inlet of the side channel we
set the temperature to be consistent with such linear profile. By suitably changing the parameter GT > 0 in (22),
while setting Tinlet − Toutlet = ±1.4 lbu, we are therefore able to explore situations where the temperature gradient
promotes migration in the positive/negative main channel direction, dependently on the sign of the temperature
gradient ∇T = (Tinlet −Toutlet)/Lx (see also Fig. 1). Notice that we use the same temperature gradient that we tested
in the benchmark tests in Appendix A, hence we already know the characteristic thermocapillary velocities developed
in such temperature gradients (see Fig. 8). Moreover, in presence of a non zero temperature gradient, the surface
tension σ = σ(T ) used to compute the Capillary number (25) is the one corresponding to the temperature at the
T-junction [82], i.e., where the break-up process takes place. In addition, wetting properties need to be introduced at
the boundaries. To this aim, we impose perfect wetting for the continuous phase.

IV. RESULTS FOR T-JUNCTION GEOMETRY

We start our numerical investigation by getting a qualitative idea of the thermocapillary effects in the confined
T-junction geometry. Specifically, in Fig. 1 we present a time series of 3D snapshots of density contours overlaid on
the viscous stress magnitude at fixed Ca for different scenarios, depending on the sign of the temperature gradient.
The Marangoni number Ma = 1.26 is kept fixed. Moreover, we have chosen a relatively small Ca = 0.001, which falls
into the squeezing regime [25, 27, 28, 31], where the incoming thread tends to occupy and obstruct the cross-section
of the main channel before breaking at the junction. In this regime, the interfacial forces are dominant, and therefore
we expect the thermocapillary effects to be more pronounced. Cases with zero temperature gradient - hence no
thermocapillary effects - are reported in the left column (Panels (a)-(e)), and they are useful to compare with the
cases where the temperature gradient is different from zero. In the middle column we report cases with a positive
temperature gradient and Ma = 1.26 (Panels (f)-(j)), while the right panel reports cases with negative temperature
gradient and Ma = 1.26 (Panels (k)-(n)). Notice that on the top row we have reported the temperature profile in a
slice taken at z = H/2 for the three cases analyzed. Without thermocapillary effect, the thread starts to enter the
main channel (Panel (b)), obstructs the main channel (Panel (c)), the continuous phase squeezes the dispersed phase
(Panel (d)), and finally the droplet generation takes place at the junction (Panel (e)). The droplet formation process
is visibly influenced by the switch-on of a non-zero temperature gradient: when Ma = 1.26, ∇T > 0 we observe that
the droplet size is smaller than the corresponding case with ∇T = 0; additionally, the break-up process is faster,
leading to the production of two droplets within the same time it takes to generate one droplet with ∇T = 0. On
the contrary, when Ma = 1.26, ∇T < 0, the break-up process is delayed, and no droplet formation is observed within
the time lapse of a few shear times τshear = H/vc, which is taken as the characteristic unit of time for the break-up
process. The case with negative temperature gradient is also visibly characterized by a reduction of the viscous
stress at the junction, which may be taken as a further indication that the whole process is evidently affected by
thermocapillary stresses.

To go deeper and characterize the effects of thermocapillarity on the droplet size at small Ca, we have further
performed different numerical simulations at changing the flow-rate ratio, the Marangoni number, and the sign of the
temperature gradient. This is necessary to compare our results for the droplet size with the scaling laws which have
been proposed in the literature [25, 31]. As already highlighted in Fig. 1, in the regime of small Ca, the dispersed
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Ca φ Ma ∇T Lx × Ly ×H H ηd ηc λ κ
(T )
c κ

(T )
d χ

cells cells lbu lbu lbu lbu

0.001− 0.1 0.2− 1.0 0.0 = 0 640× 160× 32 32 0.28 0.28 1.0 0.166 0.166 1.0

0.001− 0.1 0.2− 1.0 0.378− 1.26 > 0 640× 160× 32 32 0.28 0.28 1.0 0.166 0.166 1.0

0.001− 0.1 0.2− 1.0 0.378− 1.26 < 0 640× 160× 32 32 0.28 0.28 1.0 0.166 0.166 1.0

TABLE I: Parameters for the lattice Boltzmann (LB) simulations with the T-junction geometry. A rectangular parallelepiped
with size Lx × Ly ×H embeds the T-junction geometry. Both the main and side channels have square cross section (H ×H)
with H resolved with 32 lattice cells. The flow-rates at the two inlets are indicated with Qd = vdH

2 and Qc = vcH
2, where vd,c

represent the average velocity in the two phases. The flow-rate ratio is indicated with φ = Qd/Qc. The dynamic viscosity of
the dispersed phase is ηd, while ηc is the dynamic viscosity of the continuous phase. The Capillary number Ca is computed in
the continuous phase, Ca = ηcvc/σ, with σ the surface tension. Notice that in presence of Marangoni effects, we use the surface
tension σ = σ(T ) corresponding to the temperature at the junction, where break-up takes place. The advection-diffusion

equation for the temperature field (3) is integrated with an LB solver (see section II C) with diffusivities κ
(T )
d,c in the dispersed

and continuous phases, respectively. Notice that in order to perform different numerical simulations at changing Ca and φ,

we decided to use a unitary viscous ratio, λ = ηd/ηc = 1, and unitary thermal diffusivity ratio, χ = κ
(T )
c /κ

(T )
d = 1. As for

the temperature boundary conditions, a linear profile from the inlet (Tinlet) and outlet (Toutlet) temperature is imposed on the
channel walls (see text for details).

phase enters the main channel until it obstructs the flow. Afterwards, due to the squeezing of the continuous phase,
the dispersed thread breaks at the T-junction [25, 27]. Assuming that the thread squeezes at a rate proportional to
Qc, a scaling law for the droplet volume has been established in the literature [11, 25]

V

H3
= α1 + α2φ. (28)

For a fixed Capillary number, the constants α1 and α2 (which are of the order one) are determined by the geometrical
details of the channels [25, 31]. As already put forward by other authors [11, 25], the relation (28) allows to match
together two scaling laws expected in the regimes where Qd is smaller or larger than Qc. When Qd is larger than Qc,
one expects that the time to squeeze the droplet is larger than the time it takes to block the channel, which implies
the droplet size to scale linearly with the flow-rate ratio. On the other hand, when Qd is much smaller than Qc, one
expects the dimensionless droplet size to be independent of the flow-rate ratio [11, 25]. Equation (28) has already
been verified in experiments [3, 7, 11] and also in numerical simulations [25, 27–31]. It is therefore important to check
both the prediction of a linear scaling in φ, as well as a possible dependency of the scaling constants α1 and α2 on
the Marangoni number and the sign of the temperature gradient. To this aim, in the left Panel of Fig. 2, we plot the
dimensionless droplet volume versus the flow-rate ratio at Ca = 0.0014, for different values of Ma and different signs
of the temperature gradient. For all the cases investigated, we confirm the validity of the linear scaling relation (28),
with the curves that are steeper for negative temperature gradients. Notice that the effect of thermocapillarity is
larger (smaller) at the larger (smaller) φ, which may be taken as a clear indication that one needs a sufficiently large
squeezing time in order for the Marangoni stresses to show-up with a quantitative effect. To make further progress,
from the data reported in the left Panel of Fig. 2, we have obtained the constants α1 and α2 from the linear fit
based on Eq. (28). These two coefficients are displayed against the Marangoni number in the right Panel of Fig. 2.
Notice that, in order to visualize together the effects of both positive and negative temperature gradients, we use
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(a)Ma = 0.0

(b) t = t0 + 1.875 τshear;Ma = 0.0

(c) t = t0 + 3.750 τshear;Ma = 0.0

(d) t = t0 + 4.875 τshear;Ma = 0.0

(e) t = t0 + 5.250 τshear;Ma = 0.0

(f)Ma = 1.26;∇T > 0

(g) t = t0 + 1.875 τshear;Ma = 1.26;∇T > 0

(h) t = t0 + 3.750 τshear;Ma = 1.26;∇T > 0

(i) t = t0 + 4.875 τshear;Ma = 1.26;∇T > 0

(j) t = t0 + 5.250 τshear;Ma = 1.26;∇T > 0

(k)Ma = 1.26;∇T < 0

(l) t = t0 + 1.875 τshear;Ma = 1.26;∇T < 0

(m) t = t0 + 3.750 τshear;Ma = 1.26;∇T < 0

(n) t = t0 + 4.875 τshear;Ma = 1.26;∇T < 0

(o) t = t0 + 5.250 τshear;Ma = 1.26;∇T < 0

FIG. 1: Numerical simulations in the confined T-junction geometry in presence of thermocapillarity. The importance of the
thermocapillary stresses is quantified with the Marangoni number (Ma, see (27)) at changing also the temperature gradient
∇T . Panels (a), (f), (k): temperature across the T-junction for three representative cases: Ma = 0 (a); Ma = 1.26, ∇T > 0 (f);
Ma = 1.26, ∇T < 0 (k). Low temperature regions appear as light (light green) while high temperature regions are dark (dark
green). The other panels report density contours during the droplet formation process overlaid on the hydrodynamic viscous
stress in the continuous phase: Ma = 0 (Panels (b)-(e)); Ma = 1.26, ∇T > 0 (Panels (g)-(j)); Ma = 1.26, ∇T < 0 (Panels
(l)-(o)). Low stress regions appear as light (light blue) while high stress regions are dark (blue). In all the cases the Capillary
number (Ca, see (25)) is fixed to Ca = 0.001 and the flow-rate ratio (φ, see (26)) is fixed to φ = 1.0. Notice that we have used
the characteristic shear time τshear = H/vc as a unit of time.

sgn∇T [Ma] in the horizontal axis. The constant α1 ≈ O(1) is not appreciably affected by the thermocapillary effects.
The effect is actually more visible on the slope coefficient α2. The plot of logα2 indeed shows two distinguished
slopes, dependently on the sign of the temperature gradient. This change in slope is somehow indicative that the
geometry mediated break-up process is affected in a non trivial way by the thermocapillary effects: for ∇T < 0 the
thermocapillary effects oppose to the squeezing process, producing larger droplet sizes and somehow “pushing” the
system even more towards the squeezing regime, favoring the inhibition of the main channel by the dispersed phase
(see also right column in Fig. 1). When ∇T > 0, instead, the thermocapillary stresses promote droplet break-up
and somehow spoil distinctive features of the squeezing regime, as also evident from the flatter curves displayed in
the left Panel of Fig. 2. The latter observation stimulates another interesting analysis, concerning the importance of
the thermocapillary effects in the transition from the squeezing regime to the dripping regime [25, 27–31], where the
increase of the Capillary number induces a reduced droplet size. For the specific case of our numerical simulations, this
analysis is displayed in Fig. 3, where we monitor the droplet size by changing the Capillary number for fixed flow-rate
ratio. We considered two cases with flow-rate ratio φ = 1.0 (left Panel) and φ = 0.5 (right Panel). Furthermore, the
effects of thermocapillarity are also shown, in that we have conducted simulations by switching-on a positive (blue
triangles) and a negative (black squares) temperature gradient for the same Marangoni number Ma = 1.26. For a
given Ma and ∇T , the droplet size decreases as a function of Ca, due to the increased importance of the viscous
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FIG. 2: Quantitative analysis for the dimensionless droplet volume as a function of the flow-rate ratio φ in the small Capillary
number (Ca) regime. Left Panel: we report the scaling laws for the dimensionless droplet volume versus the flow-rate ratio φ in
the squeezing [25, 31] regime at Ca = 0.0014, for different values of the Marangoni number (Ma). Both negative and positive
temperature gradients ∇T are considered. Linear fits are drawn to guide the eyes. Right Panel: analysis of the linear scaling
law (28) for the data in the left Panel. We report the scaling factor α2 versus sgn(∇T )[Ma]. We also provide two slope fits for
the data at ∇T ≤ 0 (red circles) and ∇T ≥ 0 (blue squares). The inset shows the plot of α1 versus sgn(∇T )[Ma].
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FIG. 3: Quantitative analysis for the dimensionless droplet volume as a function of the Capillary number (Ca), for flow-rate
ratio φ = 1.0 (left Panel) and φ = 0.5 (right Panel). For the Marangoni number (Ma), we have chosen the reference case
Ma = 0 (red circles), and the value Ma = 1.26 for both negative (black squares) and positive (blue triangles) temperature
gradients ∇T . The two insets show the plot of the dimensionless droplet volume versus the rescaled Capillary number (Cam)
defined in (29), where a characteristic velocity vm is introduced to account for the thermocapillary effects.

stresses over the surface tension forces. We actually see that for the largest Ca analyzed the droplet sizes come
out to be comparable for all the cases, while at smaller Ca data with a positive (negative) temperature gradient
underestimate (overestimate) the “bare” data, i.e. those with zero temperature gradient. These facts said, we have
tested the possibility to design a quantitative guideline to predict the droplet size, once the bare Newtonian data
and the input thermocapillary parameters are known. Specifically, we checked whether a suitable redefinition of the
Capillary number in terms of the input thermocapillary parameters allows to rescale the results with positive/negative
temperature gradients on the bare Newtonian data. Notice that, once the temperature gradient and the Marangoni
number are assigned, a characteristic Marangoni velocity vm naturally follows, which scales linearly with Ma. With
such velocity at hands, one can define a rescaled Capillary number as

Cam =
ηc(vc + vm)

σ
. (29)
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Equation (29) takes into account the balance between the viscous forces and surface tension forces, including
also a modification coming from the Marangoni velocity vm, whose sign is positive/negative for positive/negative
temperature gradients. We have then considered the data in the main Panels of Fig. 3 and tested this rescaling.
Results are reported in the insets of Fig. 3. Remarkably, by using a unique value of the Marangoni velocity
vm = ±0.00035 lbu (for Ma = 1.26), we are able to rescale the thermocapillary data on the top of the bare Newtonian
data. This holds true for both the flow-rate ratios φ = 1.0 and φ = 0.5. We emphasize that we have not predicted
the value of the thermocapillary velocity vm, but just found it at a fixed Ma on the basis of the best collapse of the
data. Nevertheless, we notice that the value falls well in the ballpark of the values of steady migration velocities
that we have measured and reported in the benchmark tests described in Appendix A. We further checked if the
rescaling (29) performs well at changing the Marangoni number. In Fig. 4 we report the droplet size as a function of
Ca for φ = 1.0; different values of the Marangoni numbers are considered, for both positive and negative temperature
gradients. The rescaling velocity vm is now determined a priori, by a simple linear rescaling of the characteristic

velocity vm found for Ma = 1.26, i.e. vm = v
(0)
m Ma/1.26 (v

(0)
m = ±0.00035 lbu), hence no extra fitting parameters

have been introduced. As we can see from the figure, all the data nicely collapse on a single master curve, which is a
clear indication that the proposed argument is robust at changing the Marangoni number, at least up to Ma ≈ 1.
Finally, some points of discussion emerge, to connect the results of the present numerical simulations to experimental
data, especially with the aim of proposing a set of experimental suggestions. Experimental literature indeed exists
(see [13–16] and references therein), reporting on the motion of droplets and threads in confined channels with
thermocapillary forces. For example, the authors in [15] report on the experimental study of temperature-induced
migration of a bubble in a Hele-Shaw cell. In the experiments, the bubble velocity hits a maximum value ≃ 800µ
m/s, and it depends on the temperature gradient (≃ power supply of 65 − 300 mW), bubble radius (20 − 400µm)
and the wall thickness (22 and 37µm). Thus, in an experiment involving the motion of threads in microfluidic
T-junctions with characteristic flow-rates of the order of Qc,d ≈ 0.1µL/min [11, 75] and channel lengths of the order
of a few tens of micrometers (say H ≈ W ≈ 100µm), one expects velocities of the order of vc,d ≃ 100µm/s, thus the
thermocapillary effects are expected to show-up in sizeable effects.
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FIG. 4: Quantitative analysis for the dimensionless droplet volume as a function of the Capillary number (Ca), for different
values of the Marangoni number (Ma). Both negative and positive temperature gradients ∇T are considered. Left Panel: we
report the dimensionless droplet volume versus Ca for different values of Ma and ∇T . In all cases, the flow-rate ratio is kept
fixed to φ = 1.0. Right Panel: data in the left Panel are plotted against the rescaled Capillary number (Cam) defined in (29).
Notice that the value of the thermocapillary velocity vm is changing with Ma, and is determined by simply rescaling the value
of vm found for Ma = 1.26 in Fig. 3.

V. CONCLUSIONS

One of the main features that drives the interest in developing and exploiting microfluidic devices is the possibility
to control the process of droplet formation as a function of the flow and material properties [1–5]. The complex flows
in these devices are naturally accompanied by confinement, which has an important effect on the droplet break-up
process. In this context, droplet manipulation based on thermocapillary stresses has been demonstrated both
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experimentally and numerically (see [13, 14, 16–19, 23] and references therein). Thermocapillary stresses arise along
an interface because of a temperature dependency of the surface tension. Based on lattice Boltzmann simulations
with the “Shan-Chen” model for non-ideal binary mixtures [54–58], we have investigated the combined effects
of thermocapillarity and confinement on the dynamics and break-up of fluid threads in a microfluidic T-junction
geometry, where a dispersed phase is injected perpendicularly into a main channel containing a continuous flowing
phase which induces periodic formation of droplets. The numerical model for multicomponent fluids [55, 58] has
been first extended to include the effects of thermocapillarity, and then has been applied to the simulations in the
confined T-junction geometry, by focusing the attention on the operational regimes of “squeezing” and “dripping”
[25] with moderate flow-rate ratios. We have changed various parameters, including the temperature gradient ∇T ,
the Capillary number Ca, and the Marangoni number Ma, to get a quantitative understanding on how the thread
dynamics and subsequent break-up are affected by the thermocapillary forces. To this aim, we wish to stress the
crucial role played by numerical simulations, in allowing a systematic exploration of the importance of the relevant
free parameters in the model. With the data at Ma = 0 at hand (the “bare” data), we have indeed tested the
possibility to design guidelines to predict the droplet size for the cases where thermocapillary effects are present
(Ma 6= 0). Numerical results indicate that a suitable redefinition of the Capillary number based on a characteristic
thermocapillary velocity well accounts for the observed changes and allows to well rescale the thermocapillary data
on the top of the bare data. Remarkably, this simple argument is robust at changing both the flow-rate ratio and
the Marangoni number, up to Ma ≈ 1. Quantifying such rescaling properties at higher Ma sets interesting challenges
for the future: for the description of the thermocapillary migration of a droplet at very large Ma, previous studies
suggest non trivial dependencies on Ma (see [17] and references therein); our model is able to simulate flows at those
Marangoni numbers (see Appendix A), and therefore it is definitively warranted a systematic investigation, to verify
if the aforementioned rescaling holds and if the rescaling velocity is still linearly dependent on Ma or not [17]. Along
these lines, it is also definitively warranted a systematic exploration with fluids with dissimilar properties (viscosity
ratio and/or thermal conductivities) as well as comparisons with other existing LB methodologies for thermocapillary
flows [17–19, 23]. We actually expect our numerical work can stimulate further investigation and can also bring forth
experimental suggestions for droplet control in microfluidic geometries.

We kindly acknowledge funding from the European Research Council under the Europeans Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC Grant Agreement N. 279004. We acknowledge the computing hours
from ISCRA B project (COMPDROP), CINECA Italy. The authors acknowledge useful discussions with Dr. H. Liu.

Appendix A: Benchmark Tests: Droplet migration

To perform benchmark numerical simulations for the thermocapillary migration, we choose a two dimensional (2D)
set-up. Results are available from the literature [76–80], concerning the motion of a droplet with radius R in steady
flows driven by thermocapillary effects in three dimensions (3D). As for the 2D case, the corresponding solution is
straightforward to obtain, and details are reported in the Appendix B. The choice of a 2D set-up was initially done
to easily approach data at larger resolution, to appreciate the convergence of the numerical results to the continuum
limit predictions. Specifically, one can solve the problem of thermocapillary motion of a cylindrical droplet subject to
a uniform temperature gradient in the absence of gravity. Assuming negligible advective effects on the momentum and
heat transports, one can determine the constant speed vs of translation in the direction of the temperature gradient

vs =
∆σ2R

8(ηd + ηc)
. (A1)

In the above equation, ∆σ2R = ∆σ2R(κ
(T )
c , κ

(T )
d ) represents the variation in the surface tension between the rear and

the front of the moving droplet, and the dependence from κ
(T )
c , κ

(T )
d comes from the fact that the temperature at the

interface is fixed by the ratio of the thermal conductivities (see Appendix B for details). Notice that for the case of a
droplet, the Marangoni number is defined as

Ma =
2R∆σ2R

κ
(T )
c ηc

. (A2)

We performed numerical simulations in a 2D box with size Lx × Ly = 200× 640 lattice cells, with two walls located
at y = 0 and y = Ly. Periodic boundary conditions are applied in the x direction. We performed different numerical
tests, at varying the droplet size and the temperature gradient. To start with, in figure 5 we report the evolution
in time of the center of mass of a droplet (relative to its initial value) steadily translating in a constant temperature
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FIG. 5: We report the evolution in time of the center of mass of a droplet (relative to its initial value) steadily translating in a
temperature gradient. The droplet radius R is resolved with a variable number of lattice cells, and the temperature gradient is
consequently adjusted to match the same Marangoni number Ma = 1.25. Other simulation details are described in the text.

gradient. The droplet radius is resolved with a variable number of lattice cells, and the temperature gradient is
consequently adjusted to match the same Marangoni number, Ma = 1.25. As we can see, above R ≈ 15 lattice cells,
results show convergence. These converged results are then compared against their theoetical predictions. Specifically,
from now on, we report details on a case with droplet radius R = 16 lattice cells placed in the middle of the box,
while the temperature of the upper and lower walls are fixed to be Tup = −0.7 lbu and Tdown = 0.7 lbu, respectively.

We first consider a case with equal thermal conductivities inside and outside the droplet, κ
(T )
c = κ

(T )
d = 0.166 lbu

and same viscosity ηc = ηd = 0.28 lbu. The tipical velocity vector profiles in the reference frame of the moving
droplet are shown in Fig. 6. The velocity vectors reveal recirculations, and the flow pattern is also compared with
the analytical solution (right Panel) described in Appendix B. Although not used in the numerical simulations with
the T-Junctions, the model is capable of handling also higher Marangoni numbers. Some velocity vectors profiles
are reported in Fig. 7. Further quantitative check is offered in Fig. 8, where we analyze the steady velocity vs as a
function of the parameter GT in (22). Specifically, the constant GT in (22) has been changed from 0.0 to 1.0. The
inset of the left Panel reports the steady velocity (in lbu) that is developed due to the thermocapillary migration at
changing GT . Notice that for the set of parameters chosen, the Marangoni number - hence and the steady velocity
- are well fitted with a linear behaviour, Ma ≈ 2.52GT (vs ≈ 0.0008GT ). The right Panel reports a direct check of
Eq. (A1): the black line stands for the rhs of Eq. (A1), with the jump in surface tension ∆σ2R estimated from the
modified pressure tensor described in Section IIA. The points represent the steady velocity of migration obtained
from the numerical simulations. To complete our benchmarking tests, the analysis reported in the right Panel of
Fig. 8 is extended to fluids with dissimilar thermal conductivities. Results are reported in Fig. 9. Overall, Figs. 8.-9
reveal that the agreement between the measured velocity and the expected one is satisfactory, although the measured
velocity tends to slightly underestimate the rhs of Eq. (A1) for the largest Ma. This echoes the results of Liu et al.

[17], in that the thermocapillary velocity normalized by the corresponding hydrodynamic prediction (valid at small
Ma) shows a decreasing behaviour in terms of Ma, especially pronounced for Ma above a few units.
To conclude, we remark that in all the tests that we run, we noticed that a characteristic droplet diameter of the order
of a few tens of grid points is enough to reproduce well the theoretical prediction of sharp interface hydrodynamics.
Since 3D numerical simulations are affordable with such resolutions, this fact is instrumental to up-scale the problem
and perform full 3D simulations in a confined T-junction in presence of thermocapillarity, as described in section III.

Appendix B: Steady thermocapillary migration of a cylindrical droplet

In this appendix we provide the exact solution for the problem of a cylindrical droplet moving under the influence
of thermocapillarity in a constant temperature gradient. Following [76], dealing with the case of a spherical drop,
we employ a series of assumptions. First, we consider the system to be steady, and also assume that the non-linear
effects on the momentum and heat transport are negligible, i.e. the Stokes flow and the Laplace equations hold for
the velocity and temperature, respectively. The droplet then moves at a constant velocity vs in the direction (x) of
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FIG. 6: The velocity profiles in the reference frame of the moving droplet steadily translating in a temperature gradient.
The droplet moves from top to bottom. Results from numerical simulations at Ma = 5.0 (left Panel) are compared with the
analytical profiles (right Panel, See Appendix B).
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FIG. 7: The velocity profiles in the reference frame of the moving droplet steadily translating in a temperature gradient at
changing the Marangoni number Ma: Ma = 20 (left Panel); Ma = 50 (right Panel).

the temperature gradient. The droplet is centered at the origin, and the temperature profile far away from the droplet
is set by T∞ = T0 + x(∆T )/R. We also assume a negligible deformation for the droplet and consider an unperturbed
cylindrical shape. We then use a cylindrical coordinates system (r, θ) taken from the center of the droplet. The
equations of continuity are expressed as

1

r

∂(rur,i)

∂r
+

1

r

∂uθ,i

∂θ
= 0 i = c, d. (B1)

The steady Stokes and Laplace equations for both the continuous and dispersed phases read

− ∂Pi

∂r
+ ηi
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∂
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2

r2
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∂θ

}

= 0 i = c, d (B3)
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FIG. 8: Left Panel: we report the Marangoni number (Ma) (27) as a function of the parameter GT (22). The Marangoni number
is computed from the steady velocity of migration of a droplet in a constant temperature gradient described in section A. Inset:
we report the steady velocity (A1). Right Panel: the black line stands for the rhs of Eq. (A1), with the jump in surface tension
∆σ2R estimated from the modified pressure tensor, as described in Section IIA. The points represent the steady velocity of
migration obtained from the numerical simulations.
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FIG. 9: The analysis shown in the right Panel of Fig. 8 is extended to fluids with dissimilar thermal conductivities: κ
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+
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∂2Ti

∂θ2

}

= 0 i = c, d. (B4)

At the large distances from the drop, we must have

ur,c
r→∞∼ −vs cos θ, uθ,c

r→∞∼ vs sin θ, Pc
r→∞∼ P∞,

(T − T0)R

(∆T )

r→∞∼ r cos θ, (B5)

where P∞ denotes the pressure far from the drop. At the drop surface r = R, we need to impose the condition of
zero normal velocity and the continuity of the tangential velocity component and the tangential stress

ur,c = ur,d = 0, (B6)

uθ,c = uθ,d, (B7)
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ηc

(

r
∂(uθ,c/r)

∂r
+

1

r

∂ur,c

∂θ

)

− ηd

(

r
∂(uθ,d/r)

∂r
+

1

r

∂ur,d

∂θ

)

=

(

− dσ

dT

)

1

r

∂Tc

∂θ
(B8)

where σ denotes the surface tension. These three conditions are supplemented with the continuity of temperature
and the continuity of the heat flux, expressed as

Tc = Td, (B9)

κ(T )
c

∂Tc

∂r
= κ

(T )
d

∂Td

∂r
. (B10)

We assume that the derivative of the surface tension σ with respect to the temperature, −dσ/dT , is constant. Since
there is no gravity acceleration, the drag force acting on the drop is zero, indicating that no stokeslet is involved in
the system [76] and the velocity vector field outside the drop is irrotational, and thus identified from the governing
Eqs. (B1), (B2) and (B3) and the boundary conditions (B5)

ur,c = −vs

(

1− R2

r2

)

cos θ, uθ,c = vs

(

1 +
R2

r2

)

sin θ, Pc = P∞. (B11)

By neglecting the solution with singularity at the origin, the velocity components in the dispersed phase inside the
droplet satisfying the above boundary conditions are

ur,d = vs

(

1− r2

R2

)

cos θ, uθ,d = vs

(

−1 +
3r2

R2

)

sin θ, Pd = P∞ +
σ0

R
− 8ηdvsr cos θ

R2
(B12)

where σ0 denotes the surface tension at the temperature of T = T0. The solutions to (B4) which satisfy the temperature
conditions are

Tc = T0 + (∆T )

(

r

R
+

(κ
(T )
c − κ

(T )
d )R

(κ
(T )
c + κ

(T )
d )r

)

cos θ, Td = T0 +
2(∆T )κ

(T )
c r

(κ
(T )
c + κ

(T )
d )R

cos θ. (B13)

Finally, substituting (B11), (B12) and (B13) into the tangential stress balance condition (B8), we obtain the transla-
tional speed of the drop

vs =
κ
(T )
c (∆T )

2(ηc + ηd)(κ
(T )
c + κ

(T )
d )

(

− dσ

dT

)

. (B14)

Looking at Eqs. (B13) and (B14), we can rewrite the steady velocity as

vs =
∆σ2R

8(ηc + ηd)
(B15)

∆σ2R = ∆σ2R(κ
(T )
c , κ

(T )
d ) =

(

− dσ

dT

)

4κ
(T )
c (∆T )

(κ
(T )
c + κ

(T )
d )

=

(

− dσ

dT

)

(Tfront − Trear) (B16)

where ∆σ2R represents the variation in the surface tension between the rear and the front of the moving droplet.
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