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Highlights

• FEM based model with and without van der Waals interaction is developed and validated for SWCNTs

and DWCNTs.

• FEM modeling of VACNTs with and without van der Waals forces are presented.

• Influence of arrays size of VACNTs on elastic modulus is studied.

• Influence of arrays size, intertube spacing and tube diameter on buckling strength of VACNTs is

studied.
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Abstract

Vertically aligned carbon nanotubes (VACNTs) have been explored widely in various applications due to

their unique anisotropic properties. However, its application is limited due to large aspect ratio of nanotubes

which lead to buckling phenomena. In this paper, we perform a finite element analysis to predict the

variation of elastic modulus and critical buckling load of VACNTs. While elastic modulus is obtained

from the slope of stress-strain variation of tubes when one end is fixed and another end is subjected to

longitudinal loading, critical buckling load is found using eigenvalue analysis corresponding to first buckling

mode. We also perform study to show size dependence of elastic modulus and buckling load of single walled

carbon nanotubes (SWCNTs) using FEM approach and compare the results with MD results found in the

literature. After validating FEM approach with available results of single-walled and double-walled carbon

nanotubes, we apply the same method to arrays of VACNTs. It is found that elastic modulus of VACNTs

increases from 1.18 TPa to 2.02 TPa when the size increases from 4 to 36 tubes and then it becomes nearly

size independent. The variations of critical buckling load versus other parameters such as tube diameter,

intertube spacing, etc., are also obtained. It is found that with the increase in diameter, there is a steep rise

in the buckling load for the case of VACNTs arrays. In order to show the influence of non-linear van der

Waals force in VACNTs, we compare the above results with and without the presence of van der Waals force

and discuss its significance. The modelling and analysis presented in the paper can be used to optimise the

number density of VACNTs for different applications.

Keywords: Vertically aligned carbon nanotube arrays, Single-walled carbon nanotube, van der Waals

interaction, Finite element method, Elastic modulus, Buckling.

1. Introduction

Carbon nanotubes (CNTs) have been the subject of intense research in various fields ranging from

aerospace to biomedical application due to their excellent mechanical, thermal and electrical properties

∗Corresponding author
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[1, 2]. Among many forms of the CNTs, vertically grown CNTs which are used for current or voltage related

devices have been explored widely due to their unique anisotropic properties [3]. However, due to their5

slender length, CNTs are limited by the buckling phenomena. To overcome this limitation, the researchers

started focusing on vertically aligned carbon nanotubes (VACNTs) of different densities. VACNT arrays

which are studied in the form of brushes, forests, films, mats and turf are characterized by the CNTs

orientation, density and intertube distance [4, 5, 6, 7, 8].

To theoretically understand the behavior of VACNTs, many researchers have developed different com-10

putational methods [9, 10, 11, 12]. Buckling behavior [13, 14] which involves large deformation requires

nonlinear modeling. Ru et al. [15] analyzed the buckling of multiwalled carbon nanotubes (MWCNT) rein-

forced elastic medium under the influence of van der Waals forces using an elastic model. Buehler et al. [16]

studied the deformation mechanism of very long SWCNTs under compressive buckling load. They specified

a shell-rod-wire transition of the mechanical behaviour of CNTs with increasing aspect ratios. Li et al. [17]15

observed the unique local buckling behavior of VACNT arrays considering the van der Waals interaction

only as lateral support and its propagation using the finite element method. Yakobson et al. [18] evalu-

ated and compared the results of molecular dynamics and continuum shell model for buckling of CNTs and

inferred that the continuum model provides a remarkably accurate roadmap of nanotube behavior beyond

Hooke’s law if model parameters are properly taken. Ru [19, 20] employed a classical continuum shell model20

enabling the van der Waals interlayer interactions to study the buckling of SWCNTs and MWCNTs under

axial compression and external pressure. Li et al. [12] used the molecular structural mechanics approach for

modeling the elastic buckling of SWCNTs and MWCNTs under bending and axial compression. Zhang and

Shen [21] analysed the thermal buckling of initially compressed SWCNTs subjected to a uniform tempera-

ture rise using the MD simulations. Murmu and Pradhan [22] used the nonlocal elasticity and Timoshenko25

beam theory to estimate the stability response of SWCNT embedded in an elastic medium. Guo et al. [23]

employed the atomic-scale FEM to estimate bending buckling of SWNTs. Yao et al. [24] have performed

extensive FEM simulations to demonstrate the buckling behavior of SWCNTs and MWCNTs under bending

deformation. They found that the FEM-based results agree well with that from atomistic methods and can

reduce the computational cost of atomistic models mainly for large-scale CNTs and systems having a large30

number of CNTs. To the best of authors’ knowledge, the numerical analysis of VACNT arrays including

nonlinear van der Waals interactions, which provides for the lateral and oblique support along the length of

adjacent tubes, is not yet done. Their inclusion is needed to provide a more realistic numerical model for

VACNT arrays.

In this paper, we present a systematic numerical model for arrays of VACNTs to analyze the influence35

of arrays parameters on their elastic modulus and buckling load. After validating the numerical model,

we perform simulations to obtain the stress-strain curves for arrays of VACNTs to observe the influence

of arrays parameter on elastic modulus. We then compute the critical buckling load in arrays of CNTs

3



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

and analyze its dependence on tube diameter, configuration (armchair or zigzag) and arrays density. The

chirality, diameter, aspect ratio and intertube spacing to model the arrays are selected based on the studies40

performed on different SWCNTs in the present work. All the above studies are performed with and without

non-linear van der Waals interaction force to show its significance in the modeling of VACNTs arrays.

2. Numerical implementation based on finite element modeling

To perform the numerical analysis, CNTs are replaced by an equivalent structural model. For this, the

carbon atoms connected by a covalent bond of fixed characteristic length are replaced by load-bearing beam45

elements connecting the nodes [11]. Molecular mechanics and structural mechanics models are correlated to

get the equivalent model. The corresponding structural model is used to evaluate the different mechanical

properties using FEM. The equivalent properties of beam based on carbon-carbon bond is obtained by

comparing the equivalent energy based on molecular and structural mechanics approaches [25]. Table 1

presents the relationship among different parameters of circular beam element of diameter (d), length (L),50

the Young’s modulus (E) and the shear modulus (G).

Here, the length of beam element, L, is taken as the bond length of C–C bond which is 0.142 nm; and kr,

kθ, and kτ are the spring coefficients of covalent bond in tension, bending and torsion, respectively, and their

values for taken as 653 nN/nm, 0.879 nN-nm/rad2 and 0.278 nN/rad2, respectively [11, 26, 27, 28]. ∆L, ∆α

and ∆β are the deformations under tension, bending and torsion, respectively. A = πd2/4 is cross-sectional55

area of the beam; I = πd4/64 and J = πd4/32 are cartesian and polar moments of inertia for the circular

cross-section of beam, respectively. Thus, the final properties for beam element to be used in FEM are taken

as d = 0.147 nm, E = 5488 nN/nm2, G = 871.1 nN/nm2, and Poisson’s ratio as 0.3, respectively [26].

Table 1: Relation derived from Chemical and Mechanical Parameters

Covalent bond Strain energy Relation

Energy of Beam after equating

Tension 1
2kr(∆r)2 1

2
EA
L

(∆L)2 do = 4
√

kθ

kr

Bending 1
2kθ(∆θ)2 1

2
EI
L
(∆α)2 E = L(kr)

2

4πkθ

Torsion 1
2kτ (∆φ)2 1

2
GJ
L
(∆β)2 G =

L(k2

rkφ)
8πk2

τ

2.1. Modeling of Nanotubes in FEM

In this section, we describe the method of modeling carbon nanotubes using FEM in ANSYS. To model60

CNTs, carbon atoms are represented as structural masses or joints, and chemical bonds between the atoms

are represented as beams, rods, trusses or springs, etc. [11] forming a space frame structure. To model

SWCNTs or DWCNTs arrays, two types of bonds, namely, the covalent bond and non-covalent bond due to

4
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Figure 1: (a) Plot of different bond potentials with interatomic distance for C-C covalent bond. (b) The tensile stress-strain

correlation for beam elements obtained from modified Morse potential, used to model the covalent bonds between carbon atoms.

(c) The load-displacement correlation for nonlinear spring elements derived from Lennard-Jones potential used to model van

der Waals force. The x-axis represents the length of a spring element (nm) while the y-axis represents the load on a spring

element (N).

van der Waals interaction, are considered as mechanical element. The precision of this numerical analysis

mainly depends on the accuracy of the selected interatomic and intermolecular potentials energy functions.65

These potentials are broadly used in the computational analysis of nanostructures. There are many in-

teratomic potential models available for different classes of materials. As we are dealing with CNTs in

our current study, for C-C covalent bond, the interatomic potentials such as Tersoff many-body potential

model, Brenner-Tersoff first generation hydrocarbon potentials, Brenner-Tersoff second-generation hydro-

carbon potentials, Modified Morse potential can be considered. A comparison of all these potential models70

ranging from 0.05 nm to 2.5 nm of interatomic distance is represented in Figure 1(a). It can be noted from

Figure 1(a) that Brenner-Tersoff second-generation potential is very close to the Modified Morse Potential

which can easily be applied and is popular used by other researchers [11, 28] for performing FEM simulation.

Therefore, in this work, a pairwise modified Morse interatomic potential is used to model C-C bonds.

In the present study, CNTs of desired configuration are generated through Matlab programming [29].75

The coordinates of CNTs are transferred to ANSYS. The positions of each carbon atoms are located at

the nodes. The covalent bonds between atoms are modeled using beam element, and the van der Waals

bonds are modeled using the spring element, respectively. The van der Waals forces between two carbon

atoms are highly nonlinear. Therefore, nonlinear spring elements are employed to connect the atoms. In

ANSYS [30], three-dimensional Beam 188 elements are used for covalent bonds. This element is suitable80

for linear and nonlinear, large rotation analysis and has the potential for uniaxial tension or compression

with bending and torsional deformations. The nonlinear effect can be captured effectively with NLGEOM,

ON option. However, the non-linear element properties need to be defined into ANSYS for this element

5
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in the form of material properties. The multilinear beam element property is taken from the nonlinear

stress-strain diagram as shown in Figure 1(b). Additionally, the elastic modulus which represents the slope85

of linear variation of stress versus strain at low strains is also defined. The nonlinear spring element is used

to model non-covalent bonds which is suitable for uniaxial tension and compression. These elements are

defined by two nodes and a nonlinear force-displacement relation obtained by Lennard-Jones (L-J) potential

as shown in Figure 1(c). Thus, the covalent bonds in SWCNTs are modelled by modified Morse potential

and the non-covalent van der Waals force interactions between two consecutive SWCNTs are modelled by90

L-J potential. In this work, the non-linearity is due to non-linear relation caused by non-linear material

properties arising from modified Morse potential between C-C atoms and the nonlinear force-displacement

relation obtained by Lennard-Jones (L-J) potential in modelling arrays of VACNTs.

2.1.1. Single-walled carbon nanotubes

In this section, we follow above mentioned approach to model SWCNT. To do the analysis, the tube

thickness is taken as 0.34 nm which is same as the van der Waals diameter of carbon [12]. One end of the

tube is fixed and another end is displaced longitudinally by ∆L gradually. For a given displacement, the

reaction force, Fnet, at the fixed end is computed. Subsequently, the stress and strain are computed and

plotted. Finally, the elastic modulus, E, is found as the ratio of stress versus strain using the following

relation

E =
σ

ε
=

Fnet

A0

∆L
L0

(1)

where, A0 = πDnt is the cross-sectional area of the tube and L0 is the initial length. The comparison95

between computed values and available results are done in section (4).

2.1.2. Multi-walled carbon nanotubes

To validate the modeling of van der Waals forces, we model multi-walled carbon nanotubes, i.e., MWCNT,

in which multiple concentric SWCNTs are placed together. In order to provide the connection between

different concentric tubes, we capture van der Waals interaction through nonlinear spring element based

on the Lennard-Jones or “6-12” potential [28, 31]. Figure 2 shows a typical FEM model of DWCNT. The

expression of spring force based on Lennard Jones potential can be written as the negative gradient of

potential as

F (r) = −

dU(r)

dr
= 24

ǫ

σ

[

2
(σ

r

)13

−

(σ

r

)7
]

(2)

where, r is the distance between interacting atoms, and ǫ and σ are the Lennard-Jones parameters. For

carbon atoms, these parameters are potential well depth, ǫ = 0.0556 kcal/mol = 3.86 × 10−3 N-nm and

zero potential diameter, σ= 0.34 nm [31]. In MWCNT, an atom in one layer forms an interacting pair with

many atoms from the neighbouring layers where the distance between the pair of atoms is less than 2.5σ.

Therefore, van der Waals force evaluated from the Lennard-Jones potential is negligible beyond the distance

6
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van der Waals interactions

(nonlinear Spring Element)

SWCNTs

(Beam Element)

DWCNT

Figure 2: Schematic of typical DWCNT geometry showing covalent bonds with van der Waals bonds.

(a) (b) (c)

Figure 3: (a) Nodes of 10 X 10 arrays of (8,8) SWCNT with boundary conditions. (b) Beam elements of 10×10 arrays of (8,8)

SWCNT with loading. (c) Connecting spring elements of 10× 10 arrays of (8,8) SWCNT with loading.

2.5σ between the carbon atoms [31]. So, the connecting element is activated when the distance between two

atoms located at consecutive neighbouring tubes is lesser than 2.5σ. DWCNTs with different chiralities are

also investigated with axial loading and boundary conditions similar to that applied in SWCNTs as shown

in Figure 2. Additionally, to obtain stress versus strain curve to compute elastic modulus using Eq. 1, we

take the expression of area as,

A =
π

4

[

(do + t)2 − (di − t)2
]

(3)

where, do and di are the outer and inner diameters of the tube. The thickness, t, of each tube is taken as

0.34 nm.

2.1.3. Arrays of single-walled carbon nanotubes100

In this section, we describe the modeling procedure of an array of VACNTs. Unlike, the single element of

SWCNT or DWCNT, VACNTs consist of arrays of SWCNTs or DWCNTs in different patterns. Therefore,

to model the influence of adjacent tubes on any other tube, non-bonding van der Waals forces are again

modeled using non-linear spring element which provides lateral as well as oblique support in the radial

7
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direction throughout the length of the adjacent tubes. Subsequently, the static analysis is done to compute105

elastic modulus of VACNTs. Using the computed elastic modulus of VACNTs, we perform buckling analysis

to find the critical loads for fixed-free boundary condition.

To describe the modeling procedure, we take vertically aligned tubes of SWCNTs with identical chirality,

diameter and length under the influence of van der Waals interactions which is captured using the non-linear

spring element. We consider arrays of 4 (2×2), 16 (4×4), 36 (6×6), 64 (8×8) and 100 (10×10) SWCNTs110

for the study. The intertube distance between the two SWCNTs are taken as 0.34 nm, the reason for this

is explained later in Sec. 4.3.1. The nanotubes are constrained at the bottom nodes and axial displacement

is provided at the top nodes of all the tubes of an array as shown in Figure 3 (a). The geometries showing

covalent and van der Waals bonds in case of 10 × 10 array of (8,8) type in Figure 3 (b) and Figure 3 (c),

respectively. The thickness (t) of the nanotubes is taken as 0.34 nm. The total cross-sectional area is found115

by multiplying the number of tubes with the cross-sectional area of the single tube, i.e., πDt, where, D is

the diameter of one SWCNT in the array. Subsequently, the stress-strain relation is found to compute the

elastic modulus of VACNT arrays. Finally, we perform simulations on arrays of SWCNTs with different size

to study its influence on elastic modulus.

3. Buckling Behavior120

The buckling phenomena represent structural instability for a long column of a beam under compressive

loading. Under this condition, the long column shows sudden and large sideways deflection due to increase in

the load beyond its certain value. The load at which the buckling phenomena initiate buckling instability is

called critical load. Hence, it is an important quantity to be evaluated for slender elements such as vertically

aligned carbon nanotubes. The critical buckling load can be evaluated using different methods based on125

the theory of structural stability [32]. One of the simplest methods is based on eigenvalue or bifurcation

analysis under which the structure is assumed to be an ideally elastic [12]. For fixed boundary condition at

one end and compressive load or displacement at another end, the eigenvalue analysis gives critical buckling

loads corresponding to different buckling modes. In general, the critical loads obtained using this method

over-predicts the actual values as compared to nonlinear buckling analysis [12, 33]. In nonlinear buckling130

analysis, the nonlinear analysis is done in which the compressive loads are increased in small step till the

buckling is observed. However, in the present paper, we use eigenvalue method to compute buckling loads

in single as well as an array of VACNTs.

The critical buckling load of a slender column under compressive loading can also be obtained using the

classical Euler’s column buckling model [34] by various researchers [16, 35, 36, 37, 38]. The basic form of

critical load to predict the CNT buckling can be represented as [12, 32, 39],

Pc =
Cπ2EI

L2
(4)

8
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where, C depends on the end condition of the column, here, it is 0.25, E is the elastic modulus, I is the

moment of inertia π
64 (D

4
o −D4

i ) for the cross-section of CNT, Do is the external diameter, Di is the internal

diameter of the hollow CNT, L is the length of tube. If A = π
4 (D

2
o−D2

i ) is the area of CNT then the critical

strain, ǫc, and critical stress, σc can be expressed as

σc = Eǫc =
Pc

A
. (5)

However, they can be applied directly to find critical load in arrays of VACNTs. In the subsequent section,

we also modify the above formula based on the numerical analysis to compute critical loads in VACNTs.135

4. Results and discussion

In this section, we first present the validation of FEM modelling of SWCNTs with molecular dynamics

and other finite element results available in the literature. Subsequently, we analyze the variation of elastic

modulus of VACNTs and then compute critical buckling loads as the size of arrays increases.

4.1. Validation140
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0
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S
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Present (8,8)

Present (10,10)

Ehsan et al. (10,10)

Figure 4: The nonlinear stress-strain curve for various configurations of SWCNTs.

Figure 4 and Table 2 show the validation of elastic properties of SWCNT and DWCNT (van der Waals

forces). To show size dependence behavior, we have carried out further validation with MD results. Figures 5

(a) and (b) depict that for tube diameter greater than 1 nm, elastic modulus becomes nearly independent

of tube diameter. On comparing the results with MD simulation, a percentage error of 8-15 % is found in

case of armchair and 1.5 to 3.5% for zigzag CNTs [40]. The effect of aspect ratio of tube on the elastic145

property of CNT is also shown in Figure 5 (c) using different values of length ranging from 7 nm to 42.5

9
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Figure 5: Comparison of the elastic modulus of the present FEM study and existing MD results[40]. Variation of elastic

modulus with diameter of (a) armchair and (b) zigzag CNTs. (c) The effect of length on the elastic modulus of the (8,8)

armchair SWCNT.

nm. The percentage change in elastic properties is found to be about 16% over the above range of tube

length. Hence, the elastic properties also vary with aspect ratio. However, we have also found that the

elastic modulus is almost constant of the aspect ratio is less than or equal to 10 which is also shown in [41].

Hence, we maintain take aspect ratio equal or less than 10 for further analysis of VACNTs.

Table 2: Young’s Modulus for DWCNTs

Type of Young’s Modulus

DWCNT (in TPa)

Ehsan et al. [28, 42] Present Value

(5,0)-(14,0) 0.9514 0.943

(12,0)-(21,0) 0.9531 0.9728

150

Figure 6(a) show the comparison of critical buckling load corresponding to fundamental mode versus

aspect ratio (L/D) of SWCNTs with armchair and zigzag configurations. An inset of Figure 6 (a) also

show other buckling modes. Variation of critical buckling load corresponding to fundamental mode is also

compared with the results obtained by Hu et al. [39] and analytical expression based on Euler buckling

formula [12]. It is also found that FEM results show lower value as compared with the analytical results from155

Eqn. (4)[12] for lower values of aspect ratio. But it shows almost similar variation for larger aspect ratios.

The same trend is observed for SWCNTs with configurations of (8,8) and (14,0) which are also compared

with MD results from literature [43] as shown in shown in Figure 6 (b). It can be seen that the results are

in good agreement with MD simulation results. The maximum percentage error of 18% and 15% are found

in case of armchair and zigzag CNTs, respectively. Sun et al. [44] also mentioned in their work that the160

when the diameter of SWCNT is smaller than 1 nm and the aspect ratio is higher than 8, it will become

axially unstable in the slender beam-like shape in compression. So, these two values could be considered as

10
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Figure 6: Comparison of the compressive critical buckling load for present and previous results obtained from different methods

for SWCNT (a) armchair (3,3) and zigzag (5,0) configurations and the inset showing the various mode shapes for buckling of

zigzag (5,0) CNT, L/D= 8.35, (b) Comparison of the critical compressive buckling load of the present FEM study with the

existing MD simulation results [43] and (c) The influence of chirality of SWCNT on the buckling load with different aspect

ratios.

critical diameter and critical aspect ratio, respectively.

To analyze the influence of chirality on the buckling property, three different configurations of SWCNTs

are chosen. Maintaining the diameters of armchair (8,8), chiral (9,7) and zigzag (14,0) CNTs as 1.0856,165

1.0884 and 1.0968 nm, respectively, which are nearly same, we perform buckling analysis for the range of

length varying from 7.05 nm to 42.5 nm. Figure 6 (c) depicts clearly that for this range of aspect ratios, the

critical buckling load is nearly identical for all the three chiral configurations. It is seen that for all the three

chiral effects, the critical buckling load decreases with the increase of aspect ratio. Therefore, we would use

the armchair (8,8) configurations for studying the buckling behavior of arrays of different sizes.170

Additionally, the above analysis validates our methodology in which we model covalent bond between

carbon atoms by beam element and non-bond van der Waals interactions using nonlinear spring element.

Therefore, the same procedure can be used for performing elastic and buckling analysis in arrays of VA-

SWCNTs.

4.2. Elastic behavior of VA-SWCNT arrays175

To compute stress-strain curves of VA-SWCNTs, we take arrays of size 2 × 2, 4 × 4, 6 × 6, 8 × 8, and

10 × 10, respectively. Figure 7 shows the variation of such curves of different sizes. The variation of the

slope of stress-strain curves, i.e., elastic modulus, show that it increases from 1.18 TPa to 2.02 TPa with

increase in the size of arrays from 2× 2 = 4 to 6× 6 = 36, and then becomes stagnant at 8× 8 or beyond.

Such increase in elastic modulus is due to non-linear van der Waals forces between the tubes. Therefore, it180

can be inferred that strengthening of VACNTs by increasing the size of arrays beyond 6× 6 has little effect

on the elastic modulus, i.e., it shows size-independent behavior. Furthermore, an inset of Figure 7 shows

that Young’s modulus remains nearly unchanged if we do not consider the van der Waals interaction (i.e.

no van der Waals interaction force). Now, we perform the buckling analysis of VACNTs in the next section.

11



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Strain

0

20

40

60

80

100

120

140

160

180

S
tr

es
s 

(G
P

a)

SWCNT (8 8)

Two SWCNTs

Array of 2X2

Array of 4X4

Array of 6X6

Array of 8X8

Array of 10X10 1X2

SWCNT

2X2

4X4

10X10

 Array Size (N)

E
 (

T
P

a)

without VDW interaction

with VDW interactions

0 20 40 8060 100
0.5

1.0
1.5

2.0

2.5

Figure 7: Nonlinear stress-strain curves for 2× 2, 4× 4, 6× 6, 8× 8 and 10× 10 arrays of (8,8) SWCNTs.

4.3. Buckling behavior of VA-SWCNT arrays185

In this section, we analyze the influence of intertube spacing and tube diameter on the critical buckling

load of VACNTs with and without the presence of non-linear van der Waals forces.

4.3.1. Effect of intertube distance between two SWCNTs

It is observed that the spacing between two vertically aligned carbon nanotubes (VACNTs) in 1×2 array

under consideration play a significant role on the overall buckling strength. Taking the minimum intertube190

distance as 0.34 nm based on minimum applicable distance of the L-J potential (see Eq. 2). Figure 8 show

the effect of intertube distance between two SWCNTs on the critical compressive buckling load. For this

purpose, the armchair (8,8) CNTs having a length of 10 nm are chosen and the range of intertube spacing

is considered from 0.34-8 nm. Figure 8 depicts that the value of critical buckling load is maximum when

the interlayer spacing between two VSWCNTs is 0.34 nm. An increase in interlayer spacing reduces the195

buckling strength due to the reduction in the strength of van der Waals forces between two VACNTs. If

the non-bonded force provided by van der Waals interaction force is not considered, the buckling strength

remains constant and becomes independent of intertube spacing. Since the critical buckling load is maximum

at the intertube spacing of 0.34 nm, we take the same intertube spacing to study the influence of array size

of VACNTs on critical buckling load.200

To study the influence of array size of VACNTs on critical buckling load, the armchair (8,8) SWCNTs

having diameter 1.0856 nm and tube length 5.5 nm giving an aspect ratio of approximately 5 is considered

for all the arrays. Although, VACNT arrays do not always constitute purely vertical CNTs as the CNTs

are entangled and somewhat hagged in shape, though, the general direction of growth is vertical. This is

important for buckling studies, but for the sake of simplicity, we assume vertically aligned straight nanotubes205
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as shown in Figures 3 (a)-(c) in this analysis. For fixed boundary condition at one end and uniformly

distributed compressive loading at another end, we perform buckling analysis to find critical buckling load

in VA-SWCNTs arrays of different size. Figure 9 shows the first buckling mode for VA-SWCNT arrays of

varying size. It is interesting to note that the deformed mode shapes under buckling are similar for varying

number of tubes in arrays. Corresponding to first buckled mode, Figure 10 (a) shows that the compressive210

buckling load increases linearly with a number of tubes for same values of the tube length, chirality and

intertube spacing in arrays. However, when the buckling load is plotted in log scale, the influence of van

der Waals forces on the buckling strength of different size of arrays can be analyzed nicely. It is found that

for constant length and intertube spacing between VACNTs, the buckling load increases linearly and then

becomes nearly independent of array size as shown in Figure 10(a). On comparing the variation of buckling215

load with and without van der Waals forces, the trends found to be similar but the magnitude of buckling

load is found to be lesser if van der Waals forces are not considered.

Similarly, Figure 10(b) shows the influence of tube diameter on critical buckling load for armchair as well

as zigzag configurations of 8× 8 VACNTs array with tube length of 5.5nm. It is observed that the buckling

load first reduces significantly with tube diameter for both the configurations till the diameter of 0.54 nm220

before becoming constant. It is found that the diameter of 0.54 nm corresponds to the chirality of (4,4) in

case of armchair and (7,0) in case of zigzag configurations, respectively. The reason for this behavior is that

at the smallest diameter (i.e., (2,2) and (3,0) for armchair and zigzag, respectively), the number of van der

Waals interactions is maximum An increase in diameter causes it to reduce, and, thus, the critical buckling

load decreases. Later, the buckling load becomes invariable with further increases in diameter. Figure 10225
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Influence of SWCNT diameter on the buckling load for 8× 8 arrays of armchair and zigzag configurations.

(b) also shows the influence of diameter of 8×8 VACNTs array on buckling load without non-linear van der

Waals interactions. It shows that the critical buckling load value give smaller values (6-1000 nN) compared

to the values computed without considering the van der Waals interactions. As the diameter increases, the

critical load is small and remains nearly constant before increasing. However, its value remains below the

buckling load obtained in the presence of van der Waals forces for the same diameter.230

To develop an approximate model to compute buckling load in VA-SWCNTs, we compare the numerical

solution with analytical results based on Euler’s column buckling from Eqn. 4. Since the critical buckling

load formula requires area moment of inertia of arrays, we compute it from the difference of rectangular

cross-section of the array and the circular cross-section of tubes present in the array. The elastic modulus

of different VA-SWCNTs can be taken from the inset of Figure 7. After inserting the moment of inertia,235

elastic modulus and the distributed load in the formula given by Eqn. (4) and comparing the results with

numerical values, we obtain the modified formula as
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P cr
num = Cξ × P cr

Euler

where, the correction factor is defined as ( for N > 3),

Cξ =
1

12(N − 3)
, (6)

N is the number of nanotubes in an array. Finally, the formula can be written as

P cr
num =

( 1

12(N − 3)

)

× P cr
Euler

=
( 1

12(N − 3)

)

×

(π2EI

4L2

)

. (7)

Figure 10(a) shows the variation of buckling load obtained from Eqn. (7) with number of tubes, N . It

captures the variation of buckling load effectively as compared with that with numerical simulation.

4.3.2. Effect of diameter of SWCNT for slander CNTs240

Finally, we have also carried out a study to find the effect of diameter of a slander nanotubes of length 14.2

nm on the critical buckling load. Figure 11 demonstrates the comparison of critical compressive buckling load

(nN) corresponding to various diameters of SWCNTs ranging from 0.5 to 3 nm. The SWCNTs of armchair

types (4,4), (6,6), (8,8), (10,10), (12,12), (14,14), (16,16), (18,18), (20,20) and (22,22) configurations are

selected. Similarly, the diameter range of zigzag type configurations (7,0), (11,0), (14,0), (17,0), (21,0),245

(24,0), (28,0), (31,0), (35,0) and (38,0) of SWCNTs are also considered. Two SWCNTs and 2× 2 SWCNTs
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are modeled for a constant intertube distance of 0.34 nm, and diameters are taken similar to that with the

armchair SWCNTs. The length of all the models are fixed at 14.2 nm. It can be seen from the Figure 11

that both the armchair and zigzag types of SWCNTs show the similar buckling behavior in compression

for the chosen diameter range. In case of two SWCNTs structure, the critical buckling loads are higher as250

compared with that of the single SWCNT. A further increases in diameter makes the curve steeper. For

the case of 2 × 2 SWCNTs, the values of critical buckling loads increases at higher rate and then becomes

independent of tube diameter. On comparing the variation of buckling load without non-linear van der

Waals interaction, it is found that a significant improvement in the overall buckling strength is obtained in

2 × 2 array of CNTs. Whereas, no significant difference in the buckling strength of two (1 × 2) SWCNTs255

with and without van der Waals interactions is observed. Therefore, it can be inferred that with increased

number of tubes the effect of non-linear van der Waals force should be considered in numerical modeling.

5. Conclusion

We have presented a finite element analysis of single as well as an array of VACNTs to analyze the

influence of array parameters on the elastic modulus and critical buckling loads. To validate the modeling260

techniques, we first compared the results related with elastic modulus and buckling loads of SWCNT. To

validate the modeling of van-der Waals forces, we compare the results of DWCNTs in which concentric tubes

are modeled using this forces. After validating the modeling techniques, we apply the same method to study

the influence of size, intertube spacing, and diameter of tubes on elastic and buckling characteristics with

and without van der Waals forces. Taking the intertube spacing same as the minimum applicable distance265

of L-J potential, i.e., 0.34 nm at which the critical buckling load gives maximum value. It is found that

the elastic modulus increases by about 41.6% when the array size increases from 2 × 2 to 6 × 6. Beyond

this size of the array, we note that the elastic modulus becomes size-independent. Thus, it can be inferred

that for the large size of the VACNT arrays, the elastic modulus becomes independent of array size and it

begins to observe the classical mechanics principle. We have also shown that for aspect ratio considered in270

this work, the critical buckling load of SWCNT is nearly identical for different chiralities. On varying the

diameter of tubes for a constant length of the armchair and zigzag SWCNTs of array size 8 × 8, we have

found that the critical buckling load reduces sharply with increase in tube diameter. After the diameter of

0.54 nm corresponding to (4,4) armchair or (7,0) zigzag configurations, the buckling load remains almost

constant. Also, it is shown that with an increase of individual CNT diameter of a slander tube of length275

14.2 nm, there is a sharp increase in critical buckling load for 2× 2 arrays as compared to isolated SWCNT.

On comparing the above results with that of VACNTs arrays without considering non-linear van der Waals

forces, we have found that van der Waals forces play an extremely important role in tuning the elastic

and buckling characteristics of VACNTs. Finally, we have also proposed a modified formula to compute
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buckling load in VA-SWCNT arrays which can be used to optimize the density of VACNTs for different280

applications. Also, this work can be considered to be an initial motivation to carry out further research

in the area of numerical analysis of VACNTs which is computationally very intensive to perform using the

standard method of molecular dynamic simulations.
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