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Inflation in minimal left-right symmetric model with spontaneous D-parity breaking
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We present a simplest inflationary scenario in the minimal left-right symmetric model with spontaneous D-

parity breaking, which is a well motivated particle physics model for neutrino masses. This leads us to connect

the observed anisotropies in the cosmic microwave background to the sub-eV neutrino masses. The baryon

asymmetry via the leptogenesis route is also discussed briefly.
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It is now widely believed that the Universe has gone

through a period of inflation [1] at the earliest moment of its

history. Inflation is required to explain finely tuned initial con-

ditions of the standard hot big bang cosmology, as well as

to solve many cosmological problems such as homogeneity,

isotropy and flatness of the observable Universe. Moreover, it

is predicted that during inflation primordial density perturba-

tions, necessary for large scale structure in the Universe and

the temperature fluctuations in the cosmic microwave back-

ground (CMB), are generated from quantum fluctuations. The

mechanism of inflation is now a well established subject [2],

and recent observations of the galaxy distribution and the

CMB are in strong favor of inflation [3].

It is, however, still unclear how to build a realistic and sen-

sible scenario of inflation in particle physics. Because of the

extremely high energy scale of the early universe where infla-

tion takes place, it is usually believed that the particle physics

models, invoked as a plausible framework to implement infla-

tion, would possess larger symmetries than the standard model

(SM) of particle physics. Supersymmetry (SUSY) and grand

unified theories (GUTs) are such popular extensions of the

SM [4].

An attractive extension of the SM is the minimal left-right

symmetric model [5] with spontaneous D- parity breaking [6].

The advantages of considering this model is that (a) it has a

natural explanation for the origin of parity violation which is

preferential under the SM gauge group SU(3)C × SU(2)L ×
U(1)Y , (b) it can be easily embedded in the SO(10) GUT,

and (c) B− L is a gauge symmetry: since B− L is a gauge

symmetry of the model, it is not possible to have any L-

asymmetry [7] before the left-right gauge symmetry breaking.

A net L-asymmetry is produced after the B−L gauge symme-

try breaking phase transition. The L-asymmetry is then trans-

ferred to the required baryon asymmetry in the presence of the

non-perturbative electroweak processes which conserve B−L
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but violate B+L.

In this letter we present an inflationary scenario embedded

in such an extension of the SM. We saw that in contrast to

the conventional left-right symmetric model where D-parity

breaks at O(1016) GeV or below, the inflationary scenario in

this model demands D-parity should be broken above GUT

scale. Therefore, other than the conventional successes of

the inflationary scenario, it naturally explains the vanishingly

small, but non-zero neutrino masses and the observed baryon

asymmetry through the leptogenesis route. We also saw that

in the certain parameter space the observed anisotropies in the

cosmic microwave background radiation is intimately related

to the sub-eV neutrino masses. Thus our model is not only

cosmologically relevant, but also favorable for the observed

particle physics phenomenology.

Left-right symmetric model: We now recapitulate the salient

features of the minimal left-right symmetric model with spon-

taneous D-parity violation. The gauge group of the model is

given by SU(2)L × SU(2)R ×U(1)B−L ×P. At a high scale

(1016 ∼ 1019) GeV the parity is broken by a singlet field

σ(1,1,0), with the numbers inside the parentheses being the

quantum numbers under the gauge group, and it leaves the

gauge symmetry SU(2)L × SU(2)R ×U(1)B−L intact. At a

comparative low scale SU(2)R ×U(1)B−L gauge symmetry

is broken to U(1)Y by a triplet scalar ∆R(1,3,2). Through

the Majorana Yukawa coupling ∆R gives masses to the right-

handed neutrinos which anchor the canonical seesaw mech-

anism [8] to give small Majorana masses to the left handed

physical neutrinos. The left-right gauge symmetry requires

another triplet ∆L(3,1,2) whose vacuum expectation value

(VEV) gives masses to the physical left handed neutrinos

through the triplet seesaw [9]. Finally SU(2)L×U(1)Y is bro-

ken to U(1)em by a bidoublet Φ(2,2,0) which essentially con-

tains two copies of SU(2) doublets with opposite hypercharge.

This gives masses to all the SM fields. Under the left-right

parity the scalars transform as

σ ↔−σ, ∆R ↔ ∆L and Φ↔ Φ† . (1)

On the other hand, the fermion doublets ψT
L (2,1,−1) ≡

(νL,eL) and ψT
R(1,2,−1)≡ (νR,eR) under the left-right parity

transform as ψL ↔ ψR.



2

Since σ is a singlet field under the gauge group SU(2)L ×
SU(2)R ×U(1)B−L it may dominate the energy density of the

Universe for some duration and hence can play the role of the

inflaton field [10]. As we will see soon, inflation occurs while

σ is slowly rolling on its potential towards the minimum. As

soon as σ acquires a VEV parity is broken. Therefore, σ plays

a dual role in this model. However, it does not affect the gauge

symmetry of the group, since as mentioned above it is a singlet

under the remaining gauge group. A bonus point in this model

is that inflation solves the generic domain wall problem by

sweeping them away.

We now write down the potential involving the scalar fields

∆R, ∆L, Φ and σ. The relevant potential for the rest of our

discussion is given by

V = Vσ +VΦ+V∆ +Vσ∆+VσΦ+VΦ∆ , (2)

where

Vσ =− 1

2
µ2σ2 +

1

4
λσ4 +V0 ,

V∆ =− µ2
∆

[
Tr

(
∆L∆†

L

)
+Tr

(
∆R∆†

R

)]
+ quartic terms ,

Vσ∆ =Mσ
[
Tr(∆R∆†

R)−Tr(∆L∆†
L)
]

+ γσ2
[
Tr(∆L∆†

L)+Tr(∆R∆†
R)
]
,

VΦ∆ =β
[
Tr

(
Φ̃∆RΦ†∆†

L

)
+Tr

(
Φ̃†∆LΦ∆†

R

)]
+ · · · , (3)

where µ and all µa, with a denoting ∆, Φ, and Φ̃ = τ2Φ∗τ2,

are positive. VΦ and VσΦ are chosen in such a way that

Φ acquires a VEV and hence breaks the gauge symmetry

SU(2)L ×U(1)Y down to U(1)em. In Vσ, V0 is a constant and

properly chosen so that the minimum of the potential Vσ set-

tles at zero.

As the Universe expands, the temperature falls so that be-

low the critical temperature Tc ≡ σP, σ acquires a VEV

〈σ〉 ≡ σP =
µ√
λ
. (4)

As a result, the effective masses of the triplets ∆L and ∆R are

given by

M∆R
=
√

µ2
∆ − (MσP + γσ2

P) ,

M∆L
=
√

µ2
∆ +(MσP − γσ2

P) . (5)

We now do a fine tuning to set M2
∆R

> 0, so that it acquires a

VEV

〈∆R〉=
(

0 0

vR 0

)
. (6)

At a few hundred GeV Φ and Φ̃ will acquire VEVs

〈Φ〉=
(

k1 0

0 k2

)
and 〈Φ̃〉=

(
k2 0

0 k1

)
. (7)

However, this induces a non-trivial VEV for the triplet ∆L as

〈∆L〉=
(

0 0

vL 0

)
. (8)

This gives masses to neutrinos through type-II seesaw. There-

fore, it is worth checking the order of magnitude of vL. From

V∆, Vσ∆ and VΦ∆ of Eq. (3) we get

vR
∂V

∂vL

− vL
∂V

∂vR

= vLvR[4MσP]+ 2βk2
1(v

2
R − v2

L) = 0 . (9)

Observed phenomenology requires vL ≪ k2 < k1 ≪ vR. Thus

the above equation gives

vL ≈ −βv2vR

2MσP

, (10)

where we have used v =
√

k2
1 + k2

2 ≈ k1 = 174 GeV and β is a

coupling constant of O(1). Notice that in the above equation

the smallness of the VEV of ∆L is decided by the parity break-

ing scale, but not the SU(2)R breaking scale [15]. So there are

no constraints on vR from the type-II seesaw point of view.

Inflation by σ: As mentioned before, since σ is a singlet its

energy density dominates the total energy density of the Uni-

verse and hence is able to drive inflation. From Vσ of Eq. (3)

we can see that the choice V0 = µ4/(4λ) sets the minimum of

the potential to be zero. We now write the slow-roll parame-

ters in terms of V (σ) as

ε ≡ M2
Pl

16π

(
V ′

V

)2

and η ≡ M2
Pl

8π
V ′′

V
, (11)

where MPl ≡G−1/2 ≈ 1.22×1019 GeV is the Planck mass and

the prime denotes a derivative with respect to σ. Inflation ends

when the scale factor accelerates no more, and this happens

when εend = 1. This gives

σ2
end ≈

µ4

4λ
(
λM2

Pl/(4π)+ µ2
) . (12)

Thus the number of e-folds from σ to σend can be estimated as

N(σ) =− 8π
M2

Pl

Z σend

σ

V

V ′ dσ

=
πµ2

λM2
Pl

log

[
µ4

4λ
(
λM2

Pl/(4π)+ µ2
)

σ2

]

− π
M2

Pl

[
µ4

4λ
(
λM2

Pl/(4π)+ µ2
)

σ2
−σ2

]
, (13)

where we note that the contribution from the second term is

much less than that from the first term. From the observed

amplitude of the density perturbations on the COBE scale [11]

δH =

√
1

75π2m6
Pl

V 3
H

V ′
H

2
≈ 1.91× 10−5 , (14)
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we can find the corresponding value of σ as

σ2
H ≈ 8π3µ8

λ3A2
HM6

Pl

, (15)

where AH ≡
√

75πδH ≈ 5.19× 10−4. Then we can easily es-

timate the spectral index at the COBE point as [12]

ns ≈ 1− λM2
Pl

πµ2
− 40π2µ4

λA2
HM4

Pl

. (16)

As a sample set of values, let us take µ = 2/π×10−6MPl ≈
7.77× 1012 GeV and λ = 4/π4 × 10−12 ≈ 4.11× 10−14: this

set gives the minimum of the potential at πMPl with an infla-

tionary energy scale O
(
1016

)
GeV. From Eqs. (13), (15) and

(16), we obtain[16] NH ≈ 59.0 and ns ≈ 0.963. Also, due to

the relatively high inflationary energy scale, we find a tensor-

to-scalar ratio r very close to the observational sensitivity of

near future experiments, r ≈ 0.0163. In Fig. 1, we show the

contour plots of both ns and NH on the λ-µ plane.

After the end of inflation, σ eventually starts oscillation

around its minimum µ/
√

λ and decays into light relativistic

particles, reheating the universe to restore the gauge symmetry

SU(2)L × SU(2)R ×U(1)B−L with the reheating temperature

being estimated as [13]

TRH ∼ O(0.1)
√

ΓσMPl , (17)

where we have taken the number of relativistic degrees of free-

dom to be O
(
102 ∼ 103

)
.

Neutrino masses and the CMB anisotropies: The relevant

Yukawa couplings that are giving masses to the three genera-

tions of leptons are given by

−LYukawa =hi jψiLΦψjR + h̃i jψiLΦ̃ψjR + h.c.

+ fi j

[
ψT

iRCiτ2∆Rψ jR +(R ↔ L)
]
+ h.c. (18)

The discrete left-right symmetry ensures the Majorana

Yukawa coupling f to be the same for both left and right-

handed neutrinos. The breaking of the left-right symmetry

down to U(1)em results in the effective mass matrix of the

physical left handed neutrinos to be

mν =
−βv2vR

2MσP

f − v2

vR

h f−1hT

= mII
ν +mI

ν , (19)

where we have used Eq. (10) for type-II contribution and ne-

glected O(k2/k1) ≈ (mb/mt) terms in the type-I contribution.

Assuming that h, f and β are O(1) couplings, the relative mag-

nitude of mI
ν and mII

ν depend on the parameter space of vR,M
and σP. In the following we assume that type-II term domi-

nates. This is a viable assumption for M < v2
R/σP. In what

follows we will work in this regime and then we have

H ≡ mνm†
ν ≈

(−βv2vR

2MσP

)2

f f † , (20)

where an appropriate choice of f will explain the leptonic

mixing. H can be diagonalised by using the UPMNS matrix

and then we will get the solar and atmospheric mass scales

∆m2
◦ ≡m2

2 −m2
1 =

(−βv2vR

2MσP

)2

∆ f 2
12 ,

∆m2
atm ≡|m2

3 −m2
2|=

(−βv2vR

2MσP

)2

|∆ f 2
23| , (21)

where ∆ f 2
12 = f 2

2 − f 2
1 and ∆ f 2

23 = f 2
3 − f 2

2 . Using Eq. (15)

in the above equation we get the solar and atmospheric mass

scales to be

∆m2
◦ =

(−βv2vR

2MMPl

)2(
8πµ2

75σ2
H

)1/3

∆ f 2
12δ−2/3

H , (22)

∆m2
atm =

(−βv2vR

2MMPl

)2(
8πµ2

75σ2
H

)1/3

|∆ f 2
23|δ

−2/3
H . (23)

In the above equations µ can be determined from the precise

measurement of ns in the future CMB experiments. Notice

that Eqs. (22) and (23) give an important relation between the

observed neutrino mass scales ∆m2
◦ and ∆m2

atm, and the ampli-

tude of perturbations on the CMB scale predicted by inflation-

ary scenario in left-right symmetric models with spontaneous

D-parity breaking. This is an important prediction of the the-

ory.

Lepton asymmetry: Assuming a normal hierarchy in the

right-handed neutrino sector, the decay of the lightest right-

handed neutrino can give rise to a net lepton asymmetry

through

N1 →
{

e−iL +φ+1
e+iL +φ−1 ,

(24)

where N1 = [ν1R
+(ν1R

)c]/
√

2. The CP asymmetry in the

above decay process is estimated to be

δCP ≈− 1

8π

(
f1

f2

) ℑ
(
h†h

)2

12

(h†h)11

, (25)

where f1 and f2 are two of the eigenvalues of f matrix, and we

have neglected O(k2/k1)≈ (mb/mt) terms. The lepton asym-

metry is then transferred to the required baryon asymmetry

through the electroweak sphaleron processes which conserve

B−L but violate B+L. A successful baryon asymmetry re-

quires a lower bound on the mass scale of the lightest right-

handed neutrino to be M1 & 4.8× 108 GeV [14].

Conclusions and outlooks: We have seen that within the

left-right symmetric model inflation is possible only if the

left-right parity and SU(2)R gauge symmetry are broken at

different scales. In particular, the left-right parity is broken

at O(MPl), while leaving SU(2)R gauge symmetry preserved

until O(1014) GeV or so. As a standard routine, after inflation

the Universe is reheated to restore the left-right gauge sym-

metry SU(2)L × SU(2)R ×U(1)B−L. As a result a net baryon

asymmetry, required for successful big bang nucleosynthesis,
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FIG. 1: The contour plots of (left) ns and (right) NH . The horizontal and vertical axes are log10 λ and log10 (µ/MPl), respectively, for both

graphs. In the contour plot of ns, the contours denote 0.99, 0.97, 0.94, 0.90 and 0.85 from the innermost line. Likewise, we have set 1000,

500, 100, 10 and 1 in the NH plot. Note that in the right panel although we have NH ≫ 1 in the upper left region, the values of λ and µ taken

from here will place the minimum of potential far larger than MPl and the form of the effective potential is apt to an appreciable modification,

spoiling all the results we have estimated. Thus we disregard the values of λ and µ within this region.

could be generated through the leptogenesis route. An im-

portant prediction in this model is that the neutrino masses

are connected to the anisotropies in the CMB predicted by

inflation. We conjecture that this can be implemented in the

SO(10) model which, at present, is the most favorable sce-

nario for neutrino masses and mixings. Since {210} field con-

tains a SU(4)C ×SU(2)L×SU(2)R singlet it can play the role

of σ as in the present case. This is under consideration and

will be reported separately.
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