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Abstract

The attractive and repulsive behaviours of a pair of initially spherical gas bub-

bles rising side-by-side in a channel with non-uniformly heated walls containing

a self-rewetting liquid are investigated numerically. The surface tension of a

self-rewetting fluid exhibits a parabolic temperature dependence with a well-

defined minimum, as opposed to linear (common) fluids whose surface tension

decreases almost linearly with the increasing temperature. It is found that, for

low Reynolds numbers, while in an isothermal medium, two gas bubbles display

a repulsive behaviour, they attract in non-isothermal systems. The bubbles in

the self-rewetting fluid undergo a plastic collision and show a ‘squeezing and

relaxing’ behaviour, whereas they attract and then bounce in the linear fluid.

A regime map demarcating the repulsive and attractive behaviours for a self-

rewetting fluid is plotted in the Weber number (We) and the dimensionless

linear component of the surface tension gradient (M1) space. It is found that

the bubbles in the self-rewetting fluid remain spherical even for high Weber

numbers while they deform considerably in the case of the linear fluid indicat-

ing that the attractive behaviour of the bubbles in the self-rewetting fluid is due

to the lift force generated by the thermocapillary stresses and not due to the de-
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formation. The mechanism underlying the observed phenomenon is elucidated

by studying the drag and lift forces acting on the bubbles, their orientations,

and the flow field around them.

Keywords: Bubble dynamics, Marangoni stresses, Self-rewetting fluid,

Non-isothermal flow, Numerical simulation, Collision

1. Introduction

The interaction of bubbles rising together in liquid is relevant in many in-

dustrial applications, e.g. bubble column reactors and heat exchangers [1, 2],

and also in natural phenomena [3, 4]. Gaseous bubbles are commonly used in

industrial applications to improve heat and mass transfer, and which depends

primarily on interaction and spatial distribution of the bubbles. Thus, several

researchers have investigated the motion of gaseous bubbles in a liquid medium

in isothermal (e.g. Refs. [5–8]) and non-isothermal (e.g. Refs. [9–11]) con-

ditions. In this context, two bubbles rising side by side have been considered

as a model problem for investigating the interactions between them in both

isothermal and non-isothermal systems.

The previous investigations conducted on the interactions and trajectories of

a pair of side-by-side rising spherical bubbles in liquids due to buoyancy under

isothermal condition reveal that two spherical bubbles/drops, which in Stokes

flow would rise with constant separation, repel each other at low Reynolds

numbers and attract each other at high Reynolds numbers (see e.g. Ref. [5, 6]).

Furthermore, [7] showed that the rise dynamics of two gaseous bubbles rising

side-by-side is planar at low Reynolds numbers. An extensive review of two

bubbles rising side-by-side in isothermal systems can also be found in Refs.

[7, 8].

In non-isothermal systems, in addition to buoyancy, the thermocapillary

stresses resulting from the surface tension gradient in the vicinity of the gas-

liquid interface also play an important role in the dynamics of the bubbles. The

surface tension, (σd) of common fluids (hereafter referred to as ‘linear’ fluids),
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such as water and various oils usually decreases almost linearly with increas-

ing temperature (Td). Young et al. [12] showed that a small spherical bubble

migrates against buoyancy in the downward direction when the bottom of a

container holding a linear fluid is significantly hotter than the top. Under the

influence of both buoyancy and thermocapillary forces, they also established a

theoretical model to predict the terminal velocity of the bubble. Since then,

several researchers have investigated the motion of a single bubble (e.g. Refs.

[13–16]) and multiple bubbles (e.g. Refs. [10, 11]) in linear fluids due to an

imposed temperature gradient. A few researchers have also studied a pair of

bubbles/drops rising in linear fluids in non-isothermal systems. Wei and Sub-

ramanian [17] studied the migration of a pair of spherical gaseous bubbles in a

linear fluid subjected to a combined action of gravity and a downward temper-

ature gradient in the Stokes flow limit. Lavrenteva et al. [18] and Frolovskaya

et al. [19] investigated the interaction of thermal wakes in the case of in-line

deformed drops rising in a linear fluid and extended the study of Wei and Sub-

ramanian [17] to the high Péclet number regime.

In contrast to linear fluids, the surface tension of non-azeotropic, high car-

bon alcohol solutions, exhibits a quasi-parabolic temperature dependency. In-

creasing the alcohol concentration in the solution has been found to increase

the parabolicity of the σd − Td curves [20–22]. Subsequently, Abe et al. [23]

termed these fluids as ‘self-rewetting’ fluids. Due to the unusual behaviour of

the surface tension, several researchers investigated the spreading dynamics of

self-rewetting sessile drops on a heated surface [24, 25]. It was found that a

sessile drop placed at the location of the minimum surface tension exhibits a

super-spreading behaviour [24].

Several researchers have also examined the dynamics of a single bubble in

self-rewetting fluids. Tripathi et al. [26] and Balla et al. [27] investigated the

motion of a gaseous bubble in a container maintained at a linearly increasing

temperature field and filled with a self-rewetting fluid. The gaseous bubble

was shown to exhibit complex dynamics while moving in the channel due to the

combined action of buoyancy and thermocapillary stresses. Duffy et al. [28] the-
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oretically investigated the dynamics of a long bubble in a non-uniformly heated

tube containing a self-rewetting fluid under the action of imposed axial flow

and gravitational effect. The dynamics of an oil droplet in a stratified liquid of

binary mixtures exhibiting a parabolic surface tension gradient was investigated

in Refs. [29–31]. They observed self-propelling and bouncing behaviours of the

oil droplet due to the Marangoni stresses in the vertical direction.

As the above literature review shows, the dynamics of two bubbles/drops

rising side-by-side in a self-rewetting fluid has not yet been studied, despite the

fact that these fluids are preferred in many practical applications due to their

significantly higher critical heat fluxes and also due to their relevance in space

applications [32]. In the present study, we investigate the interaction of two

non-coalescing gas bubbles rising in a non-isothermal self-rewetting fluid, which

is contrasted with the dynamics observed in the cases of linear and isothermal

systems. The bubbles are considered non-coalescing because of their small size

and less contact time for the coalescence to occur. A two-dimensional geometry

is also considered in view of the finding reported by Tripathi et al. [7] on

the planar motion of the bubbles at low Reynolds number. We found that

while in an isothermal system, two bubbles repel each other at low Reynolds

numbers, they attract each other in a non-isothermal system. Our findings

suggest that interaction of the bubbles in a self-rewetting fluid is significantly

different from that observed in isothermal and linear systems. A regime map

is plotted demarcating the attractive and repulsive behaviours in the Weber

number (We) and the dimensionless linear component of the surface tension

gradient with temperature (M1) space. The mechanism for this behaviour is

investigated by analysing the lift force between the bubbles and the flow field.

The rest of the paper is organised as follows. The problem is formulated and

governing equations are described in Section 2. The present numerical method

and the validation of the solver are also presented in this section. The numerical

results and the underlying physics are discussed in Section 3. Finally, concluding

remarks are given in Section 4.
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Figure 1: (a) Schematic diagram showing the initial configuration of two gas bubbles (fluid

B) rising side-by-side inside a self-rewetting fluid (fluid A) starting from y = yi; initially

separated by a distance q0. (b) The surface tension, σ, profile for M1 = 0.6 and M2 = 0.3

(Eq. 1); σ exhibits a minimum, σm at y = ym.

2. Formulation

We studied numerically the motion of two non-coalescing gas bubbles (fluid

B) of the same initial radius R inside a two-dimensional channel (with H =

20R) filled with a self-rewetting fluid (fluid A). The fluids are assumed to be

incompressible and Newtonian. The viscosity and density of fluids A and B

are (µA, ρA) and (µB , ρB), respectively. A Cartesian coordinate system (x, y)

is used, such that the acceleration due to gravity, g acts in the negative y

direction, as shown in Fig. 1a. The initial locations of bubbles ‘1’ and ‘2’

are (−q0/2, yi) and (q0/2, yi), respectively, where q0 is the initial separation

distance between the bubbles. The rigid and impermeable walls with a linear

temperature gradient, γ, are located at x = ±H/2.

To perform non-dimensionalisation, R, V (≡ β1γR/µA), ts(≡ µA/β1γ) are

used as the reference length, velocity and time scales, respectively. The prop-

erties of fluid A and σ0 (the surface tension at temperature T1) are used to

nondimensionalise the respective variables. The dimensionless temperature, T

is given by (Td − T1)/(Tm − T1), where Tm and T1 are the values of the tem-

perature (Td) at the location of the minimum surface tension (y = ym) and the

bottom of the domain (y = 0), respectively. The dimensionless surface tension,
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σ as a function of T is given by

σ = 1−M1T +M2T
2, (1)

where M1 = β1(Tm − T1)/σ0 and M2 = β2(Tm − T1)
2/σ0, wherein β1 =

−dσd/dTd|T1
and β2 = (d2σd/dTd

2)/2|T1
. A typical surface tension profile for

M1 = 0.6 and M2 = 0.3 is shown in Fig. 1(b). We always set M2 = M1/2 to

ensure that the location of the minimum surface tension at the middle of the

computational domain, i.e. ym = 10.

The dimensionless governing equations are given by

∇ · u = 0, (2)

ρ

[

∂u

∂t
+ u · ∇u

]

= −∇p+
1

Re
∇ ·

[

µ(∇u+∇uT )
]

+
δ

We
(σκn+∇sσ)−

ρ~ey
Fr

,

(3)
∂T

∂t
+ u · ∇T =

1

Ma
∇ · (α∇T ), (4)

where u, p and T denote the velocity, pressure, and temperature fields, respec-

tively; t represents time; δ is a delta distribution that is zero everywhere except

at the interface; κ = ∇·n is the curvature, n is the unit normal to the interface

pointing towards fluid A; ~ey represents the unit vector in the vertically upward

direction; ∇s represents the surface gradient operator that is calculated directly

using the height functions in the volume of fluid (VoF) framework. The normal

stress (σκn/We) and tangential (Marangoni) stress (∇sσ/We) at the gas-liquid

interface is included in Eq. (3) based on the continuum surface force formula-

tion. The calculation procedure of the Marangoni term is described in section

1 of the supplementary information.

The various dimensionless numbers are the Reynolds number (Re ≡ ρAV R/µA),

the Froude number
(

Fr ≡ V/
√
gR

)

, the Weber number
(

We ≡ ρARV 2/σ0

)

and

the Marangoni number (Ma ≡ V R/αA(≡ RePr)), where Pr (≡ µA/ρAαA) is

the Prandtl number. The dimensionless temperature gradient, Γ is given by

γR/(Tm − T1).

The dimensionless viscosity (µ), density (ρ) and thermal diffusivity (α) are
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given by [26]

µ = ce−T + (1− c)µr

(

1 + T 3/2
)

, (5)

ρ = c+ ρr(1− c), (6)

α = c+ αr(1− c), (7)

where µr ≡ µB/µA, ρr ≡ ρB/ρA and αr ≡ αB/αA are viscosity, density and

thermal diffusivity, respectively. Here, c is the volume fraction of the liquid

phase, such that c = 1 and 0 for fluids A and B, respectively. In our numerical

simulations, the interfaces of the two bubbles are associated with two different

colour functions in the VoF framework. This causes the bubbles to maintain

their interfaces even if they share a common computational cell. The current

solver employs the conservative method proposed by Weymouth and Yue [33] for

the advection of color functions and does not use any other artificial condition

to circumvent the problem of crossover of the interfaces. It should be noted

that this condition is only physically true if the bubbles are considered a priori

to be non-coalescing.

Since the current formulation and numerical method are the same as those

given in Refs. [16, 27], we refer the reader to our previous studies for details, but

briefly highlight this here for the sake of completeness. Note that [7] has also

shown that the bubble rise dynamics is two-dimensional in the parameter range

considered in the present study. The tangential gradient of surface tension

force (Marangoni force) is implemented Tripathi and Sahu [16] in an open-

source finite-volume VoF based multiphase flow solver, Basilisk [34, 35]. An

adaptive mesh refinement near the interfacial and regions with vortical flow is

used. No-slip and no penetration boundary conditions, a temperature field,

T = 1 + Γ(y − ym) is imposed at all the side walls. At the top and bottom

of the computational domain, the Neumann boundary conditions are used for

temperature and velocity components. The solver has been validated extensively

in [16, 27]. A grid convergence (see Fig. 1 in the supplementary information) is

performed to select the optimal mesh (with the smallest grid size, ∆ = 0.019)

used in this study.
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3. Results and discussion

We begin the presentation of our results by examining the temporal varia-

tions of the centre of gravity of bubble 1 (yCG) (see Fig. 2(a)) and the nor-

malised separation distance between the bubbles (q/q0) (see Fig. 2(b)) rising in

the isothermal (M1 = M2 = 0), linear (M1 = 0.4, M2 = 0) and self-rewetting

(M1 = 0.4, M2 = 0.2) fluids. Here, q0 = 3 and the rest of the parameters are

Γ = 0.1, Re = 10, We = 0.05, Fr = 50, Pr = 0.7, µr = 10−2, ρr = 10−3,

αr = 0.04 and yi = 9.5 (hereafter termed as ‘base’ parameters). The dimen-

sionless parameters considered in the present study have been justified below.

In a gas-liquid system, the ratios of viscosity, density, and thermal diffusivity

are of the same order as those considered in the present study (i.e. µr = 10−2,

ρr = 10−3 and αr = 0.04). The value of the Prandtl number for water is about

0.71, so it is reasonable to take Pr = 0.7 as it is defined based on fluid ‘A’ (i.e.,

the liquid phase). The velocity scale used in the present study is β1γR/µA, so

Fr = 50 implies that the Marangoni flow based velocity is 50 times the neutral

buoyant velocity (
√
gR). As we investigate the thermo-capillary driven flow of

a millimetre size bubble, one can also easily achieve the value of Reynolds num-

ber (Re = 10) and the range of the Weber number considered in the present

study. Recently, Mamalis et al. [36] have measured the surface tension of so-

lutions of water + 1-butanol 5 % volume and water + 1-pentanol 2 % volume

and showed that surface tensions of these fluids exhibit parabolic dependencies

with temperature (see Figure 4 of Ref. [36]). In the self-rewetting case, we have

taken M2 = M1/2 to fix the location of minimum surface tension at y = 10.

Moreover, the parameter values considered in the present study are consistent

with our previous studies [26, 27], where we investigate the thermo-capillary mi-

gration a gaseous bubble in a self-rewetting fluid. We found that the variation

of the centre of gravity of bubble 2 is found to be the mirror image of that of

bubble 1 about x = 0 for all the sets of parameters considered in the present

study. It can be seen in Fig. 2(a) that in both the isothermal system and non-

isothermal linear fluid system, the bubble exhibits an acceleration phase and
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reaches a terminal speed. In the case of linear fluid, the acceleration period is

much shorter and the terminal velocity is higher as compared to the isothermal

case. This is due to the thermocapillary stresses pushing linear fluid A towards

the cold region and thus increasing the upward movement of the bubbles in the

case of linear fluid. In the self-rewetting fluid, the dynamics is complex. In

this case, the bubbles accelerate for a short duration as yi < ym and achieve a

constant speed at the intermediate time (for y < ym, where the thermocapillary

and buoyancy forces act in the same direction). After crossing the location of

the minimum surface tension (ym), the thermocapillary and buoyancy forces act

in the opposite directions and the bubbles exhibit a decelerating phase. At this

stage, they touch each other (see Fig. 2(b) at t ≈ 16 for the self-rewetting fluid)

and experience a combined buoyancy force that dominates the thermocapillary

force acting in the downward direction leading to a constant upward speed at

t > 16. As the bubbles rise in the upward direction to a hotter region (y > ym),

the thermocapillary force continues to increase because of the self-rewetting na-

ture of the surrounding fluid, and at t ≈ 40, the downward thermocapillary

force becomes larger than the upward buoyancy force. Thus, at later stage,

the bubbles reverse the direction of motion (see the inset in Fig. 2(a)). The

trajectories of bubbles 1 and 2 in the isothermal, linear and self-rewetting cases

are shown in Fig. 2 in the supplementary information, and the corresponding

animations can be seen in Supplementary Videos 1, 2 and 3.

In Fig. 2(b), it can be seen that in the isothermal case, the value of q/q0 re-

mains 1 till t ≈ 13 after which they repel each other. This repulsion behaviour of

the bubbles observed in the isothermal case is consistent with the previous find-

ings at low Reynolds numbers [6]. In contrast, in the linear and self-rewetting

cases, the bubbles attract each other due to the Marangoni stresses. In the

self-rewetting case, the rise velocities of the bubbles are quite low as compared

to that in the case of the linear fluid, so they come closer slowly and touch

each other at t ≈ 15. Then, the bubbles display a repeated ‘squeezing-relaxing’

behaviour due to their shape deformations with a decreasing magnitude while

they are in touch for t > 15 (see Fig. 2(c)). In Fig. 2(c), it can also be seen that
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Figure 2: Temporal variations of (a) yCG of bubble 1 and (b) q/q0 rising in isothermal, linear

(M1 = 0.4, M2 = 0) and self-rewetting (M1 = 0.4, M2 = 0.2) fluids for q0 = 3. (c) The

oscillations observed for t > 15 in the case of the self-rewetting fluid in panel (b). The rest of

the parameter values are the same as the base parameters. The inset in panel (a) shows the

late time behaviour for the self-rewetting case.

Figure 3: A free-body diagram showing the forces acting on the bubbles. Here, FB1, FB2,

FD1, FD2 and FL1, FL2 are the buoyancy, viscous drag and lift forces acting on bubble 1 and

bubble 2, respectively. ~ub1 and ~ub2 are the velocities of bubbles 1 and 2, respectively.
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the average time period (Tp) of the oscillations of q/q0 is about 1.6. Note that,

in the present study, µA/β1γ is used as the time scale, which is associated with

the Marangoni flow. In the present case, the value of the capillary time scale of

the bubbles,
√

ρAR3/σ (or τc =
√

We/(1−M1T +M2T 2) in the dimensionless

form) is equal to 0.25, which is calculated by assuming that T = 1 at y = ym

(near which the bubbles exhibit the oscillations). This infer that the observed

oscillations are not of a capillary type, but rather driven by the Marangoni

stresses. In the linear case, the bubbles do not display this behaviour as they

rise faster due to the combined influence of the thermocapillary and buoyancy

forces acting in the same direction. The distinct behaviours of the bubbles ob-

served in the case of linear and self-rewetting fluids are also discussed below

while analysing the forces acting on the bubbles.

Below we explore the repulsive and attractive behaviours of the bubbles by

analysing the drag and lift forces acting on the bubbles and the flow field around

the bubbles. A free body diagram showing the forces acting on the bubbles are

depicted in Fig. 3. The drag and lift forces acting on the bubbles are calculated

using the theoretical model derived by de Vries et al. [37] for a spherical bubble

bouncing against a wall in a viscous liquid. Previously, Zhang et al. [38] also

used a similar approach to estimate the force between two spherical bubbles

rising side-by-side in an isothermal system. In a symmetrical situation, the

magnitudes of FB1 = FB2 = FB , FD1 = FD2 = FD and FL1 = FL2 = FL.

The dimensionless equations for the viscous drag (FD) and lift (FL) forces for

two-dimensional bubbles rising side-by-side are given by

FD = V
(

2

Fr
− dMyvb

dt

)

, (8)

FL = V
(

dMxub

dt
− 1

2

[

u2

b

dMx

dx
+ v2b

dMy

dx

])

, (9)

where V is the dimensionless volume of the bubble; ub and vb are the horizontal

and vertical components of the dimensionless bubble velocity. The dimensionless

added mass coefficients, Mx and My are given by

Mx = My = 2 +

(

1

xb

)2

, (10)

11



(a) (b)

0 5 10 15 20 25 30

t

-0.005

0

0.005

0.01

F
L

0 5 10 15 20 25 30

t

0

0.05

0.1

0.15

0.2

F
D

(c) (d)

0 0.4 0.8 1.2 1.6 2

t

-1.2

-0.9

-0.6

-0.3

0

0.3

F
L

0 0.4 0.8 1.2 1.6 2

t

-12

-9

-6

-3

0

F
D

(e) (f)

0 5 10 15 20 25

t

-2

-1

0

1

2

F
L

0 5 10 15 20 25

t

-0.8

-0.4

0

0.4

0.8

F
D

Figure 4: Temporal variations of the (a,c,e) lift and (b,d,f) viscous drag forces for (a,b)

isothermal, (c,d) linear (M1 = 0.4, M2 = 0) and (e,f) self-rewetting (M1 = 0.4, M2 = 0.2)

fluids. The rest of the parameter values are the same as those in Fig. 2.

where xb is the distance of the bubble from the centreline of the channel (x = 0).

The lift and drag forces calculated from the numerically obtained results

using Eqs. (8) and (9) have been plotted for one of the two bubbles (on the

right-hand side) for the isothermal, linear and self-rewetting cases in Fig. 4.

It is evident from Fig. 4(a) that the lift force is negligible for bubbles in the

isothermal system. In contrast to this, there is a cyclic attractive force (i.e.

FL < 0) on the bubbles in the system where the surface tension varies linearly

with temperature (see Fig. 4(c)). The self-rewetting case shows negligible lift

till t ≈ 15 and then displays a cyclic attractive-repulsive force which diminishes

in magnitude with time, as shown in Fig. 4(e). The initial dynamics for t < 15

showing negligible lift may be attributed to a lower magnitude of the surface

tension gradients in the vicinity of the bubbles. For t > 15, while the bubbles

are in touch, the lift force acting between the bubbles oscillates about zero as

evident in Fig. 4e with a time period of about 1.7. It can be seen that the
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time period of the oscillations of the lift force for t > 15 is the same as the

time period of the variation of q/q0 as shown in Fig. 2c. Thus, the bubbles

exhibit a squeezing and relaxing behaviour until the oscillations in the lift force

die down due to the viscous force. This also indicates that Marangoni flow

causes the oscillations seen in Figs. 2(b,c) as the bubbles come into contact in

the self-rewetting fluid, since the lift force is a consequence of the Marangoni

flow. The drag force on bubbles in the isothermal system (Fig. 4(b)) reaches

a positive quasi-steady value at larger times; however, the drag force on the

linear and self-rewetting systems approach a negligibly small value (Figs. 4(d)

and (f)) as the time progresses. This is due to a temporary balance between

thermocapillary and buoyancy forces in the case of the linear and self-rewetting

systems.

More insights into the dynamics of the isothermal, linear and self-rewetting

systems can be gained by visualising the flow in and around the bubbles as

they rise. Fig. 5 shows the streamlines (in the frame of reference of the rising

bubbles) and temperature contours in these systems for q0 = 3 at different

time instants. In the isothermal system (Fig. 5(a)), it can be noticed that

the bubbles are gradually departing away from each other. Bubbles in the

linear system (Fig. 5(b)) tend to attract each other and the vortical flow inside

the bubbles suggests a tendency of the bubbles to come closer to each other.

[17] also analysed the interaction of the streamline patterns in the case of two

bubbles rising in a linear fluid. It can also be seen that, in the linear case, the

bubbles deform to slightly tilted oblate shapes due to the combined action of

buoyancy and thermocapillary forces. In this case, as the temperature of the

air inside the bubbles increases slowly, the colder regions at the centre of the

bubbles are clearly visible at t = 0.8 in Fig. 5. As the time progresses, this

colder region becomes lighter and rises up to form a ring at the upper part of the

bubbles. The thermocapillary force resulting due to the surface tension gradient

can be resolved in the horizontal and vertical directions. In the case of linear

fluid, while the horizontal component contributes to the lift force, the vertical

component acts in the upward direction (in the same direction as that of the
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Figure 5: Streamlines at different times for two bubbles rising in (a) isothermal, (b) linear

(M1 = 0.4, M2 = 0) and (c) self-rewetting (M1 = 0.4, M2 = 0.2) fluids for q0 = 3. The

streamlines are plotted in the frame of reference of the rising bubbles. The color contour in

panels (b) and (c) represents the temperature field.
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buoyancy force). In contrast, in the case of the self-rewetting fluid, after the

bubbles cross the location of minimum surface tension (ym = 10, see Fig. 1(b)),

the surface tension increases in the vertical direction (opposite to that in the

case of a linear fluid). Thus, the bubbles experience a downward force (opposing

the buoyancy force), in addition to the horizontal oscillatory lift force, due to

the thermo-capillary stresses. Thus, in case of the self-rewetting fluid (Fig.

5(c)), the bubbles come in contact and display repeated squeezing and relaxing

behaviour at later times as discussed above. Another interesting phenomenon

can also be observed in the self-rewetting fluid. It can be seen that at early

times (see, for instance, t = 3.5) a colder plume enters from the bottom part

of each bubble, which diffuses inside the bubble (see t = 7.6). At this stage a

hotter plume enters from the top part of each bubble and grows as the time

progresses. The fingers of the cold and hot plumes set a temperature gradient

across the interface, resulting in two sets of clockwise and counter-clockwise

rotating vortical regions, unlike the isothermal and linear cases.

Further, we analyse the orientation of one of the bubbles (bubble 1) as a

function of time as they rise in Figs. 6(a), (b) and (c) for the isothermal, linear

and self-rewetting cases, respectively. The orientation of the bubble 1 can be

defined as tan−1(ux/uy), wherein ux and uy are the x and y components of

the velocity of the centre of gravity of the bubble. So while a positive value

of the orientation indicates that the bubbles approach each other, a negative

value demonstrates repulsion. It can be seen that in the isothermal case (Fig. 6

(a)), the bubbles exhibit an initial attraction for a short time and then gradu-

ally move apart. In contrast, in the linear and self-rewetting cases, the bubbles

show attractive behaviour till the point of collision (the dynamics of the bubbles

after the collision will be discussed below). The bubbles approach each other

more rapidly in the case of the linear fluid as compared to that in the case of

the self-rewetting fluid. In the self-rewetting fluid, it can be observed that the

orientation of the bubble undergoes oscillations whose amplitude decreases with

time (Fig. 6(c)). These oscillations are also related to the oscillations observed

in Fig. 2(c). Figs. 7(a) and (b) show the surface tension contours along the
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Figure 6: Temporal variations of orientation of bubble 1 (tan−1(ux/uy)) in (a) isothermal

medium, (b) linear fluid (M1 = 0.4, M2 = 0) and (c) self-rewetting fluid (M1 = 0.4, M2 = 0.2)

for q0 = 3. The rest of the parameter values are the same as the base parameters.

interface of the bubbles rising in the linear and self-rewetting fluids, respectively.

Note that the interface has been made thicker for better visualisation. As ex-

pected, in the case of the linear fluid, the bubbles show a high surface tension

region at the bottom part and a low surface tension region at the top part of

the bubbles as the temperature increases as we move in the vertical direction

(Fig. 7(a)). This changes the orientation of the vortical flow (two recirculating

regions) inside the bubbles observed in the isothermal system (see Fig. 5). On

the other hand, dramatically different vortical flow patterns are observed in the

case of the self-rewetting fluid due to the non-monotonic surface tension profile

along the interface separating the fluids (Fig. 7(b)), which induces two sets of

clockwise and counterwise rotating vortical regions.

In order to understand the nature of collision of the bubbles in linear and
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(a) (b)

Figure 7: Variation of the surface tension along the interface (widened for visibility) of the

bubbles rising in the (a) linear fluid (M1 = 0.4, M2 = 0) and (b) self-rewetting fluid (M1 = 0.4,

M2 = 0.2) for q0 = 3. The rest of the parameter values are the same as the base parameters.

self-rewetting fluids, the temporal variations of yCG of bubble 1 rising in a linear

(M1 = 0.4, M2 = 0) and self-rewetting (M1 = 0.4, M2 = 0.2) fluids, have been

plotted in Figs. 8(a) and (b). Here q0 = 2.5, and the rest of the parameters are

the same as the base parameters. It can be seen in Fig. 8(a) that the bubbles

undergo large deformation and come in contact at t ≈ 1.5. The bubbles remain

in contact till t = 2.6 while they continue to deform. Subsequently, they repel

and move away from each other at later times (t > 2.6). In contrast, in the case

of the self-rewetting fluid, it can be seen in Fig. 8(b) that the bubbles experience

an attractive lift force and they collide at t ≈ 9. The bubbles remain in contact

hereafter and exhibit a repeated squeezing-relaxing behaviour as they undergo

small-amplitude oscillations. In this case, the bubbles are mostly spherical at

all instants. So it can be inferred that in the self-rewetting case the collision is

plastic in nature, while in the case of linear fluid it is not.

The effect of the initial separation distance between the bubbles, q0 is stud-

ied in Fig. 9. As expected, it can be seen that the intermediate decelerating
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(a) (b)

Figure 8: Temporal variations of yCG of the bubbles rising in a (a) linear fluid (M1 = 0.4,

M2 = 0) and (b) self-rewetting fluid (M1 = 0.4, M2 = 0.2) for q0 = 2.5. The rest of the

parameters are the same as the base parameters. The corresponding shapes of the bubbles

are shown at different time instants.
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Figure 9: Temporal variations of yCG of bubble 1 in a self-rewetting fluid (M1 = 0.4, M2 = 0.2)

for different values of q0. The rest of the parameter values are the same as the base parameters.
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Figure 10: Regime map demarcating the attractive and repulsive bubbles in We−M1 space

for q0 = 3 and M2 = M1/2. The filled circle and triangle symbols represent the repulsive and

attractive bubbles, respectively. The rest of the parameter values are the same as the base

parameters.

phase increases with the increase in q0 as the interaction between the bubbles

decreases. For q0 ≥ 4.5, the behaviours of the bubbles are almost independent

of each other. For q0 ≥ 4.5, the bubbles exhibit motion reversal after crossing

the location of the minimum surface tension, which is similar to that observed

in the case of a single gas bubble rising in a non-isothermal self-rewetting fluid

[26].

As discussed above the attraction of the bubbles observed at a low Reynolds

number in a non-isothermal self-rewetting system (in contrast to the repulsive

behaviour in an isothermal system) is due to the thermocapillary effect, we plot

a regime map demarcating the attractive and repulsive behaviours in We−M1

space for q0 = 3 in Fig. 10. It can be seen that the bubbles exhibits repulsive

motion for all values of We for M1 = 0 (isothermal case). Increasing the value

of M1 increases the critical value of the Weber number at which the transition

between the attractive and repulsive behaviours takes place. The critical Weber

number achieves a plateau of about 2.5 for M1 ≥ 0.3 for the base parameters

considered in this study. Figs. 11(a,c) and (b,d) depict the temporal variations

of q/q0 for different values of We for M1 = 0.4 and different values of M1 for

We = 1, respectively. Here, panels (a,b) and (c,d) correspond to self-rewetting

19



(a) (b)

0.96 0.97 0.98 0.99 1 1.01

q/q
0

0

5

10

15

20

t

0.5
2.5
3
5

We

0.994 0.996 0.998 1

q/q
0

0

2

4

6

8

10

t

0.01
0.1
0.3

M
1

(c) (d)

0.96 0.97 0.98 0.99 1 1.01

q/q
0

0

5

10

15

20

t

0.5
2.5
3
5

We

0.994 0.996 0.998 1

q/q
0

0

2

4

6

8

10

t

0.01
0.1
0.3

M
1

Figure 11: (a,c) Effect of Weber number on the temporal variations of q/q0: (a) M1 = 0.4

M2 = 0.2 (a self-rewetting fluid) and (c) M1 = 0.4, M2 = 0 (a linear fluid). (b,d) Effect of

M1 on the temporal variations of q/q0 for We = 1: (b) M2 = M1/2 (self-rewetting fluids)

and (d) M2 = 0 (linear fluids). The rest of the parameter values are the same as the base

parameters.
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Figure 12: Temporal variations of orientation of bubble 1 (tan−1(ux/uy)) in (a) M1 = 0.4

M2 = 0.2 (a self-rewetting fluid) and (c) M1 = 0.4, M2 = 0 (a linear fluid). The rest of the

parameter values are the same as those used to generate Fig. 11.
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and linear fluids, respectively. For self-rewetting fluid, it can be seen in Fig.

11(a) that while the bubbles clearly exhibit an attractive motion for We = 0.5,

and they repel each other after rising in nearly straight paths (q/q0 ≈ 1) at the

early times for We ≥ 2.5. In contrast, in the case of linear fluid, the repulsive

behaviour is observed only for We = 5. It is to be noted here that the bubbles

in the linear fluid undergo large deformation as shown in Fig. 8(a), whereas the

bubbles remain spherical even forWe = 5 in the case of self-rewetting fluid. This

indicates that the deformation increases the interaction of the boundary layers

around the bubbles, which in turn enhances the attractive motion. The influence

of the Weber number on the orientation of the bubble 1 for self-rewetting and

linear fluids is presented in Figs. 12(a) and (b), respectively. It can be seen

that the value of tan−1(ux/uy) in the linear fluid is much large than that of the

self-rewetting fluid which suggests that the bubbles in the linear fluid are more

attractive than the self rewetting fluid. It is also observed (not shown) that

increasing We decreases the lift force between the bubbles. Inspection of Figs.

11(b) and (d) also reveals that the tendency of the attractive motion is more in

the case of linear fluid as compared to the self-rewetting fluid for each value of

M1 (i.e., the rate of decrease of q/q0 is more in linear fluid as compared to the

self-rewetting fluid). However, in the case of linear fluid, after the collision, the

bubbles move away from each other while in the self-rewetting fluid they stay

in contact as shown in Fig. 8.

4. Concluding remarks

The interaction of two non-coalescing gas bubbles rising side-by-side in a

non-isothermal self-rewetting fluid is investigated. The rise dynamics of two

bubbles at low Reynolds number was shown to be planar by Tripathi et al. [7],

thus a two-dimensional geometry is considered in the present study. It is well

known that two side-by-side bubbles with a separation distance below a criti-

cal value in an isothermal medium are separated as they rise at low Reynolds

numbers [6]. On the other hand, we found that in a non-isothermal system with
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linear and self-rewetting fluids, two gas bubbles attract each other for the same

set of parameters that lead to a repulsive motion in an isothermal medium. In

the case of the self-rewetting fluid, the bubbles exhibit a squeezing-relaxing be-

haviour after crossing the location of the minimum surface tension due to the

thermocapillary stresses. Unlike the bubbles rising in the linear fluid, where

the bubbles attract and then bounce after the collision, it is found that the

collision between the bubbles in the self-rewetting fluid is plastic in nature.

The attractive and repulsive behaviours of the gas bubbles are found to be a

function of the Weber number (We) and the linear component of the surface

tension gradient with temperature (M1). However, it is observed that while the

air bubbles deformed significantly in the case of the linear fluid, they remain

spherical in the self-rewetting fluid even for the highest Weber number consid-

ered in the present study. This indicates that the attractive behaviour of the

bubbles in the case of the self-rewetting fluid is due to the lift force produced

by the thermocapillary stresses and not due to the deformation. A regime map

demarcating the repulsive and attractive behaviours in We−M1 space reveals

that the bubbles in a non-isothermal self-rewetting fluid experience attractive

motion in the low We and high M1 region and the critical value of We increases

with increasing M1 and obtains a plateau value of about 2.5 for M1 ≥ 0.3 for

the parameters considered in the present study. The mechanism underlying the

observed phenomena is elucidated by examining the drag-and-lift forces acting

on the bubbles, the streamlines and the temperature field and orientations of

the bubbles.
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