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Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and

lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure

of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of

such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data

from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis:

(1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that

will be used to extract cosmological information from the cross-correlation measurements. Relative to

previous lensing maps made from the same CMB observations, we have implemented techniques to

remove contamination from the thermal Sunyaev Zel’dovich effect, enabling the extraction of cosmological

information from smaller angular scales of the cross-correlation measurements than in previous analyses

with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data,

and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the

expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We

find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a

constraint on S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωm=0.3
p

at the few percent level, providing a powerful consistency check for the

DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding

that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration

amplitude at the 5% to 10% level.

DOI: 10.1103/PhysRevD.107.023529

I. INTRODUCTION

Cross-correlations of galaxy surveys with overlapping
measurements of cosmic microwave background (CMB)
lensing offer a powerful way to probe the large-scale
structure (LSS) of the Universe. Galaxy imaging surveys
use measurements of the positions of galaxies and of the
gravitational shearing of galaxy images to trace the LSS.
For current imaging surveys [1–3], these measurements
typically become less sensitive at z≳ 1, as galaxies become
more difficult to detect and characterize at higher redshifts.
Gravitational lensing of the CMB probes the LSS across a
broad range of redshift, and is most sensitive to structures at
z ∼ 2. Cross-correlations of galaxy surveys with CMB
lensing can exploit this sensitivity to achieve tighter
constraints on the high-redshift Universe than with galaxy
surveys alone [e.g., [4–11]]. CMB lensing also offers a
probe of LSS that shares (almost) no sources of systematic
error with measurements from galaxy surveys. For in-
stance, unlike galaxies used to measure gravitational
lensing, the redshift of the CMB is precisely known.
CMB lensing is also not impacted by effects such as
intrinsic alignments. Consequently, cross-correlations of
galaxy and CMB lensing are expected to offer especially
robust probes of LSS [e.g., [12,13]]. This is an exciting
prospect since control of systematic uncertainties in LSS
surveys has become increasingly important as statistical
uncertainties have continued to decrease.

The Dark Energy Survey [DES, [1]] and the South Pole
Telescope [SPT, [14]] provide state-of-the-art galaxy and
CMB datasets, respectively, that overlap across a large area
on the sky, and are therefore very well suited to cross-
correlation analyses. DES has recently completed a six year
survey of roughly 5; 000 deg2, with cosmological con-
straints from the first three years (Y3) of data presented in
[15]. The SPT-SZ survey was completed in 2011, and

provides roughly 2; 500 deg2 of high-sensitivity and high-
angular resolution CMB data that overlaps with DES
observations. At the same time, Planck provides maps of

CMB lensing that overlap with the full 5; 000 deg2 DES
survey region, albeit with higher noise and lower angular
resolution than SPT-SZ [16].
Several recent analyses have used cross-correlations

between earlier DES data and SPT-SZ measurements of
CMB lensing to constrain cosmology [e.g., [4–6,17]].
In particular, [17] presented a joint analysis of cross-
correlations between first year (Y1) data from DES and
CMB lensing measurements from SPT-SZ and Planck,
using these correlations to constrain cosmological param-
eters, and to test for consistency between the galaxy survey
and CMB lensing measurements. In that work, we analyzed
six two-point functions between the galaxy density, galaxy
lensing, and CMB lensing fields; we refer to this combi-
nation as 6 × 2pt. When leaving out the CMB lensing
autocorrelation, we refer to the remaining combination of
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probes as 5 × 2pt; the combination of two-point functions

between galaxy density and galaxy lensing is referred to as

3 × 2pt. A challenge for the 5 × 2pt analysis presented

in [17] was contamination of the CMB lensing maps by the

thermal Sunyaev-Zel’dovich (tSZ) effect. This contamina-

tion prevented us from using the two-point function

measurements at small scales, resulting in a significant

reduction in signal-to-noise ratio: 19.9 to 9.9 and 10.8 to

6.8 for the galaxy-CMB lensing and shear-CMB lensing

correlations respectively [5,6].
In this work, we present an updated CMB lensing map as

well as the modeling framework and analysis choices that
will be applied to the forthcoming analysis of cross-
correlations between Year 3 data from DES and CMB
lensing maps from SPT-SZ and Planck. The CMB lensing
map presented here is constructed in a way that removes
contamination from the tSZ, enabling a much larger
fraction of the measured signal (and in particular the
information at small angular scales) to be used to constrain
cosmology. We apply several tests to the new CMB lensing
maps to show that they are free from significant biases.
The modeling framework that we present is similar to

that developed in [18], but incorporates several improve-
ments. These include new models for intrinsic alignments,
the impact of lensing magnification of the galaxy sample,
modeling of nonlinear galaxy bias, and the use of lensing
ratios. We additionally describe the estimation of a covari-
ance matrix for the cross-correlation measurements, and
perform detailed validation of this estimate. Finally, we
determine a set of analysis choices, that when applied to
simulated data designed to replicate the real DES, SPT-SZ
and Planck data, yield robust and unbiased constraints on
cosmological models. The methodology developed here
will be applied to data in a companion paper.
The highest signal-to-noise measurement of the CMB

lensing power spectrum to date is from the full-sky Planck
mission [16]. Therefore, as in [17], we plan to present joint
constraints that combine the Planck lensing power spec-
trum measurements with the 5 × 2pt measurements pre-
sented here. As we demonstrate below, since Planck covers
the full sky and since the CMB lensing power spectrum is
primarily sensitive to higher redshifts than the 5 × 2pt
combination, covariance between the two is negligible. We
therefore consider the CMB lensing auto-spectrum as an
external probe, and focus the methodological developments
in this paper entirely on 5 × 2pt.
The paper is organized as follows. In Sec. II, we present

the methodology used to construct the CMB lensing map
from SPT and Planck data, as well as tests of these maps.
We quantify the noise level in the maps, a key ingredient for
determining the covariance of the cross-correlation mea-
surements. In Sec. III we present our models for the
correlations between these maps and DES galaxies and
shears. In Sec. IV we describe our procedure for fitting
the theoretical models to the two-point measurements,

including our modeling and validation for the covariance
matrix. In Sec. V, we describe our procedure for selecting
parts of the full data vector (i.e., the correlation measure-
ments) for which we are sufficiently certain of the accuracy
of our model that we can use the measurements to constrain
cosmological parameters. We present forecasts for cosmo-
logical constraints in Sec. VI. We conclude in Sec. VII.

II. tSZ-FREE CMB LENSING MAP

We begin by describing the data and methodology used
to generate a CMB lensing map from SPT-SZ and Planck
data that is not biased by contamination from the tSZ effect.

A. Data

1. SPT-SZ temperature map

The SPT is a millimeter/submillimeter telescope
with a 10 m aperture that is located at the National
Science Foundation Amundsen-Scott South Pole station
in Antarctica. The SPT data used in this analysis is the same
as used in [19–21], namely data from the 2500 deg2 SPT-
SZ survey, which was conducted between 2008 and 2011.
While the SPT-SZ camera had three frequency channels,
we primarily focus on the 150 GHz data since its noise
level (∼18 μK-arcmin) is lower than that of the 90 and
220 GHz data (40 and 70 μK-arcmin, respectively) [22].
We start with the same data products as in [20] and
reprocess the data to optimize for cross-correlation analy-
ses. In particular, we reduce the number of masked
regions

1
around clusters before performing the lensing

reconstruction procedure, since the tSZ-nulling method
will eliminate the tSZ bias. The nulling procedure is
described in Sec. II D 2.

2. Planck data

The Planck satellite was launched in 2009 by the
European Space agency, with the goal of making clean
maps of the CMB by observing the sky at nine frequencies
ranging from 30 to 857 GHz [23,24]. We rely on two
different temperature maps from Planck:

(i) Planck 143 GHz temperature map. By combining
the Planck data and SPT-SZ data over the same
footprint, we can improve signal-to-noise by recov-
ering the modes that are removed in the SPT-SZ data
due to filtering. To this end, we use the Planck
143 GHz full mission temperature map from the
2018 data release [25].

2
Additionally, we use the

300 full focal plane (FFP10) full mission noise

1
In [20], clusters detected with S/N greater than 5 in [22] were

masked. In this study, we only mask clusters detected above S/N
10 in the temperature map before performing the lensing
reconstruction.

2
The maps are publicly available from the Planck Legacy

Archive: https://pla.esac.esa.int.
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realizations for the purposes of computing the Planck
noise power. We describe the process of combining
the SPT-SZ 150 GHz and Planck 143 GHz temper-
ature data to improve signal-to-noise in Sec. II C.

(ii) Planck SMICA tSZ-nulled (SMICAnoSZ) temper-
ature map. Our reconstruction of the CMB lensing
field from the CMB temperature data relies on
the quadratic estimator [26], which estimates the
lensing field using two (differently filtered) temper-
ature maps, or “legs.” In [20], the minimum-variance
combination of SPT 150 GHz and Planck 143 GHz
was used for both legs.
In this study, we replace one of the legs with a

lower-resolution and higher-noise, but tSZ-cleaned
temperature map generated from Planck data. Spe-
cifically, we use Planck maps generated with the
spectral matching independent component analysis
(SMICA) algorithm [27,28]. SMICA takes the linear
combinations of all three LFI and six HFI Planck
frequency channels from 30 to 857 GHz [29] to
produce the minimum-variance map of the CMB.
The tSZ-free variant of this map, SMICAnoSZ,
exploits the known frequency dependence of the
tSZ signal to remove the tSZ signal, in exchange for
a slight increase in the noise and potential bias from
the cosmic infrared background (CIB).

3
Similar

approaches have been used to make tSZ-nulled
CMB maps in other studies [31,32]. This temper-
ature map is also the input for the SMICAnoSZ
variant of the lensing map released by the Planck
collaboration.

B. CMB simulations

Simulations of the CMB data are necessary to compute
quantities such as the response function,mean-field bias, and
noise bias terms that are used to produce normalized and
debiased CMB lensing maps and CMB lensing auto-spectra
[16,20,33,34]. We begin by generating unlensed CMB
realizations at the Planck 2018 best-fit cosmology [35] with
Nside ¼ 8192, and also Gaussian realizations of the lensing
potential, which we use to deflect the unlensed CMB maps
using the LENSPIX package [36].
We also simulate contributions to the sky from secondary

(i.e., non-CMB) sources of emission. We split these
contributions into Gaussian and Poisson components.
For the Gaussian component, we largely follow the
simulation pipeline that was used in [20]: we take the
best-fit model power spectrum of thermal SZ, kinematic
SZ, cosmic infrared background (CIB), and radio sources
from [37] and generate Gaussian realizations from those

power spectra.
4
For the Poisson term, we place detected

point sources with their measured fluxes at their observed
locations.
We generate 150 full-sky realizations of lensed CMB and

Gaussian secondary realizations, and extract two patches
at the opposite hemispheres. After extracting two SPT-SZ-
sized patches from each realization—for a total of 300
simulations of the SPT-SZ survey—we add clusters
detected above 5σ in [22] and point sources with fluxes
between 6.4 and 50 mJy in 150 GHz [38] and place them at
their observed locations. This ensures that these sources are
at the same locations in all of the realizations, which is
important for computing the mean-field bias after recon-
structing the lensing map.
From the sum of the simulated lensed CMB and fore-

ground maps, we generate mock SPT-SZ and Planck maps.
For SPT-SZ, we pass the extracted maps through a mock-
observing pipeline. As described in [20,21], we compare the
outputs of the 300 realizations from the mock observations
with the input maps to compute the filter transfer function.
We then add noise realizations obtained using the half-
difference technique, where half of the observations are
multiplied with a minus sign, such that when the sum of all
the observations are taken, the sky signal is nulled and noise
is left. For Planck 143 GHz mocks, we simply convolve the
input sky maps with the 143 GHz channel beam,

5
and add

the noise realizations from the FFP10 simulations.
Generating simulated maps corresponding to the

SMICAnoSZ maps is somewhat more involved because
these use data from nine frequency channels. Generating
foreground models across these bands would require
detailed knowledge of the foreground emission. We take
a simplified approach, using the mock 143 GHz channel
map with modified amplitudes for the tSZ and CIB
components. kSZ bias is expected to be subdominant (even
after combining multiple frequency channels) given the
signal-to-noise of our data, the lmax used when construct-
ing the lensing maps, and the smoothing that we apply to
the final lensing maps [39]. The sparsity of radio sources
also means that the bias from this component is expected to
be negligible [40]. The tSZ component is simply removed
since it is not present in the SMICAnoSZ maps. To modify
the amplitude of the CIB component, we first generate
maps of the CIB at all of the frequency channels used to
construct the SMICAnoSZ map by scaling the Gaussian
CIB realizations at 150 GHz, using the scaling relation
based on the CIB map amplitudes in [41] at low frequencies
and maps at [42] at higher frequencies. The CIB maps

3
A similar result has been obtained by [30] using their

LGMCA algorithm based on the blind source separation
technique.

4
As noted in [18], these simulations using Gaussian realiza-

tions are not sufficient to asses biases coming from high-order
correlations, however they are sufficient to estimate the noise-
levels and calculating quantities such as the lensing response
function.

5
HFI_RIMO_R3.00.FITS available from the Planck Leg-

acy Archive.
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generated this way are then passed through the
SMICAnoSZ weights,

6
to generate a mock SMICAnoSZ

CIB map. The mock CIB map used in the analysis is finally
generated by multiplying the Gaussian 150 GHz CIB map
by the multipole-dependent ratio of power spectra of the
mock SMICAnoSZ CIB map and the Gaussian 150 GHz
CIB map.

C. Combining SPT-SZ and Planck data

In order to capture modes in the SPT-SZ temperature
map that are lost due to filtering and to improve the signal-
to-noise of the CMB observations, we combine the SPT-SZ
150 GHz and Planck 143 GHz maps using inverse variance
weighting. Planck data are used to fill in the spherical
harmonic modes l < 500 as well as modes with m < 250.
Modes where both SPT-SZ and Planck are noise dominated
(l > 1600 and m < 250) are filtered out.
Starting with the 300 noise realizations, we compute the

average 2D noise power spectrum hjNlmj2i, where Nlm

are the coefficients of the spherical harmonic decompo-
sition of the noise map. The SPT-SZ 150 GHz and Planck
143 GHz maps are then combined (we denote the
combined map with the superscript x) using the
same inverse noise weighted combining technique

7
as

used in [20,21,43]:

Tx
lm ¼ wSPT

lm

wSPT
lm þ wPlanck

lm

TSPT
lm

T SPT
lm

þ wPlanck
lm

wSPT
lm þ wPlanck

lm

TPlanck
lm

bPlanck
l

; ð1Þ

where Tlm are the temperature spherical harmonic
coefficients and wlm are the weights per mode, which

are taken to be wlm ¼ 1=hjNlmj2i. T SPT
lm ; bPlanck

l
are the

SPT-SZ transfer function (a combination of the beam
and filter transfer function) and the Planck beam, respec-
tively. Once the high-resolution SPT-SZþPlanck maps
are produced, point sources detected by SPT-SZ with flux
F in the range 6.4 < F < 200 mJy (6.4 < F < 50 mJy
for simulations) are inpainted using the Gaussian
constrained inpainting method [20,44,45] out to 3 and
5 arcminutes for sources below and above 50 mJy
respectively.
We similarly compute the combined noise power using:

Nx
lm ¼ wSPT

lm

wSPT
lm þ wPlanck

lm

NSPT
lm

T SPT
lm

þ wPlanck
lm

wSPT
lm þ wPlanck

lm

NPlanck
lm

bPlanck
l

: ð2Þ

D. Construction of an unbiased CMB lensing

map from SPT and Planck data

1. Bias from the thermal Sunyaev-Zel’dovich effect

The tSZ effect induces a frequency-dependent signal into
CMB temperature maps that is correlated with the large-
scale structure. As shown in [18,46], this signal can
propagate through the standard quadratic estimator used
to estimate CMB lensing, resulting in a bias to correlations
between CMB lensing maps and galaxies or galaxy lensing.
In principle, since the frequency-dependence of the tSZ is
known, one could combine multi-frequency CMB obser-
vations in a way that nulls the contribution from tSZ, but
preserves the underlying CMB signal. However, for the
noise levels of SPT-SZ data, carrying out this procedure
results in a tSZ-cleaned map that has significantly higher
noise than the original tSZ-biased maps. Since the noise
level in the reconstructed lensing map is proportional to the
temperature noise level squared, this results in a significant
degradation in the signal-to-noise of the CMB lensing cross-
correlations.
Several approaches have been proposed in the

literature to remove foreground biases in CMB lensing
with minimal noise penalty, ranging from using a polari-
zation-only lensing reconstruction [47], to using a lensing
reconstruction estimator based on shear instead of con-
vergence [48]. The approach that we adopt in this work is
based on using a modified quadratic estimator [9,46] with
two maps, only one of which has been tSZ-cleaned. In
effect, by only cleaning one of the maps, the tSZ bias can be
removed from the final lensing map, without the high noise
penalty incurred from cleaning both maps entering the
quadratic estimator. Here we implement the same meth-
odology as [9], but without flat-sky approximations.

2. tSZ-cleaned lensing reconstruction

Prior to running the lensing reconstruction procedure,
we filter the temperature maps with the filter F lm ¼
ðCTT

l
þ hjNlmj2iÞ−1, such that T̄lm ¼ F lmTlm ¼ Tlm=

ðCTT
l

þ hjNlmj2iÞ for modes in the range 100 < l <

4000 and zero otherwise [20,33,34]. Note here that we

use the 1D power spectrum for the signal component CTT
l
,

but use a 2D filtering noise spectrum hjNlmj2i to account
for possible anisotropies in the noise. The filtering function

is also different for Tx and TSMICAnoSZ since the amplitude
of foreground residual and the noise level are different for
the two input maps. We then use the quadratic estimator:

ϕ̄lm ¼ ð−1ÞM
2

X

l1m1l2m2

�

l1 l2 L

−m1 −m2 M

�

×W
ϕ
l1l2L

T̄x
l1m1

T̄SMICAnosz
l2m2

; ð3Þ

where the term in brackets is the Wigner-3j symbol, and

W
ϕ
l1l2L

is the weight function defined as

6
The weights are publicly available as part of the SMICA

weight propagation code at the Planck legacy archive.
7
We increase the number of simulations from 200 to 300

realizations in the present study. The number is limited by the
number of FFP10 noise realizations available.
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W
ϕ
l1l2L

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2l1 þ 1Þð2l2 þ 1Þð2Lþ 1Þ
4π

r

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þl1ðl1 þ 1Þ
p

× CTT
l1

�

1þ ð−1Þl1þl2þL

2

��

l1 l2 L

1 0 −1

�

þ ðl1 ↔ l2Þ; ð4Þ

where the last term implies an identical term with l1

and l2 flipped. Equation (3) requires two temperature
maps (i.e., the “legs”). Here we use the high resolution

SPT-SZþPlanck temperature map T̄x
lm and foreground

cleaned temperature map T̄SMICAnoSZ
lm (see Fig. 1). The

CMB lensing maps of [20] could be effectively recovered
8

by replacing the T̄SMICAnoSZ
lm with T̄x

lm. If instead we were to

use the tSZ-free maps for both legs of the estimator

(i.e., using T̄SMICAnoSZ
lm for both), the resulting lensing

map would also be tSZ-free, but would have higher noise

owing to the higher noise levels of the T̄SMICAnoSZ
lm maps.

References [9,46] have shown that the effect of the tSZ bias
can be reduced with a small penalty in signal-to-noise ratio
using this technique. We note that the original estimator of
[46] used a somewhat suboptimal version of Eq. (3) that
was asymmetric in its use of the tSZ-free and tSZ con-
taminated maps, while [9] introduced a symmetrized
version. In principle, one could form a minimum variance
combination of the two terms contributing to Eq. (3).
However, we do not take this approach because it com-
plicates the calculation of the estimator and results in
insignificant reduction in noise.
We convert the lensing potential map to lensing con-

vergence, κ, after subtracting the mean field ϕ̄MF
LM and

applying the lensing response function R
ϕ
L:

κ̂LM ¼ LðLþ 1Þ
2

ðRϕ
LÞ−1ðϕ̄LM − ϕ̄MF

LMÞ: ð5Þ

Several approaches to obtaining the lensing response
function have been proposed. Here we largely follow [20]
in that we use the cross-spectrum with the input simulation:

R
ϕ
L ¼ hCϕ̄ϕ�

L i
hCϕϕ�

L i
; ð6Þ

where ϕ̄ is the output reconstructed lensing map, the
unbarred ϕ are the simulation input lensing potential maps,
and the average is taken over the 300 simulation realiza-
tions. Our final reconstructed CMB lensing map is shown
in Fig. 2. The calculated noise power spectrum of the
lensing map is shown in Fig. 3.

3. Validation of the CMB lensing map

As a test of the level of tSZ contamination in the new
CMB lensing maps, we show stacks of the lensing maps at
the locations of tSZ-selected clusters from [22] in Fig. 4.
The CMB cluster lensing signal is expected to be very
small in SPT-SZ data [49], so we do not expect to see a
significant signal at the cluster location. However, as a
result of tSZ bias, a significant artefact at the cluster
location does appear for the map constructed using
the SPTþPlanck temperature maps for both legs of the
quadratic estimator (left panel). In contrast, when using
the SMICAnosz map for one leg of the estimator, no

FIG. 1. Upper: diagram illustrating the input temperature maps
used to construct the two different lensing maps utilized in this
analysis. The operation “QE” (quadratic estimator) is the lensing
reconstruction step described in Sec. II D 2. Lower: illustration of
the sky coverage and lensing maps for the North (Planck) and
South (SPTþPlanck) patches. The red line indicates the cut in
declination (dec ¼ −40°) that divides the two regions. The union
of the DES mask used in the DES Y3 analysis and the Planck
lensing map mask is applied.

8
This will not be a perfect recovery since analysis choices have

been changed slightly including the difference in simulations and
masking choices.
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significant artefact appears at the cluster location. This
suggests that the maps produced in this analysis have
reduced the level of tSZ bias. Note that there is also some
difference in the noise levels of the two maps, as seen also
in Fig. 3.
We next measure the CMB lensing auto-spectrum and

check that it is consistent with that from other studies
and theoretical predictions. The formulation of the auto-
spectrum calculation is described in Appendix A, and the
results are shown in Fig. 5. We find that our spectrum is

highly consistent with other measurements, and we find
no apparent signatures of foreground contamination.
Varying the lmax used in the analysis also provides a
test of foreground contamination [50]; we find no
evidence for significant changes in the inferred lensing
power spectrum when setting lmax ¼ 2500. We addition-
ally note that due to the inpainting procedure that we
carry out prior to the lensing reconstruction, the mask
becomes less complex, and the mean-field becomes better
characterized, which allows us to reach lower L modes
than in [20].
The procedure of nulling the tSZ in one of the input

temperature maps to the quadratic estimator could
amplify the CIB in that map (unless the CIB is explicitly
nulled, which would result in an additional noise
penalty). This could in turn increase the level of CIB

FIG. 2. CMB convergence map generated using the tSZ nulling method described in the text. The map has been smoothed with a
Gaussian beam with FWHM ¼ 600 for visualization purposes.

FIG. 3. Noise levels estimated from simulations for
SPTþPlanck/SMICAnoSZ (teal) and Planck (orange) over the
patch of sky that will be used to measure the cross-correlations.
Also shown are the noise levels from [20] (light gray) and an
analytical prediction for the convergence signal (black). The
procedures described in Sec. II D eliminate tSZ contamination
from the lensing maps at the cost of a small increase in the map
noise (teal vs. light gray).

FIG. 4. Stacks of CMB lensing maps at the locations of clusters

from [22] with signal-to-noise in the range 5 < S=N < 10.
Without tSZ nulling (left panel), the stacked CMB lensing
map shows a strong feature at the cluster center due to tSZ
contamination of the lensing estimator. With tSZ nulling (right
panel), the stacked map shows no strong features at the cluster
center, as expected since the cluster lensing signal is weak.
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bias in the resultant CMB lensing map. To test whether
CIB contamination is significantly impacting our
CMB lensing map, we cross-correlate the map with
the Planck map at 545 GHz, which is dominated by
the CIB. Since the CIB traces large-scale structure, we
expect to detect a nonzero correlation (see also
Refs. [42,51–55]). We therefore compare our measured
κ-CIB correlation with other measurements and predic-
tions from simulations that are known to be uncontami-
nated by CIB. The rationale behind this test is that any
residual CIB contamination of our new lensing maps
will correlate strongly with the CIB, causing the cross-
correlation measurement to depart strongly from the
predictions of the simulations and previous measure-
ments. To this end, we compare our measurements with
(i) cross-correlation between CIB and the minimum-
variance lensing map from SMICA (which has a
lower input lmax cut of l < 2048 in the lensing
reconstruction and is therefore less affected by the
CIB bias), (ii) cross-correlation between CIB and
CMB lensing map of [56] based on the polarization data
from SPTpol (since the polarization of CIB is known to
be negligible, the bias is expected to be small), and
finally (iii) cross-correlation between CIB and pure CMB
lensing in simulations [40].
The results of the CIB cross-correlation test are shown

in Fig. 6, where it can be seen that our cross-correlation
measurement is consistent with all the external measure-
ments. This suggests that CIB contamination is not
significantly biasing our lensing reconstruction.

E. SMICAnoSZ lensing map

Since the SPT-SZ data only reaches up to Dec ¼ −40°,
we cover the remaining DES Y3 footprint using the Planck
lensing map generated from the SMICA-noSZ temperature
map,

9
as shown in Fig. 1. To simplify the nomenclature of

the CMB lensing maps used in this analysis, we refer to the
SPT-SZþPlanck/SMICAnoSZ map as the “SPTþPlanck
lensing map,” and the SMICAnoSZ lensing map as the
“Planck lensing map” hereafter.

III. MODELING THE CMB LENSING

CROSS-CORRELATION FUNCTIONS

The previous section described the construction of a
CMB lensing map optimized for cross-correlation with
DES data. In this section, we describe our model for the
correlations between DES galaxies, galaxy shears and
CMB lensing. As mentioned in Sec. I, our modeling
framework is largely based on the DES Y1 analysis
described in [18], but with several updates to match the
analysis choices of the DES Y3 cosmology analysis [57].
We therefore only outline the essential modeling compo-
nents here and refer the readers to the two papers above for
details.
For the remainder of the paper, we use δg, γ and κCMB to

refer to the three large-scale structure tracers of interest in
this work: galaxy position, galaxy weak lensing (or shear),
and CMB lensing convergence, respectively. We will also

FIG. 5. The power spectrum of the convergence map con-
structed from the combination of SPT and Planck (blue points).
Shown for reference are the points from [16] (gray squares) and
points from [20] (gray open circles), and the analytical con-
vergence power spectrum calculated using the fiducial cosmol-
ogy assumed in our analysis (black solid line). The inset shows
the power spectrum in the high-L range, where possible con-
tamination from the tSZ would show most strongly.

FIG. 6. Cross-correlation between various CMB lensing maps
and the 545 GHz map from [42], which is dominated by CIB. The
correlation with the SPTþPlanck/SMICAnoSZ lensing map
(blue) produced in this analysis is consistent with other mea-
surements and with an external simulation (gray curve), dem-
onstrating that this lensing map is not significantly contaminated
by CIB.

9
Publicly available at https://pla.esac.esa.int/.
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refer to the galaxies that are used for the galaxy density
tracers as lens galaxies, and the galaxies that have weak
lensing shear measurements as the source galaxies.
Ultimately, we will consider the full set of six two-point
correlation functions between these three fields. Modeling
of correlations between δg and γ for DES Y3 data is

described in detail in [57], and we refer readers to that work
for more details. We refer the readers to [16] for details of
the modeling of the Planck CMB lensing auto-spectrum.

A. Overview of DES galaxy samples

Unlike analyses with DES Y1 data, the cosmological
analyses of DES Y3 data use two different lens galaxy
samples: a magnitude-limited sample (MAGLIM [58]) and a
luminous red galaxy sample (REDMAGIC [59,60]). The
tomographic bins of the MAGLIM lens sample are shown in
Fig. 7, while the number density of objects are listed in
Table I.
There are known trade-offs for each sample. The

REDMAGIC sample was found to give internally incon-
sistent results: the galaxy bias preferred by galaxy-galaxy
lensing was in conflict with that preferred by galaxy
clustering [61]. The MAGLIM sample, on the other hand,
were shown to give poor fits to the baseline model, when
the highest two lens galaxy redshift bins were included.
Given these considerations, the baseline DES Y3 cosmol-
ogy results presented in [15] used only the first four bins of
the MAGLIM sample, and we will adopt that approach here
for our forecasts. Nevertheless, the methodology developed
in this paper is general and can in principle be applied to

alternative choices for the lens samples, including the full
(i.e., six tomographic bin) MAGLIM and the REDMAGIC
galaxy samples. We will explore these possibilities in our
forthcoming data analysis.
The source galaxy sample used in this work is based on

the METACALIBRATION shape catalog described in [62]. The
galaxies are divided into four tomographic bins and their
redshift distributions are inferred via the SOMPZ method
[63]; the corresponding distributions are shown in Fig. 7.
The number density of galaxies and shape noise estimate
for each bin are listed in Table II.

B. Galaxy-CMB lensing cross spectra

We measure two-point functions between the galaxy
position, galaxy shape, and CMB lensing observables as a
function of angular separation between the points being
correlated. To model these correlation, we begin by
computing the harmonic-space cross-spectra between
CMB lensing and galaxy density/shear using the Limber
approximation [64]:

CκCMBX
iðlÞ ¼

Z

dχ
qκCMB

ðχÞqiXðχÞ
χ2

PNL

�

lþ 1=2

χ
; zðχÞ

�

;

ð7Þ

where X ∈ fδg; γg, i labels the redshift bin, PNLðk; zÞ is the
nonlinear matter power spectrum computed using CAMB
and HALOFIT [65,66], and χ is the comoving distance to
redshift z. As we describe below, Eq. (7) is modified when

FIG. 7. Redshift distribution for the MAGLIM lens galaxy
sample (upper) and METACALIBRATION source galaxy sample
(lower). The highest two redshift bins of the lens sample (in
dashed lines) are not be used for the forecasting in this work.

TABLE I. Effective number density of galaxies in each redshift

bin for the MAGLIM lens samples as calculated in [15]. These
numbers are used to generate the covariance matrix. The highest
two redshift bins will not be used for the forecasting in this work.

Lens sample

Redshift bin ngal (arcmin−2)

1 0.150
2 0.107
3 0.109
4 0.146

5 0.106
6 0.100

TABLE II. Effective number density of galaxies and shape
noise for each source redshift bin as calculated in [15].

Source sample

Redshift bin ngal (arcmin−2) σϵ

1 1.672 0.247
2 1.695 0.266
3 1.669 0.263
4 1.682 0.314
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considering a nonlinear galaxy bias model. The window
functions, qXðχÞ, are given by

qiδgðχÞ ¼ biðzðχÞÞniδgðzðχÞÞ
dz

dχ
ð8Þ

qiγðχÞ ¼
3H2

0
Ωm

2c2
χ

aðχÞ

Z

χh

χ

dχ0niγðzðχ0ÞÞ
dz

dχ0
χ0 − χ

χ0
; ð9Þ

where H0 and Ωm are the Hubble constant and matter
density parameters respectively, aðχÞ is the scale factor
corresponding to comoving distance χ, bðzÞ is the

galaxy bias as a function of redshift z, and niδg=γðzÞ are

the normalized redshift distributions of the lens/source
galaxies.
The angular-space correlation functions are then com-

puted via

wδigκCMBðθÞ¼
X

l

2lþ1

4π
FðlÞPlðcosðθÞÞCδigκCMBðlÞ; ð10Þ

wγitκCMBðθÞ¼
X

l

2lþ1

4πlðlþ1ÞP
2

l
ðcosθÞFðlÞCκiγκCMBðlÞ

ð11Þ

where Pl and P2

l
are the lth order Legendre polynomial

and associated Legendre polynomial, respectively, and
FðlÞ describes filtering applied to the κCMB maps. For
correlations with the κCMB maps, we set FðlÞ ¼
BðlÞΘðl − lminÞΘðlmax − lÞ, where ΘðlÞ is a step func-

tion and BðlÞ ¼ expð−0.5lðlþ 1Þσ2Þ with σ ≡ θFWHM=
ffiffiffiffiffiffiffiffiffiffiffi

8 ln 2
p

. The filtering choices (ΘFWHM, lmin and lmax)
for the two κCMB maps are discussed in more detail in
Sec. III F.
We calculate the correlation functions within an angular

bin ½θmin; θmax� by averaging over the angular bin, i.e.,

replacing Plðcos θÞ with their bin-averaged versions Pl

defined by

Plðθmin; θmaxÞ≡
R cos θmax

cos θmin
dxPlðxÞ

cos θmax − cos θmin

¼
½Plþ1ðxÞ − Pl−1ðxÞ�cos θmax

cos θmin

ð2lþ 1Þðcos θmax − cos θminÞ
: ð12Þ

In the following subsections, we describe individual
elements in the modeling framework beyond the basic
formalism of Eq. (7).

C. Galaxy bias

The 5 × 2pt analysis with DES Y1 data presented in [17]
relied on a linear bias model, where bðzÞ is a constant that is
different for each lens galaxy redshift bin. That model was

shown to yield unbiased cosmological constraints for the
data analyzed therein. For the analysis with DES Y3 data,
we will use both a linear galaxy bias model and a nonlinear
galaxy bias model. As we will show, the nonlinear galaxy
bias analysis can be applied down to smaller scales than
the linear bias analysis, resulting in tighter cosmological
constraints.
Briefly, the two models for the galaxy bias, bðk; zÞ, are:
(i) Linear galaxy bias: We assume that the galaxy bias

is independent of scale biðk; zÞ ¼ bi and assume one

effective bias value bi for each redshift bin. This is
our fiducial analysis.

(ii) Nonlinear galaxy bias: Linear bias is known to
break down on small scales [67], motivating the
development of a nonlinear bias model that will
allow us to access information on smaller scales. We
follow the implementation of nonlinear bias pre-
sented in [61], using an effective 1-loop model with
renormalized nonlinear bias parameters [68,69]: b1
(linear bias), b2 (local quadratic bias), bs2 (tidal
quadratic bias) and b3nl (third-order nonlocal
bias). This effect impacts any correlation measured
using the galaxy density field (i.e., hδgδgi, hδgγti,
hδgκCMBi). Effectively it replaces terms like

biðzÞPNL in Eq. (7) with
10

PgmðkÞ ¼ b1PmmðkÞ þ
1

2
b2Pb1b2

ðkÞ

þ 1

2
bs2Pb1s

2ðkÞ þ 1

2
b3nlPb1b3nl

ðkÞ: ð13Þ

Expressions for the power spectrum kernels Pb1b2
,

etc., are given in [69,71].

The priors and ranges for the values bi, bi
1
and bi

2
used in

this analysis are summarized in Table III.

D. Lensing magnification

In addition to distorting or shearing shapes of galaxies,
weak lensing also changes the observed flux, size and
number density of the galaxies—effects referred to as
magnification [see e.g., [72]]. Magnification was ignored
in the 5 × 2pt analysis with DES Y1 data presented in
[17]. Here, we ignore the impact of magnification on the
shear-CMB lensing correlation, as the impact of source
galaxy magnification is expected to be very small com-
pared to our statistical precision [57]. We do, however,
incorporate the impact of magnification on the galaxy
density-CMB lensing correlations. Following [57], we
consider the change in projected number density due to
geometric dilution as well as magnification effects on

10
We fix bs2 and b3nl to their coevolution values given by bs2 ¼

ð−4=7Þðb1 − 1Þ and b3nl ¼ ðb1 − 1Þ [70].
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galaxy flux [73,74] and size [75], which modulate the
selection function.
The effect of magnification can be modeled by modi-

fying Eq. (8) to include the change in selection and
geometric dilution quantified by the lensing bias coeffi-
cients Ci

g.

qiδg;mag
ðχÞ ¼ qiδgðχÞð1þ Ci

gκ
i
gÞ; ð14Þ

where

Ci
g ¼ 5

∂ ln nig

∂m

�

�

�

�

mlim;rlim

þ ∂ ln nig

∂ ln r

�

�

�

�

mlim;rlim

− 2; ð15Þ

(herem and r represents the observed magnitude and radius

respectively) and κig is the tomographic convergence

field, as described in [57]. The logarithmic derivatives
are the slope of the luminosity and size distribution at the
sample selection limit. The values of these lensing bias
coefficients are estimated in [76] and fixed to the values
listed in Table III.

E. Intrinsic alignments

The 5 × 2pt analysis with DES Y1 data considered the
nonlinear alignment model [NLA, [77,78]] for galaxy
intrinsic alignments (IA). For the present analysis, we
adopt the more flexible tidal alignment tidal torquing model
(TATT) of [79] to describe IA; more details of this model
and its implementation in the context of DES Y3 cosmol-
ogy analyses can be found in [57]. In this model, the
intrinsic galaxy shape γ̃α;IA, measured at the location of

source galaxies, can be written as an expansion in the
density δm and tidal tensor sab, which can be decomposed
into components sα:

γ̃α;IA ¼ A1sα þ A1δδmsα þ A2ðs × sÞα þ � � � : ð16Þ

The coefficients for the three terms in Eq. (16) can be
expressed as follows:

A1ðzÞ ¼ −a1C̄1

ρcritΩm

DðzÞ

�

1þ z

1þ z0

�

η1

ð17Þ

A1δðzÞ ¼ btaA1ðzÞ ð18Þ

TABLE III. Fiducial and prior values for cosmological and nuisance parameters included in our model. For the priors, U½a; b� indicates
a uniform prior between a and b, whileN ½a; b� indicates a Gaussian prior with mean a and standard deviation b. The light faded entries
are the values corresponding to the last two bins of the MAGLIM sample, not used in the fiducial analysis.

Parameter Prior Fiducial

Ωm U½0.1; 0.9� 0.3

As × 10−9 U½0.5; 5.0� 2.19

Ωb U½0.03; 0.07� 0.048
ns U½0.87; 1.07� 0.97
h U½0.55; 0.91� 0.69

Ωνh
2 × 10−4 U½6.0; 64.4� 8.3

w U½−2;−0.33� −1.0

a1 U½−5.0; 5.0� 0.7
a2 U½−5.0; 5.0� −1.36
η1 U½−5.0; 5.0� −1.7
η2 U½−5.0; 5.0� −2.5
bta U½0.0; 2.0� 1.0

MAGLIM

b1…6 U½0.8; 3.0� 1.5, 1.8, 1.8, 1.9, 2.3, 2.3

b1…6

1
U½0.66; 2.48� 1.24, 1.49, 1.49, 1.60, 1.90, 1.90

b1…6

2
U½−3.41; 3.41� 0.09, 0.23, 0.23, 0.28, 0.48, 0.48

C1…6
g Fixed 1.21, 1.15, 1.88, 1.97, 1.78, 2.48

Δ1…6
z × 10−2 N ½0.0; 0.7�, N ½0.0; 1.1�, N ½0.0; 0.6�,

N ½0.0; 0.6�, N ½0.0; 0.7�, N ½0.0; 0.8� 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

σ1…6
z N ½1.0; 0.062�, N ½1.0; 0.093�, N ½1.0; 0.054�

N ½1.0; 0.051�, N ½1.0; 0.067�, N ½1.0; 0.073� 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

METACALIBRATION

m1…4 × 10−3 N ½0.0; 9.1�, N ½0.0; 7.8�, N ½0.0; 7.6�, N ½0.0; 7.6� 0.0, 0.0, 0.0, 0.0

Δ1…4
z × 10−2 N ½0.0; 1.8�, N ½0.0; 1.5�, N ½0.0; 1.1�, N ½0.0; 1.7� 0.0, 0.0, 0.0, 0.0
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A2ðzÞ ¼ 5a2C̄1

ρcritΩm

DðzÞ2
�

1þ z

1þ z0

�

η2

; ð19Þ

where ρcrit ¼ H2=8πG is the critical density of the

universe, z0 is a pivot scale fixed by convention, C̄1 is a

normalization constant, which is fixed to C̄1 ¼ 5×

10−14M⊙h
−2 Mpc2, and DðzÞ is the linear growth factor.

We use a total of five free parameters to describe IA: a1,
η1, a2, η2, and bta and use flat priors as summarized in
Table III.

F. Smoothing of the CMB κ map

The noise power spectrum of the CMB lensing maps
increases in amplitude at small scales. Large-amplitude
small-scale noise significantly impacts the covariance of
the angular-space correlation function measurements that
we consider in this analysis, making covariance computa-
tion difficult. To reduce the effect of small-scale noise, we
apply Gaussian smoothing and low-pass filtering to the
CMB lensing maps. This changes the expectation values of
the correlation functions, but should not bias our analysis
because we include the impact of filtering in our model.
The impact of the Gaussian smoothing amounts to a
transformation of the cross spectra:

C
κCMBX
l

→ C
κCMBX
l

Bl;

where Bl ¼ expð−lðlþ 1Þσ2Þ is the smoothing function

and σ ¼ θFHWM=
ffiffiffiffiffiffiffiffiffiffiffi

8 ln 2
p

. For the SPTþPlanck and Planck
lensing maps we use θFWHM of 60 and 80 respectively. We
additionally apply low-pass filtering to the maps, with
lmax ¼ 5000 for the SPTþPlanck lensing map and lmax ¼
3800 for the Planck-only map. The choice of smoothing
scales is made to ensure that the CMB lensing noise in both
maps approaches 0 at lmax, rather than blowing up due to
the finite resolution of the CMB maps. A dramatic increase
in noise at small scales would be problematic for our
angular-space correlation analysis.
The combination of the filtering and the smoothing

ensures that the noise power spectrum of the filtered maps
approaches zero at lmax.

G. Uncertainty in shear calibration and redshift

distributions

We model shear calibration and redshift biases for
the DES galaxies as described in [57]. We model shear
calibration biases with a multiplicative factor such that the
observed CκCMBγ is modified by

CκCMBγ
iðlÞ→ ð1þmiÞCκCMBγ

iðlÞ; ð20Þ

where mi is the shear calibration bias for source bin i.
Following [15], our fiducial analysis models the uncer-

tainty in the source galaxy redshift distributions with shift

parameters, Δi
z, where i labels the redshift bin. This

parameter modifies the nðzÞ as

niðzÞ → niðz − Δi
zÞ: ð21Þ

For the lens sample, we additionally introduce a stretch
parameter (σz) in the redshift distribution such that (com-
bining with the effect above):

niðzÞ → σizn
iðσiz½z − hzi� þ hzi − Δi

zÞ: ð22Þ

The fiducial values and priors used for σiz and Δi
z are

summarized in Table III. These choices for the modeling
of the lens and source galaxy redshifts are validated
in [63,80,81].
We also consider an alternative method for parameter-

izing uncertainty in the redshift distributions known as
HYPPERRANK [82], which efficiently marginalizes over
possible realizations of the redshift distributions. For the
3 × 2pt analysis presented in [15], HYPPERRANK was
shown to give similar results as the simpler model shown in
Eq. (21). We verify that this is also the case for 5 × 2pt in
Appendix C.

IV. MODEL FITTING

We adopt a Gaussian likelihood, Lðd⃗jθ⃗Þ, for analyzing
the data:

lnLðd⃗jθ⃗Þ ¼ −
1

2
½d⃗ − m⃗ðθ⃗Þ�TC−1½d⃗ − m⃗ðθ⃗Þ�; ð23Þ

where d⃗ is the vector of observed correlation function
measurements, m⃗ðθÞ is the vector of model predictions

at parameter values θ⃗, and C is the covariance matrix of
the data. The posterior on the model parameters is then
given by

Pðθ⃗jd⃗Þ ∝ Lðd⃗jθ⃗ÞPðθ⃗Þ; ð24Þ

where Pðθ⃗Þ are the priors on model parameters. We
summarize the priors on model parameters in Table III.
All values are consistent with those used in [15].

A. Covariance

Computing the likelihood in Eq. (23) requires an estimate
of the data covariance matrix. For the block of this matrix
consisting of DES-only cross-correlations (i.e., 3 × 2pt), we
use the halo model covariance described in [83]. For the
blocks involving cross-correlations with CMB lensing, we
adopt a lognormal covariance model based on [83]. We
briefly describe the lognormal covariance model below.
In the lognormal model, the galaxy overdensity, galaxy

lensing, and CMB lensing fields are modeled as shifted
lognormal random fields [84]. These are specified by
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X ¼ λðenþμ
− 1Þ; ð25Þ

where n is a Gaussian random field with mean zero, and λ is
the so-called shift parameter. The power spectrum of n can
be chosen so that the power spectrum of X matches that of
the desired field (computed from our theory model), and μ

can be chosen such that hXi ¼ 0, leaving λ to be specified.
References [83,85] describe a procedure for determining

λ, and we follow a similar procedure here. In particular, we
choose the value of λ so that the re-scaled cumulant of the
log-normal field,

S3ðϑÞ≡
hXðϑÞ3i
hXðϑÞ2i2 ; ð26Þ

matches that predicted by leading order perturbation
theory, where ϑ is a choice of smoothing scale. Here we
set ϑ ¼ 100, and λ is chosen separately for each field
(λ ¼ 1.089, 1.106, 1.046, 1.252, 1.177, 1.177 for the 6
MAGLIM lens redshift bins, λ ¼ 0.866, 1.956, 1.075,
1.1486 for the 5 REDMAGIC lens redshift bins,
λ ¼ 0.033, 0.085, 0.021, 0.033 for the 4 sources redshift
bins and λ ¼ 2.7 for CMB lensing field).
The covariance of lognormal weak lensing fields can be

written as the sum of a Gaussian contribution and higher-
order covariance terms [84]. Reference [83] took these
results and generalized them to describe the covariance of
arbitrary fields

11
:

CLN ∼ CG½ξXaXb
; ξXcXd

� þ ξXaXb
ðθ1ÞξXcXd

ðθ2Þ
Asurvey

×

�

CSðXa; XcÞ
λaλc

þ CSðXa; XdÞ
λaλd

þ CSðXb; XcÞ
λbλc

þ CSðXb; XdÞ
λbλd

�

; ð27Þ

where Asurvey is the survey area (in particular we use the
effective overlapping area between the galaxy and CMB
surveys), and λ are the shift parameters for the fields
a; b; c; d, and CS denotes the covariance between two fields
after the two fields have been averaged over the entire
survey footprint.
Unlike the shot noise and shape noise that impact δg and

γ, respectively, the CMB lensing noise varies strongly as a
function of multipole. For this reason, we adopt a special
procedure to improve our estimate of noise contributions to
the covariance matrix. We note that without this treatment,
the covariance validation tests described in Sec. IV B do not
pass. We decompose the total covariance into contributions
from signal and noise:

Ctotal ¼ Csignal−signal þ Cnoise−noise þ Csignal−noise: ð28Þ

The first two terms can be isolated by setting either the
signal or noise power to zero; Csignal−noise can be obtained

by subtracting the signal-signal and noise-noise terms from
the total covariance.
Owing to the nonwhite power spectrum of the CMB

lensing noise and the complexities of the DES mask, we
compute the noise-noise term in Eq. (28) using many
noise simulations. This approach takes into account the
impact of the survey geometry. Furthermore, in the case of
the CMB lensing map, since the noise realizations are
generated using the real data, this approach captures
possible inhomogeneity in the noise over the sky area.
For the lens galaxies, we generate noise catalogs by
drawing from the random point catalogs used to character-
ize the survey selection function. We draw the same
number of random points in the survey footprint as the
number of galaxies in the data catalog. For the galaxy
weak lensing field, we take the data shear catalog and
apply a random rotation such that [86]:

erot
1

¼ e0
1
cosð2φÞ þ e0

2
sinð2φÞ; ð29Þ

erot
2

¼ −e0
1
sinð2φÞ þ e0

2
cosð2φÞ; ð30Þ

where e0
1
; e0

2
are the measured ellipticity components, and

φ is some random angle between 0 and 2π. We treat these
rotated ellipticities as the noise. For CMB lensing, our
estimate of noise realizations is formed from the differ-
ence between reconstructed lensing maps from simula-
tions (which include noise) and the noiseless input lensing
maps that were used to lens the simulated temperature
maps. We use 300 noise realizations, since this is the
number of noise realizations provided for the Planck
lensing maps.
The hδgκCMBi and hγtκCMBi cross-correlations are then

measured for each of the 300 noise realizations and the
covariance matrix across these realizations is computed.
The relative amplitudes of the covariance contributions as a
function of angular scale are shown in Fig. 8. While we
only show the decomposition for one redshift bin, similar
behavior is found for the other redshift bins. For hδgκCMBi,
the dominant term at all scales is the signal-noise term (this
results from the relative amplitudes of the signal/noise
terms for δg and κCMB), and the signal-signal term is larger

than the noise-noise term at large scales. For hγtκCMBi, most
of the angular bins are dominated by the noise-noise term.
To complete our estimate of the covariance matrix,

we must also determine the covariance between the
SPTþPlanck and Planck sky patches, and the covariance
between hδgκCMBi and hγtκCMBi with the 3 × 2pt correla-

tions. The covariance between the nonoverlapping
SPTþPlanck and Planck sky patches is expected to be
small, and we will take the approach of setting it to zero.

11
This is an approximation retaining only the first order term

after the Gaussian covariance term.
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The validity of this approximation is tested in the next
section. To compute the covariance between hδgκCMBi and
hγtκCMBi with the 3 × 2pt data vector measured over the
full DES patch, we rely on the log-normal covariance
estimate. We further make the approximation that each
patch (SPTþPlanck or Planck) only correlates with the
3 × 2pt measurements over the overlapping fraction of sky,
and that the measurement of the total 3 × 2pt data vector
can be expressed as a weighted combination of 3 × 2pt
measurements in the different patches. The weights are
assumed to be proportional to the corresponding sky areas.
This approximation and a similar calculation is discussed in
Appendix G of [87]. We show the final correlation matrix
for the hδgκCMBi þ hγtκCMBi part in Fig. 9.

We note that the 3 × 2pt analysis presented in [15]
included a modification to the covariance matrix which
accounts for possible variation in the galaxy-matter corre-
lation at small scales [57]. The galaxy-tangential shear
correlation is a nonlocal quantity such that its value at a
given angular scale depends on the galaxy-matter power
spectrum down to arbitrarily small scales. Using the
technique developed in [88], the analysis in [15] effectively
marginalizes over a “point mass” contribution to the
galaxy-tangential shear correlation at small scales by
introducing a modification to the covariance matrix. Our
analysis of the galaxy-convergence correlation, on the other
hand, need not account for a point mass contribution
because convergence is a local quantity. One caveat is that
the application of smoothing to the convergence map

introduces some nonlocality. However, because our angular
scale cuts (see Sec. V) remove angular scales comparable to
the smoothing scale, this is not a worry for our analysis. In
principle, since the hγtκCMBi correlation is also nonlocal,
we could adjust its covariance to account for a point mass
contribution. However, since the signal-to-noise of the
hγtκCMBi correlation at small scales is low, we do not
expect this to have a significant impact on our analysis.
Furthermore, as we demonstrate in Sec. V, our analysis of
hγtκCMBi is robust to variations in the matter power
spectrum caused by baryonic feedback. We therefore do
not include a point mass contribution to the covariance
matrix for hγtκCMBi in our analysis.

B. Validation of the covariance matrix

1. χ 2 test

As a test of the covariance matrix that we obtained in the
previous section, we first show that using this covariance
matrix recovers the correct χ2 distribution from a set of
simulated data vectors. To do this, we first generate
simulated realizations of the galaxy position, galaxy weak
lensing, and CMB lensing fields (see description of these
simulations below). For each simulation, i, we calculate the

two-point correlation functions, Di. The χ2 is then com-
puted via:

χ2i ¼ ðDi −MÞTC−1ðDi −MÞ; ð31Þ

where M is the true correlation function (which is known
for the simulations), and C is the covariance matrix
described in Sec. IVA. If C is indeed a good estimation

FIG. 8. Decomposition of the diagonal of the covariance matrix
into the various terms in Eq. (28). Results are shown for an
arbitrary bin (bin four for both lens and source), but appear
similar in other bins. We also overlay the total covariance
measured from the FLASK simulations, described in Sec. IV B.

FIG. 9. Plot of the hδgκCMBi þ hγtκCMBi correlation matrix. The
off-diagonal cross (SPTþPlanck)-(Planck) blocks are set to zero
as discussed in Sec. IV B 2. Each hδgκCMBi and hγtκCMBi block
has 80 elements (4 redshift bins with 20 angular bins each).
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of the covariance matrix forD, we expect the distribution of

χ2i to follow a χ2ν distribution with ν equal to the dimen-

sionality of D.
This procedure tests several aspects of the covariance

calculation. First, it ensures that our approximation that the
CMB lensing noise is uniform across the SPTþPlanck and
Planck patches is a good approximation (which is assumed
for the signal-noise term in the covariance), since the
simulated data vectors include nonuniformity in the noise.
Second, this test validates our assumption that cross-
covariance between observables computed from the
SPTþPlanck and Planck patches of the CMB lensing
map can be ignored. Finally, it confirms that our treatment
of survey geometry is sufficient to model the data covari-

ance. We note when computing the χ2 in these tests, we
impose angular scale cuts that remove small-scale mea-
surements. These cuts will be described in the next section.
The simulated data used for the χ2 covariance test are

generated from log-normal realizations of the lens catalog
(galaxy position), the source catalog (galaxy position and
shape), and the CMB lensing map using the package
FLASK [89]. We start with generating a set of noiseless
maps of the galaxy density, galaxy lensing and CMB
lensing fields given all the combinations of auto- and
cross-correlation power spectrum Cl as well as lognormal
shift parameters associated with each field. The lens
catalog is generated by Poisson sampling with expectation
N ¼ n̄ð1þ δÞ, where n̄ is the average galaxy density per
pixel, and δ is the density field generated by FLASK (which
already includes the galaxy bias). For the source catalog,
we use the same random rotation approach described

in Eqs. (29) and (30) on the DES Y3 galaxy shape
catalog [62]. Shape noise obtained this way is added to
the shear signal extracted from the FLASK galaxy weak
lensing maps evaluated at the locations of observed
galaxies.

12
For the CMB lensing map, we add the difference

between the reconstructed lensing map and the input
convergence map to the noiseless FLASK CMB lensing
map, then apply the same filtering and smoothing to the
maps as the data (described in Sec. III F). We then compute
the hδgκCMBi and hγtκCMBi data vectors from these simu-

lations, and evaluate the χ2 with respect to the fiducial
model as in Eq. (31).
Upon measuring the χ2 distribution from the flask

realizations, we have found that the distribution is margin-

ally skewed toward higher χ2 than we would expect. To
alleviate this, we have scaled up the hγtκCMBi covariance by
a small amount (4%) such that the χ2 distribution matches
with expectations, and we subsequently use this covariance

in the analysis. The results of the covariance χ2 distribution
test are shown in Fig. 10. The four panels on the left show

the χ2 distributions separately for the two patches of sky
and for hδgκCMBi and hγtκCMBi (combining all redshift

bins). We see that individually, all of them show good

agreement with an analytical χ2 distribution. The right

panel shows the χ2 distribution for the combined data

FIG. 10. Left: distribution of χ2 derived from FLASK simulations and our covariance model for hδgκCMBi and hγtκCMBi data vectors in
the SPTþPlanck and Planck patches separately. The histograms are overlaid with a χ2ν distribution (smooth black curve), and we only
include data points after the scale cuts (see Sec. V). Right: same as the left panel but for the combined data vector of hδgκCMBi and
hγtκCMBi in both patches (filled histogram). The open gray histogram represents the χ2 distribution prior to applying the 4% correction

and the dashed histogram corresponds to the χ2 distribution when combining different realizations for the SPTþPlanck and Planck
patches, effectively nulling the off-diagonal block of the covariance in the FLASK realizations, as described in Sec. IV B 2.

12
We note that this is a good approximation in the weak lensing

regime. Formally, the galaxy ellipticity changes under an applied
shear according to e.g., Eq. (4.12) of [72].
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vector, which includes the cross-covariance between the
two patches of the sky and between hδgκCMBi and hγtκCMBi.

2. The independence of SPT +Planck and Planck patches

In the covariance we described in the previous section,
we have assumed that the covariance between the patches is
zero (i.e., the empty blocks in Fig. 9). We further test this
assumption using the FLASK data vectors. The full
FLASK data vector includes the correlation between the
patches since they were measured from catalogs generated
from the same sky realization. We create a set of “shuffled”
data vectors, in which the SPTþ Planck patch data vectors
from one sky realization are combined with the Planck
patch data vectors from a different realization, and we

compute χ2 or each of these sets of shuffled data vectors
and original (correlated) data vectors. The comparison of

the two χ2 distributions is shown in Fig. 10. We see no
significant differences in the two distributions, and we
conclude that the ignoring the off-diagonal blocks is valid.

3. The independence of 5 × 2pt and Planck full sky

The end goal of this analysis is to perform a joint analysis
of the 5 × 2pt data vector and the CMB lensing auto-
spectrum as measured by Planck. Since the sky area that
DES observes lies within the sky area that was used for the
Planck CMB lensing analysis, we expect the measurements
to be correlated to some degree. In this section, we examine
the degree of correlation.
There are several reasons to expect the covariance

between the full-sky CMB lensing auto-spectrum from
Planck and the 5 × 2pt data vector to be negligible. First,
the CMB lensing auto-spectrum is most sensitive to redshift
z ∼ 2. The 5 × 2pt data vector, on the other hand, is most
sensitive to structure at z≲ 1, because this is the regime
probed by DES galaxy positions and shapes. Second, the
bulk of information in the Planck CMB lensing auto-
spectrum analysis is derived from outside the patch of
sky over which we measure 5 × 2pt—the overlap is
approximately 15% of the Planck lensing analysis area.
Finally, we note that over the SPT-SZ patch, the bulk of
the lensing information comes from SPT-SZ data, which
has instrumental noise that is uncorrelated with the Planck
observations.
To determine whether the covariance between 5 × 2pt

and the Planck lensing auto-spectrum can be ignored, we
proceed as follows. First, we compute the theoretical cross-
covariance between the 5 × 2pt and full-sky CMB lensing
angular-space auto-spectrum using the log-normal formu-
lation described in Sec. IVA. We must account for the fact
that 5 × 2pt is measured over a small patch of sky, while the
CMB lensing auto-spectrum is measured over (nearly) the
full-sky. To do this, we make the approximation that
the full-sky CMB lensing measurements can be expressed
as an inverse-variance weighted average of measurements

inside the DES patch and outside of that patch, and that the
covariance between 5 × 2pt and the outside-the-patch
CMB lensing auto-spectrum measurements can be ignored.
Once the full 6 × 2pt covariance has been computed, we

compute the likelihood of a 6 × 2pt datavector with and
without setting the cross-covariance between 5 × 2pt and
the CMB lensing auto-spectrum measurements to zero. If
the difference between these two likelihoods, Δ lnL, is
small, then we can ignore the cross-covariance. For this
purpose, we generate a 6 × 2pt datavector at the fiducial
parameter values listed in Table III. We expect that as we
consider parameter values farther away from this fiducial
choice, the Δ lnL will increase. However, since we are
generally only interested in the parameter volume near the
maximum likelihood, an increase in Δ lnL at extreme
parameter values is not problematic. We find that for log-
likelihoods within about 50 of the maximum likelihood,
Δ lnL≲ 0.2. Such a small change in the likelihood will not
significantly impact our parameter constraints. We are
therefore justified in ignoring cross-covariance between
5 × 2pt and the full-sky CMB lensing auto-spectrum.

C. Shear ratio information

As described in [15], ratios of galaxy-lensing correlation
functions that use the same lens sample, but different
source galaxy samples can be used to constrain e.g., source
galaxy redshifts and intrinsic alignment model parameters.
Since such ratios are essentially independent of the galaxy-
matter power spectrum, these ratios can be used at much
smaller scales than are employed in the standard 3 × 2pt
analysis [90]. We refer to these lensing ratios as shear ratios
(SR). The analysis presented in [15] treats the SR infor-
mation as a separate likelihood that can be combined with
the likelihood from the measured two-point functions.
Our fiducial analysis of the 5 × 2pt observable will

include SR information as a separate likelihood, as done
in [15]. A detailed description of the DES Y3 implemen-
tation of SR can be found in [90].

V. CHOICE OF ANGULAR SCALES

The cross-correlations with CMB lensing that we con-
sider in this analysis are impacted by several physical
effects at small scales (k≳ 0.2h Mpc−1) that are challeng-
ing to model. For one, feedback from active galactic nuclei
(AGN) impacts the distribution of baryons on small scales,
leading to changes in the matter power spectrum that can
reach the ten percent level [91,92]. Fully capturing feed-
back physics in an analytic model is very challenging given
the complexity and large dynamic range of the problem.
Since this astrophysical effect impacts the matter power
spectrum, feedback will necessarily have an impact on both
hδgκCMBi and hγtκCMBi. Another small-scale effect that we

must contend with is a breakdown in the linear bias model
we use to describe the clustering of galaxies. At small
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scales, galaxy bias becomes nonlinear [93]. Nonlinear
galaxy bias will impact hδgκCMBi (see discussion of a

nonlinear bias model in Sec. III C).
The impact of baryonic feedback and nonlinear bias on

our analysis can be reduced by restricting the analysis to
those physical scales that are least impacted. In general, this
corresponds to restricting the analysis to large physical
scales. The 3 × 2pt analysis of [15] has taken this approach
in their analysis of correlations of DES-only correlation
functions, and we do the same here. This approach is
conservative in the sense that it is largely robust to detailed
assumptions about feedback and nonlinear bias. Of course,
it also comes at the cost of reduced signal-to-noise.
We now develop a choice of angular scales to include in

our analysis of hδgκCMBi and hγtκCMBi. Throughout this
discussion, we refer to effects such as baryonic feedback
and nonlinear bias which are not modeled in our analysis as
“unmodeled effects.” The choice of angular scale cuts is
motivated by two competing considerations. First, biases to
the analysis from unmodeled effects should be minimized,
which requires excluding small angular scales from the
analysis. Second, we would like to maximize our con-
straining power, which motivates including more angular
scales in the analysis. To set a balance between these two
considerations, our requirement is that the bias caused by
unmodeled effects should be significantly smaller than our
uncertainties.

In order to estimate the biases in our constraints
caused by unmodeled effects and to make an appropriate
choice of angular scales to include, we must have some (at
least approximate) guess at the impact of these effects.
Following [57], for baryonic feedback, we adopt the OWLS
AGN model [94]; for nonlinear bias, we adopt the model
described in Sec. III C. Once the bias has been estimated,
our requirement is then that there is less than a 0.3σ shift in
the S8-Ωm constraints relative to the constraints obtained
using the uncontaminated data vector. This criterion is
consistent with other DES Y3 analyses.
We note that the analysis of cross-correlations between

DES Y1 data and SPT/Planck measurements of CMB
lensing presented in [17] also took the approach of
removing small angular scale measurements in order to
obtain unbiased cosmological constraints. However, as
noted previously, one of the main sources of bias in that
analysis was from tSZ contamination of the CMB lensing
maps. This bias necessitated removal of a large fraction of
the signal-to-noise. In the present analysis, because we
have endeavored to make a CMB lensing map that is free
from tSZ bias, a larger fraction of the signal-to-noise can be
retained.
The impact of baryonic feedback and nonlinear bias

on the hδgκCMBi and hγtκCMBi data vectors is shown in
Fig. 11. It is apparent that baryonic feedback suppresses the
correlation functions at small scales, and has a larger impact

FIG. 11. Fractional biases computed from the contaminated/uncontaminated data vectors with the effects of baryonic effects on the
matter power spectrum (orange), nonlinear galaxy bias (teal), and the sum of the two (dark gray). Also shown are the standard deviations
of the SPTþPlanck data vectors scaled down by a factor of 10. The arrows indicate the angular scales used in the analysis.
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on hγtκCMBi than hδgκCMBi. Nonlinear bias, on the other

hand, leads to an increase in hδgκCMBi at small scales, and

has no impact on hγtκCMBi (since the latter does not use
galaxies as tracers of the matter field). The fact that
hδgκCMBi and hγtκCMBi are most impacted by different

biases, and that these two biases act in opposite directions
presents a complication. This ensures that the biases to
cosmological parameters caused by unmodeled effects in
hδgκCMBi and hγtκCMBi typically act in opposite directions,

and to some extent will cancel each other in a joint analysis
of both hδgκCMBi and hγtκCMBi. In principle, this cancella-

tion means that we could use very small angular scales in
our analysis without sustaining a large bias to the cosmo-
logical constraints. However, since the adopted models of
nonlinear bias and baryonic effects also have associated
uncertainties, we investigate the two biases separately.
In determining the scale cuts, we first choose the scale

cuts for hδgκCMBi such that the inclusion of nonlinear bias
in the joint analysis of hδgκCMBi and hδgδgi results in an

acceptably small bias to the cosmological posterior. By
considering hδgκCMBi and hδgδgi together, we maximize the

impact of nonlinear bias (which would lead to a
conservative scale cut), and also ensure that galaxy bias
is well constrained. Our scale cuts for hδgκCMBi are based

on a physical scale evaluated at the mean redshift of the lens
galaxies. The minimum physical scale is then translated
into angular scales for each of the lens galaxy bins. We
consider different scale cuts for the correlations with the
SPTþPlanck and Planck-only CMB lensing maps, since
these correlations have different signal-to-noise ratio. With
the scale cuts applied, we run a simulated likelihood
analysis with the hδgδgi þ hδgκCMBi combination using

the framework described in Sec. IV. As shown in the left
panel of Fig. 12, we find in the case of the linear bias
analysis that a choice of 4 Mpc for SPTþPlanck and
3.5 Mpc for Planck-only meets our acceptability criteria for
the bias in cosmology, while maximizing signal-to-noise
ratio. Our definition of acceptable bias is that the maximum
posterior point of the biased posterior should enclose at

most erfð0.3=
ffiffiffi

2
p

Þ of the unbiased posterior mass in the
Ωm-S8 plane (marginalizing over all other parameters).
We next choose angular scales for hγtκCMBi such that the

joint analysis of hγtκCMBi and hδgκCMBi remains unbiased.

Since the hγtκCMBi measurements at a single angular scale
correspond to a wide range of physical scales, choosing a
hγtκCMBi scale cut based on a physical scale is less
motivated than for hδgκCMBi. Instead, we remove angular

scales in order of their contribution to the Δχ2 between the
biased and unbiased data vectors. This results in keeping
most of the hγtκCMBi data vector except for 6 (8) data points
at the smallest scales for bin 3 (4) for the SPTþPlanck
patch. We show in the middle panel of Fig. 12 the resulting
constraints on the Ωm − S8 plane using the hδgκCMBi þ
hγtκCMBi combination for the contaminated and uncon-
taminated data vectors. Lastly, we check that our choice of
angular scales results in the 5 × 2pt data vector passing the
same acceptable bias criteria as hδgκCMBi for the combi-

nation of the nonlinear bias and baryonic feedback models.
These results are shown in the right panel of Fig. 12.
We adopt a slightly different procedure to that described

above for determining an appropriate choice of angular
scale cuts for the analysis that uses the nonlinear galaxy
bias model described in Sec. III C. Since in that case,
nonlinear bias is not an unmodeled effect, we follow a
procedure similar to [61] to determine appropriate scale
cuts. We determine the scale below which our nonlinear
bias model fails to describe the 3D galaxy-matter correla-
tion function in the MICE simulations [95,96]. We describe
in detail our procedure in Appendix D—we find that a scale
cut of 3 Mpc meets our acceptability criteria for the bias in
cosmology, while maximizing signal-to-noise. Since non-
linear bias does not impact hγtκCMBi, we adopt the same
scale cuts as described above for analyzing hγtκCMBi.
The final choice of angular scale cuts to be applied to the

analyses of hδgκCMBi and hγtκCMBi are summarized in
Table IV, together with the resulting signal-to-noise ratios.
In the case of the linear bias analysis, for the hδgκCMBi
correlations, the minimum angular scales when correlating

FIG. 12. Forecasted constraints on Ωm and S8 using the fiducial data vector (blue) and a data vector contaminated with our model of
nonlinear galaxy bias and baryonic effects on the small-scale matter power spectrum (red). The four panels show (from left to right)
results for the combinations of hδgδgi þ hδgκCMBi, hγtκCMBi, hδgκCMBi þ hγtκCMBi and 5 × 2pt. The shift in the two contours are shown

in the bottom right of each panel.
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with the SPT/Planck CMB lensing map are
ð14.8; 11.3; 9.7; 8.9Þ0 for the four redshift bins. These cuts
are necessitated by possible breakdown in the linear galaxy
bias model at small scales. When using the nonlinear bias
galaxy model, the corresponding minimum angular scales
are ð11.0; 8.5; 7.3; 6.6Þ0. These cuts are in turn necessitated
by uncertainty in the baryonic feedback model. The
minimum angular scale cuts for the correlations with the
Planck-only lensing map are reduced compared to corre-
lations with the SPT/Planck map because the signal-to-
noise of the Planck-only lensing map is lower. We can
compare these angular scale cuts to those used in the DES
Y1 analysis of [17], which were at ð15; 25; 25; 15Þ0 for
redshift bins centered at approximately the same redshifts.
The more aggressive scale cuts in this analysis are made
possible by the tSZ-cleaned CMB lensing map.
The increased range of angular scales afforded by the

tSZ-cleaned CMB lensing map is even more significant for
hγtκCMBi. In this case, the minimum angular scales are
ð2.5; 2.5; 11.2; 17.7Þ0 for the four redshift bins. As can be
seen in Fig. 11, the change in scale cuts across the
different redshift bins is driven largely by the increase
in signal-to-noise of the hγtκCMBi measurements at high
redshift. These scale cuts can be compared to those
imposed in the DES Y1 analysis of [17], where scale
cuts at ð40; 40; 60; 60Þ0 were imposed for similar redshift
bins. Again, the significant reduction in minimum angular
scales for the present analysis is enabled by the tSZ-
cleaned CMB lensing map. Because hγtκCMBi is not
impacted by nonlinear bias, but is strongly impacted by
tSZ bias, tSZ cleaning has a more significant impact for
this correlation than for hδgκCMBi.
We can also compute the reduction in signal-to-noise

caused by the angular scale cuts. Relative to using a
minimum scale of 2.50, the adopted scale cuts results in
a signal-to-noise reduction for hδgκCMBi of 45% across all

redshift bins for the linear bias analysis. This reduction,
which is still significant despite the tSZ-cleaned CMB
lensing map, is necessitated by possible breakdown in the
linear galaxy bias model at small scales. When using the
nonlinear bias galaxy model, the corresponding reduction
in signal-to-noise is 36%, necessitated by uncertainty in the
baryonic feedback model. For hγtκCMBi, the reduction in
signal-to-noise resulting from the scale cuts is 15%. These
numbers highlight that future improvements in modeling of
baryonic feedback can enable significant increases in the
signal-to-noise that can be used for constraining cosmology
with galaxy survey-CMB lensing cross-correlations.
The same procedure to determine the scale cuts is also

performed for the REDMAGIC sample, and the results are
presented in Appendix E.

VI. FORECASTS

We now use the methodology developed above to
produce forecasts for cosmological constraints obtained
from the CMB lensing cross-correlation functions. These
forecasts will inform our forthcoming analysis with
real data.

A. hδgκCMBi+ hγtκCMBi
The forecasted cosmological constraints from the joint

analysis of hδgκCMBi and hγtκCMBi are presented in Fig. 13.
Constraints are presented with and without the inclusion
of shear ratio (SR) likelihood described in Sec. IV C. We
observe a significant improvement in the constraints when
the SR likelihood is included. The improvement is par-
ticularly noticeable in the S8 direction, which is roughly
proportional to the amplitude of the lensing power spec-
trum. This improvement is not surprising since the SR
likelihood can significantly improve constraints on IA
parameters, as demonstrated in [90,97,98]. We see in

TABLE IV. Minimum angular scale cuts for hδgκCMBi and hγtκCMBi, for both the SPTþPlanck and Planck patches. The maximum

scale for all the data vectors is 250 arcmin. Numbers in parentheses correspond to the nonlinear galaxy bias analysis.

θmin Forecasted S=N

Type Redshift bin SPTþPlanck Planck SPTþPlanck Planck Combined

hδgκCMBi 1 14.80 (11.00) 12.90 (11.10)
2 11.30 (8.50) 9.90 (8.490)
3 9.70 (7.30) 8.50 (7.250)
4 8.90 (6.60) 7.70 (6.640)

All bins 12.2 (14.9) 11.6 (12.7) 16.9 (19.6)

hγtκCMBi 1 2.50 2.50

2 2.50 2.50

3 11.20 2.50

4 17.70 2.50

All bins 10.1 8.7 13.3

hδgκCMBi þ hγtκCMBi All bins 13.9 (15.8) 12.6 (13.5) 18.8 (20.8)
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Fig. 13 the corresponding IA constraints and how a1 is
strongly degenerate with S8. The SR constraints signifi-
cantly reduce the IA parameter space allowed by the data,
which in turn tightens the cosmological constraints.
For comparison, we also overlay constraints from the

3 × 2pt data combination, analyzed with the same analysis
choices described in this paper. We see that when examin-
ing the Ωm–σ8 plane, our cross-correlation constraints are

significantly larger than that of 3 × 2pt. However, when
projecting onto S8, we expect our cross-correlation con-
straints to be only 1.4 times larger than 3 × 2pt, with a 3%
level constraint on S8. This suggests that the hδgκCMBi þ
hγtκCMBi combination could provide a powerful consis-
tency check for the 3 × 2pt data that is quite independent
and robust to systematic effects that are only present in the
galaxy surveys.

FIG. 13. Comparison of the forecasted constraints on cosmological parameters Ωm, σ8, S8 and intrinsic alignment parameters a1, a2,
η1, η2, and bTA using the combination of galaxy clustering and galaxy-CMB lensing correlation, with and without the addition of shear-

ratio information, compared with the constraints from 3 × 2pt. The dashed lines represent the input values for the individual parameters.
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B. 5 × 2pt

Next we combine hδgκCMBi þ hγtκCMBi in the previous
section with the 3 × 2pt probes, including the SR like-
lihood, to arrive at Fig. 14. For reference, we also include
the 3 × 2pt constraints on the plot. We observe that
although the overall improvement in constraining power
over 3 × 2pt is weak, hδgκCMBi þ hγtκCMBi mildly breaks

the degeneracy of the 3 × 2pt constraints to give slightly
tighter 5 × 2pt constraints. We expect an improved pre-
cision on Ωm=σ8=S8 from 8.3=5.7=2.3% to 8.2=5.4=2.1%.
It is worth emphasizing again that even though the added
constraining power is not significant, the mere consistency
(or inconsistency) between hδgκCMBi þ hγtκCMBi and 3 ×

2pt could provide nontrivial tests for either systematics or
new physics. This is because the cross-correlation probes
include a dataset that is completely independent of all DES
data processing pipelines, and therefore should not be
sensitive to systematic effects that only exist in DES data
(and vice versa for CMB datasets). In particular, given the
somewhat puzzling inconsistencies between the galaxy-
galaxy lensing and galaxy clustering signals using the
REDMAGIC sample from the DES Y3 3 × 2pt analysis [15],
this consistency test will become extremely important for
making progress in the future.
In Fig. 14 we also show the forecasted 5 × 2pt con-

straints assuming nonlinear galaxy bias. We find an overall
gain in the constraining power compared to the linear
galaxy bias mode. The gain in constraining power going
from 3 × 2pt to 5 × 2pt when using nonlinear galaxy bias is

similar to that using linear galaxy bias, with a forecast
constraint on Ωm=σ8=S8 going from 7.9=5.2=2.0%
to 7.7=4.7=1.9%.

C. Constraints on shear bias parameters

Cosmological constraints from galaxy surveys can be
significantly degraded by systematic uncertainties
impacting measurements of the lensing-induced shears,
and the measurements of photometric redshift for the
lensed galaxies. Shear calibration systematics are especially
pernicious, since a multiplicative bias in shear calibration
is perfectly degenerate with the amplitude of the lensing
correlation functions that we wish to constrain [99].
Typically, ancillary data is used to constrain these sources
of systematic uncertainty. In the case of multiplicative shear
bias, one often relies on simulated galaxy images to
constrain the bias parameters, m. If the simulations do
not accurately capture the properties of real galaxies, priors
on m may be untrustworthy.
CMB lensing, on the other hand, provides a measure of

the mass distribution that is independent of these sources of
uncertainty. As a result, cross-correlations of galaxy sur-
veys with CMB lensing have different sensitivity to the
nuisance parameters describing these effects than auto-
correlations of galaxy survey observables. By jointly

FIG. 14. Comparison of the forecast constraints on Ωm; σ8 and
S8 from the 3 × 2pt and 5 × 2pt probes using linear galaxy bias
modeling (open orange and dashed blue contours) and nonlinear
galaxy modeling (filled blue contours).

FIG. 15. Simulated constraints from 3 × 2pt (red) and 5 × 2pt
(blue) probes when the fiducial priors on the shear calibration
parameters are replaced by very wide priors (free m). The results
show the ability of the data to constrain these nuisance parameters
with the 3 × 2pt and 5 × 2pt probes respectively. Also overlaid
are the fiducial 5 × 2pt constraints, where the mi parameters are
informed by external priors.
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analyzing the autocorrelations and the CMB lensing cross-
correlations, one can obtain constraints on m directly from
the data [12,13,100]. The idea of using the data to obtain
constraints on nuisance parameters is often referred to as
self-calibration.
Here we reexamine the case for self-calibrating m using

our new datasets and models. We perform our fiducial
3 × 2pt and 5 × 2pt analyses removing the tight priors on

the shear calibration parameters in all redshift bins, mi, and
replacing them with very wide flat priors. We show in
Fig. 15 the constraints in the Ωm–S8 plane as well as the
shear calibration parameters. We see that without any prior
knowledge of the shear calibration parameter, both 3 × 2pt
and 5 × 2pt are able to place constraints on these param-
eters to some extent: 3 × 2pt measures S8 at the 8% level
while 5 × 2pt is expected to significantly improve on that,
and constrain S8 at the 4% level.
These uncertainties on m (∼0.1 − 0.2 for 3 × 2pt and

∼0.05 − 0.1 for 5 × 2pt) are still much larger than what we
could achieve with other approaches using e.g., simula-
tions, which are currently below 0.01 [101]. These findings
are consistent with our results in [17].

VII. SUMMARY

We have presented the key ingredients for our forth-
coming analysis of cross-correlations between DES Y3
measurements of galaxy positions and galaxy shears, and
measurements of CMB lensing from SPT and Planck data.
These include:
(1) A new CMB lensing map that is constructed to

remove bias from the thermal SZ effect using a
combination of SPT and Planck data in the SPT-SZ
footprint. The removal of the tSZ bias will allow
cosmological information to be extracted from the
CMB lensing cross-correlations at much smaller
angular scales than those used in DES Y1 analysis.
This CMB lensing map will be useful for other
cross-correlations analyses beyond those consid-
ered here.

(2) A modeling framework built on the DES Y3 3 × 2pt
methods presented in [57]. In particular, we describe
our models for the galaxy and galaxy lensing cross-
correlations with CMB lensing.

(3) A hybrid covariance matrix estimate for the
5 × 2pt data vector that combines three compo-
nents: the 3 × 2pt halo-model covariance matrix
from [83], an analytic log-normal covariance for
the galaxy-CMB cross-covariance, and a model of
the noise and mask contributions from realistic
simulations.

(4) A choice of angular scales to use when analyzing the
CMB lensing cross-correlations that ensures our
cosmological constraints from data will be robust,
even in the presence of baryonic feedback and
nonlinear galaxy bias. We describe two sets of

angular scale choices, one set that is designed for
the analysis that uses a linear galaxy bias model, and
one designed for the analysis that uses a nonlinear
galaxy bias model.

We use the methodological tools developed in this
analysis to make forecasts for the cosmological constraints
that will be obtained in our forthcoming analysis of actual
data. These forecasts make use of the true noise levels of
the CMB lensing maps constructed here. The main results
from these forecasts are
(1) We forecast that our cross-correlation data vector

will have a total signal-to-noise of 18.8 (20.8) when
assuming linear (nonlinear) galaxy bias, which is
about twice that obtained from past cross-correlation
analyses between DES and SPT lensing using DES
Y1 data [17].

(2) When using the linear galaxy bias and the ΛCDM
cosmology model, we expect to find a 3% constraint
on S8 using the cross-correlation data vectors
hδgκCMBi þ hγtκCMBi alone.

13
This constraint does

not include any of the correlation functions that go
into 3 × 2pt data vector analyzed in [15] and there-
fore serves as a powerful consistency test.

(3) We anticipate a 2% constraint on S8 from the 5 × 2pt
analysis. Similar constraints are obtained when the
nonlinear galaxy bias model is used.

(4) When we do not apply external priors on the shear
calibration parameters, we find that both 3 × 2pt and
5 × 2pt are able to calibrate the shear bias param-
eters, m, with 5 × 2pt roughly doubling the con-
straining power on these nuisance parameters.
However, the resultant posteriors on the m param-
eters are still significantly weaker than the current
external priors used by DES, suggesting that self-
calibration of shear biases from galaxy-CMB lens-
ing cross-correlation is not likely to improve
cosmological constraints in the near term. However,
we emphasize that 5 × 2pt offers significantly tighter
constraints than 3 × 2pt in the absence of external
priors on shear calibration.

Cross-correlations of measurements of large-scale struc-
ture from the Dark Energy Survey with measurements of
CMB lensing from the South Pole Telescope and Planck
offer tight cosmological constraints that are particularly
robust against sources of systematic error. Given the
challenges of extracting unbiased cosmological constraints
from increasingly precise measurements by galaxy surveys,
we expect cross-correlations between galaxy surveys and
CMB lensing to continue to play an important role in future
cosmological analyses.

13
We note that our analysis of hδgκCMBi þ hγtκCMBi includes

the so-called shear ratio likelihood, which acts as a prior on e.g.,
intrinsic alignments and the source redshift distributions.
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APPENDIX A: CMB LENSING AUTOSPECTRUM

As a validation of our CMB lensing map, we also
measure its auto-power spectrum and compare to previous
measurements. The raw CMB power spectrum contains
noise bias terms which we must subtract off:

Ĉκκ
L ¼ Cκ̂ κ̂

L − N
ð0Þ
L − N

ð1Þ
L ; ðA1Þ

where the N
ð0Þ
L and N

ð1Þ
L terms are the noise terms from the

disconnected and connected 4-pt functions [33]. In prac-

tice, we replace the N
ð0Þ
L term with the “realization
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dependent” N
ð0Þ
L (RDN0) noise [104], which uses a mixture

of simulation realizations and the data map itself:

N
ð0Þ;RD
L ¼ hCκ̂ κ̂

L ½κðTx
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SMICA
si;ϕi
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Þ�ii;j; ðA2Þ

where the subscripts fd; sg refer to data and simulation
realizations, ϕi represents the input lensing potential
realization used to lens the CMB realization, and the
superscript x=SMICA denotes whether we are using the
SPTþ Planck or the SMICAnoSZ temperature maps. In
this equation, we are representing the convergence maps
used to compute the power spectrum inside the square
brackets and the two temperature maps that were used to
reconstruct the lensing map with the round brackets. The

N
ð1Þ
L bias term can be computed using simulated maps with

different CMB realizations lensed with using a common
lensing field:

N
ð1Þ
L ¼ hCκ̂ κ̂

L ½κðTx
si;ϕi

TSMICA
sj;ϕi

ÞκðTx
si;ϕi

TSMICA
sj;ϕi

Þ�
þ Cκ̂ κ̂

L ½κðTx
si;ϕi

TSMICA
sj;ϕi

ÞκðTx
sj;ϕi

TSMICA
si;ϕi

Þ�
− Cκ̂ κ̂

L ½κðTx
si;ϕi

TSMICA
sj;ϕj

ÞκðTx
si;ϕi

TSMICA
sj;ϕj

Þ�
− Cκ̂ κ̂

L ½κðTx
si;ϕi

TSMICA
sj;ϕj

ÞκðTx
sj;ϕj

TSMICA
si;ϕi

Þ�ii;j; ðA3Þ

where we highlight that the same CMB lensing potential is
used to lens the CMB realizations si and sj. The final

debiased power spectrum is presented in Fig. 5. Compared to
the results of [20], we are able to extend ourmeasurements to
higher multipoles because of the nulling of the tSZ bias and
improved treatment of point sources and clusters.

APPENDIX B: VALIDATING THE

tSZ-NULLING METHOD

In this section, we verify that the methodology described
in Sec. II D 2 results in a tSZ bias free CMB lensing map
using a simplified two-component (CMB and tSZ) simu-
lation. This is demonstrated in two steps:
(1) We first show that SMICAnoSZ is free of the tSZ

effect.
(2) We perform lensing reconstruction with one

temperature map free of tSZ effect, and demonstrate
that the reconstructed lensing map is free of tSZ
bias.

For the first step, we take a lensed CMBmap and simulated
tSZ maps at 100–857 GHz generated from an N-body

simulation [40], and multiply each frequency channel
with the weights given by the SMICA weight propagation
code.

14
The power spectra of the tSZ effect at

100=143=217=353=545=857 GHz channels and the result-
ing spectra after passing through the weights are shown in
Fig. 16. We find that the resulting tSZ amplitude is
suppressed to negligible levels as expected.
Next, we construct a lensing map from the combination

of two types of temperature maps
(1) CMB only maps to mimic tSZ nulled CMB maps

(i.e., Planck SMICAnoSZ map), and
(2) CMBþ tSZ maps to mimic high resolution CMB

maps (i.e., SPTþPlanck map).
which gives us three lensing maps (a) TCMB onlyþ
TCMB only, (b) TCMB only þ TCMBþtSZ and (c) TCMBþtSZþ
TCMBþtSZ. For the purpose of this demonstration, we
assume fsky ¼ 1, and add noise that is reduced by a factor

of 100 to reduce the computational cost of averaging over
many realizations. We carry out the lensing reconstruction
procedure, measure the cross-correlations between the
reconstructed lensing maps and a mock galaxy density
map, and compare the resulting cross-correlation ampli-
tudes against the unbiased case (i.e., taking the ratios
ððbÞ-ðaÞÞ=ðaÞ and ððcÞ-ðaÞÞ=ðaÞÞ. The results are shown in
Fig. 17: we observe that the lensing map without any
treatment of the tSZ effect is biased low, whereas the
lensing map produced using the “half-leg” method is
compatible with the lensing map produced from “CMB
only” temperature maps.

FIG. 16. tSZ power spectra at 100=143=217=353=545=
857 GHz (various blue lines), as well as the tSZ residual power
spectrum after passing the individual frequency maps through the
SMICAnoSZ weights (orange).

14COM_Code_SMICAweightspropagation_R3.00
available from Planck Legacy Archieve https://pla.esac.esa.int/.
We specifically use the values from weights_T_smica-
nosz_R3.00_Xfull.txt.
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APPENDIX C: HYPERRANK

In our fiducial analysis, we used the model described in
Eq. (21) to characterize the uncertainty in our knowledge of
the redshift distribution. In [82], however, the authors

investigated a more generic way of sampling the uncer-
tainties in the redshift distribution—a framework referred
to as HYPERRANK. In principle, HYPERRANK is more
correct in marginalizing the uncertainty in photometric
redshifts since it includes variation in the entire shape of the
nðzÞ, but since the lensing kernel is typically broad, the
approximation of only marginalizing the mean redshift
is often a reasonable one. In [82] it is shown that the
constraints on cosmic shear using HYPERRANK are
consistent with just marginalizing the mean redshift, which
motivates the fiducial choice here and in [15], which is
computationally more efficient to sample. However, in [15]
(Fig. 25 in Appendix E), it is shown that when applied
to data, using HYPERRANK results in cosmological
constraints that are shifted from the fiducial analysis by
∼0.5σ, with slightly tighter overall constraints. We compare
in Fig. 20 our 5 × 2pt constraints using the fiducial
approach in marginalizing the nðzÞ with shift parameter,
and HYPERRANK. We find a slight improvement in the
constraint—the uncertainties on Ωm=σ8=S8 went from
7.5=4.9=1.9 to 7.0=4.5=1.7%.

APPENDIX D: DERIVING SCALE CUTS FOR

NONLINEAR GALAXY BIAS MODEL

As discussed in Sec. V, when using the nonlinear galaxy
bias model, we cannot apply the same framework of

FIG. 17. Comparison of the density—CMB lensing correlation

for two types of CMB lensing map reconstruction: one quadratic
estimator leg contaminated with the tSZ effect and the other tSZ
nulled (blue) and both temperature legs contaminated with the
tSZ effect (orange).

FIG. 18. Residuals of best-fit 3D galaxy-matter correlation function in the MICE simulation (with the MAGLIM galaxy sample)
assuming a nonlinear galaxy bias model. The shaded region indicates bias exceeding 3%, which we exclude in our analysis when we
assume nonlinear galaxy bias.

FIG. 19. Same as Fig. 12 but for the REDMAGIC sample.
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choosing scale cuts for hδgκCMBi since the contaminated
data vector that we use to perform the test is generated
using our nonlinear bias model. Instead, we need an

a priori criteria for where the PT-based nonlinear galaxy
bias model fails to describe the galaxy-matter power
spectrum. We take an approach similar to that used
in [105] where we measure the 3D galaxy-matter corre-
lation function from a set of N-body simulations, namely
the MICE simulations [95,96]. These simulations include
mock galaxies that have similar selection functions as our
lens galaxies (i.e. the MAGLIM and REDMAGIC samples).
We fit the measurements using the nonlinear bias model
described in Eq. (13) and the input cosmological param-
eters to the simulations. Figure 18 shows the relative
residuals of the fit for the four tomographic lens bins for
the MAGLIM sample.
Based on Fig. 18, we decide to include scales down to

∼3 Mpc/h. This gives at most 3% difference between model
and simulation data, compared to the statistical error bars in
hδgκCMBi at about 10%.We note that out of the 50 or so data

points, only 2 are above 1%. In addition, in the real
cosmological analysis, there will be many more degrees of
freedom in the other nuisance parameters (IA, photo-z etc.),
whichwill further absorb this bias. These factors suggest that
our scale cut choice is still relatively conservative.

APPENDIX E: REDMAGIC

In this section, we summarize the parameter ranges used
in the analysis (Table V), scale cut used (Table VI),

FIG. 20. Comparison of the forecasted constraints onΩm − σ8 −

S8 plane when using the fiducial model of assuming a shift in nðzÞ
andwhen drawing frompossible realizations usingHYPERRANK.

TABLE VI. Same as Table IV but for the REDMAGIC sample.

θmin Forecasted S=N

Type Redshift bin SPTþPlanck Planck SPTþPlanck Planck Combined

hδgκCMBi 1 15.80 (11.80) 13.80 (11.80)
2 11.70 (8.80) 10.20 (8.80)
3 10.00 (7.50) 8.70 (7.50)
4 9.00 (6.80) 7.90 (6.80)
5 8.60 (6.40) 7.50 (6.40)

All bins 11.1 (13.0) 10.9 (11.7) 15.6 (17.5)
hγtκCMBi 1 2.50 2.50

2 2.50 2.50

3 11.20 2.50

4 17.70 2.50

All bins 10.1 8.7 13.3
hδgκCMBi þ hγtκCMBi All bins 13.2 (14.5) 12.2 (12.8) 18.0 (19.4)

TABLE V. Same as the lens galaxy section of Table III but for the REDMAGIC sample.

Parameter Prior Fiducial

REDMAGIC

b1…5 U½0.8; 3.0� 1.7, 1.7, 1.7, 2.0, 2.0

b1…5

1
U½0.67; 3.00� 1.40, 1.40, 1.40, 1.40,1.65,1.65

b1…5

2
U½−4.22; 4.22� 0.16, 0.16, 0.16, 0.35,0.35,

C1…5

l
Fixed 1.31, −0.52, 0.34, 2.25, 1.97

Δ1…5
z × 10−2 N ½0.0; 0.4�, N ½0.0; 0.3�, N ½0.0; 0.3�, N ½0.0; 0.5�, N ½0.0; 1.0� 0.0, 0.0, 0.0, 0.0, 0.0

σ1…5
z Fixed, fixed, fixed, fixed N ½1.0; 0.054� 1.0, 1.0, 1.0, 1.0, 1.0
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forecasted signal-to-noise ratio (Table VI) as well as figures
for the parameter contour shifts (Fig. 19), equivalent to
Tables III and IV and Fig. 12 respectively, when using the
REDMAGIC galaxy sample instead of our fiducial MAGLIM

sample. We find that scale cuts similar to that of the
MAGLIM sample allow us to pass our bias requirements,
and we forecast that the signal-to-noise ratio will be
marginally lower for the REDMAGIC sample.
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