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Index Codes for the Gaussian Broadcast Channel

using Quadrature Amplitude Modulation
Lakshmi Natarajan, Yi Hong, and Emanuele Viterbo

Abstract—We propose index codes, based on multidimensional
QAM constellations, for the Gaussian broadcast channel, where
every receiver demands all the messages from the source. The effi-
ciency with which an index code exploits receiver side information
in this broadcast channel is characterised by a code design metric
called side information gain. The known index codes for this
broadcast channel enjoy large side information gains, but do not
encode all the source messages at the same rate, and do not admit
message sizes that are powers of two. The index codes proposed
in this letter, which are based on linear codes over integer rings,
overcome both these drawbacks and yet provide large values
of side information gain. With the aid of a computer search,

we obtain QAM index codes for encoding up to 5 messages
with message sizes 2

m, m ≤ 6. We also present the simulated
performance of a new 16-QAM index code, concatenated with
an off-the-shelf LDPC code, which is observed to operate within
4.3 dB of the broadcast channel capacity.

Index Terms—Codes over rings, Gaussian broadcast, index
coding, quadrature amplitude modulation, side information.

I. INTRODUCTION

C
ODING for broadcast channels, where receivers know

some part of the transmitted messages a priori, is called

index coding and is well-known for noiseless binary broadcast

channels [1]–[3]. In the case of noisy binary broadcast, the

index codes of [4] provide equal error correcting capability

at all receivers and exploit the receiver side information to

enhance the code rate, while the codes of [5]–[7] transform

side information into improvements in error performance. The

capacity of general index coding over Gaussian broadcast

channel is unknown, but information theoretic results are

available for some special cases [8]–[12]. Separation-based

coding schemes using a (noiseless) index code and a broadcast

channel code are, in general, sub-optimal, since the channel

decoders do not utilize the receiver side information, and the

channel coding rate is limited by the receiver with the worst

signal-to-noise ratio. This motivates schemes that perform

index coding at the physical layer.

Lattice based codes were proposed in [13] for the special

case of index coding over the Gaussian broadcast channel

where the transmitter has K independent messages, each

receiver knows some subset of the K messages a priori,

and every receiver demands all the messages at the source.
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These index codes are designed to convert receiver side

information into apparent SNR gains. The minimum distance

of the effective code perceived by a receiver is a function of

the index subset S ⊂ {1, . . . ,K} of the messages available at

the receiver as side information. The side information gain of

a code is a metric that measures the efficiency with which re-

ceiver side information is converted to actual coding gain [13].

The index codes of [13] provide large side information gains,

and they can be concatenated with outer channel codes to

improve coding gain against channel noise. These index codes,

however, suffer from two practical drawbacks: (i) they do not

encode all messages at equal rate, and (ii) they do not admit

message sizes that are powers of 2.

In this letter, we present the first class of index codes for this

special case of Gaussian broadcast channel that encode all the

messages with equal rate (Section III). These new index codes

allow messages of arbitrary sizes, including sizes that are

powers of 2. The proposed index codes are multidimensional

QAM constellations whose points are labelled with message

symbols using the framework of linear codes over the ring

ZM of integers modulo M . Using a computer search, we

obtain QAM index codes with large side information gains for

message sizes 2m, m ≤ 6, and number of messages K ≤ 5.

We also present simulation results on the performance of a

QAM index code when used as a modulation scheme in a

system employing an outer channel code (Section IV). We

observe that the new 16-QAM index modulation scheme for

K = 2 messages, when encoded with an off-the-shelf rate-
1/2 LDPC code, performs 4.3 dB away from capacity in the

Gaussian broadcast channel at 10−4 bit error rate.

II. INDEX CODES FOR GAUSSIAN BROADCAST CHANNEL

We consider a non-fading Gaussian broadcast channel

with single-antenna terminals, where every receiver demands

K independent messages from the transmitter, denoted by

w1, . . . , wK that assume values from W1, . . . ,WK , respec-

tively. The transmitter operates under an average power con-

straint, the receivers experience additive white Gaussian noise

(with possibly different noise powers), and each receiver has

prior knowledge of some subset of the K messages as side in-

formation. An n–dimensional index code (ρ,X ) for this Gaus-

sian broadcast channel consists of a channel code X ⊂ Rn and

an encoding function ρ : W1 × · · · ×WK → X . The rate of

transmission of the kth message is Rk = 1/n log2 |Wk| bits per

dimension (b/dim). A receiver that has the prior knowledge of

the symbols wwwS = (wk, k ∈ S), S ( {1, . . . ,K}, and experi-

ences a signal-to-noise ratio of SNR is denoted by (SNR, S).
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Fig. 1. The labelling scheme for the 16-QAM index code. The four points
forming the subcode corresponding to the side information w1 = 0 are
highlighted with circles. The subcode for w2 = 0 is marked with squares.

We are interested in codes that provide good error performance

(versus SNR) for every S ( {1, . . . ,K}, or equivalently, for

2K − 1 receivers, one corresponding to each S ( {1, . . . ,K}.

Consider the channel output yyy = ρ(w1, . . . , wK) + zzz at a

generic receiver (SNR, S), where zzz ∈ Rn is the additive

Gaussian noise with variance 1/SNR per dimension. A re-

ceiver with no side information, i.e. with S = ∅, decodes

yyy to argminxxx∈X ‖yyy − xxx‖. The minimum Euclidean dis-

tance d0 = min{‖xxx1 − xxx2‖ |xxx1,xxx2 ∈ X ,xxx1 6= xxx2} between

any pair of points in X determines the error performance at

this receiver. A receiver with S 6= ∅ has prior knowledge of

the value of the message vector wwwS . Given the information

wk = ak, k ∈ S, written concisely as wwwS = aaaS , this receiver

generates a subcode XaaaS
⊂ X by expurgating all codewords

in X with wwwS 6= aaaS , and decodes yyy to the closest point in

XaaaS
. Let daaaS

= {‖xxx1 − xxx2‖ |xxx1,xxx2 ∈ XaaaS
,xxx1 6= xxx2} be the

minimum Euclidean distance of XaaaS
, and dS = minaaaS

daaaS
.

The average error performance and coding gain at this receiver

are determined by dS . The asymptotic additional SNR gain

due to the knowledge of wwwS is thus 10 log10 (d
2

S/d2

0
) dB. This

squared distance gain must be measured against the amount

of side information in wwwS , or equivalently, against the side
information rate RS ,

∑

k∈S Rk b/dim. The side information
gain [13] of the code (ρ,X ), defined as

Γ , min
∅(S({1,...,K}

10 log10 (d
2

S/d2

0
)

RS
dB/b/dim, (1)

is the minimum additional coding gain available from each

bit per dimension of side information for any S. The prior

knowledge of wwwS provides an asymptotic SNR gain of at

least Γ×RS dB over the performance of X with no side

information. Hence, (ρ,X ) is a good index code if (i) X is

a good channel code for the traditional single user AWGN

channel, i.e., for a receiver with S = ∅, and (ii) Γ is large, so

as to maximize the minimum gain from side information for

receivers with S 6= ∅.

To motivate our work, we now show an example of a new

index code using 16-QAM, that encodes two 4-ary message

symbols with equal rate, and provides Γ ≈ 6 dB/b/dim.

Example 1. Let K = 2, and number of receivers be

2K − 1 = 3, with the corresponding side information in-

dex sets S = ∅, {1}, {2}, respectively. Let W1 = W2 =
{0, 1, 2, 3}, n = 2 and X be the 16-QAM constellation, then

R1 = R2 = 1 b/dim. Fig. 1 depicts the new code, where

each of the 16 points xxx is labelled with the corresponding

message tuple ρ−1(xxx) = (w1, w2). The receiver with S = ∅

must decode both w1, w2, and hence, it decodes the received

vector to nearest point in X . The error performance at this

receiver is that of the 16-QAM signal set. Let w1 = 0, then

the receiver with S = {1} knows that the transmit vector is

one of the four points corresponding to w1 = 0 (marked with

circles in Fig. 1), and hence, its decoder restricts its choice

of candidate codewords to these four points. Observe that

the minimum Euclidean distance between these four points is

twice the minimum Euclidean distance d0 of X . The minimum

distance corresponding to each of the other three values of w1

is also 2d0, and hence, dS = 2d0 for S = {1}. It is easy to

check that dS = 2d0 for S = {2} as well. Thus, the error per-

formance at the two receivers, corresponding to S = {1}, {2},

respectively, is approximately 10 log10(2
2) ≈ 6 dB better than

that of the receiver with S = ∅. Since RS = 1 b/dim for

S = {1}, {2}, from (1), the side information gain of this code

is 10 log10(2
2) ≈ 6 dB/b/dim.

III. QAM CONSTELLATIONS FOR INDEX CODING

In this section, we present multidimensional QAM con-

stellations for index coding using linear codes over the

ring of integers modulo M . For even and odd values of

M , let ZM denote the sets
{

−M
2
,−M−2

2
, . . . , 0, . . . , M−2

2

}

and
{

−M−1
2

,−M−3
2

, . . . , 0, . . . , M−1
2

}

, respectively. For any

a ∈ Z, let a mod M be the unique remainder of a in ZM

when divided by M . With addition and multiplication per-

formed modulo M , the set ZM has the structure of a commu-

tative ring. The mod M operation satisfies the property that

for any x ∈ Z, |x mod M | ≤ |x|. The set Zn
M of all n-tuples

is a module over ZM with addition and scalar multiplication

performed component-wise. Similar to the scalar case, we have

‖xxx mod M‖ ≤ ‖xxx‖ for every xxx ∈ Zn.

A unit is an element of a ring with a multiplicative

inverse, and the set of all units of a ring form a multi-

plicative group. In the case of ZM , the units are precisely

the elements that are relatively prime with M in Z, i.e.,

U(ZM ) = {a ∈ ZM | gcd(a,M) = 1 in Z}, where gcd de-

notes the greatest common divisor. When M is a power of

2, U(ZM ) is the set of all odd integers in ZM .

Assuming |W1| = · · · = |WK | = M , we identify each al-

phabet Wk with the ring ZM . We consider ZM–linear en-

coding of the K messages where the code length equals

the number of messages, i.e., n = K, and the subcode as-

sociated with each message is of rank 1. The kth subcode

Xk = {wkccck mod M |wk ∈ ZM}, corresponding to the mes-

sage wk , is generated by a single vector ccck ∈ ZK
M .

Definition 1. A ZM -linear index code for K messages con-

sists of a set of K generators ccc1, . . . , cccK ∈ ZK
M , such that the

linear encoder xxx = ρ(w1, . . . , wK) =
∑K

k=1 wkccck mod M is

injective.

The injectivity of ρ in Definition 1 ensures unique decod-

ability of messages at a receiver with no side information.
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Since the message space W1 × · · · ×WK = ZK
M , injectivity

of ρ implies that X = ZK
M . In order to transmit the signal,

we embed the codeword xxx ∈ ZK
M into the Euclidean space

RK using the natural map. Hence, the minimum distance with

no side information is d0 = 1. The linear index code can be

viewed as a labelling of the multidimensional QAM constella-

tion ZK
M , where each constellation point xxx is associated with

the message tuple (w1, . . . , wK) = ρ−1 (xxx). Note that xxx may

be translated by a fixed offset prior to transmission to minimize

the transmit power.

A linear index code is fully characterized by the matrix

CCC ∈ ZK×K
M whose rows are the K generators ccc1, . . . , cccK . The

encoding matrix CCC defines a linear transformation from the

message space ZK
M to the space X = ZK

M of codewords. Thus,

the encoder map ρ is injective if and only if CCC is invertible

over ZM , i.e., det(CCC) ∈ U(ZM ).

Example 2 (16-QAM). Consider M = 4, K = 2 and the

two generators ccc1 = (1,−2) and ccc2 = (−2, 1). The encoder is

xxx = w1ccc1 + w2ccc2 mod 4 = (w1 − 2w2,−2w1 + w2) mod 4,

and the encoding matrix is CCC =

(

ccc1

ccc2

)

=

(

1 −2

−2 1

)

. Since

det(CCC) = −3 mod 4 = 1 is a unit in Z4, this code is uniquely

decodable. The resulting index code is the 16-QAM labelling

scheme illustrated in Example 1 and Fig. 1.

A. Side information gain

All the K messages have the same transmission rate

Rk = 1/K log2 M b/dim. The side information rate at the re-

ceiver (SNR, S) is RS =
∑

k∈S Rk = |S|
K log2 M b/dim. We

now relate the minimum distance dS to the length of the short-

est vector of a certain lattice. This allows us to numerically

compute the value of dS , and hence Γ(X ), using efficient

algorithms available for calculating the shortest vectors in

lattices [14]. Let S̄ denote the complement of the set S. For

any S ⊂ {1, . . . ,K}, the subcode generated by wk, k ∈ S̄, is

XS̄ =
{

∑

k∈S̄ wkccck mod M
∣

∣

∣
wk ∈ ZM

}

. Consider

ΛXS̄
= XS̄ +MZK =

{

xxx+Muuu |xxx ∈ XS̄ ,uuu ∈ ZK
}

,

which is known as the Construction A lattice [15] of the linear

code XS̄ . The lattice ΛXS̄
is generated by ccck, k ∈ S̄, and the

K rows of MIIIK . A basis for ΛXS̄
can be efficiently computed

from this set of generators, for example, using an algorithm

based on LLL reduction [16]. For any set of points in RK , let

dmin(·) denote the minimum Euclidean distance between any

two distinct points in the set. For a lattice Λ, dmin(Λ) equals

the length of its shortest vector.

Lemma 1. If ΛXS̄
contains a shortest vector www such that

www /∈ MZK , then dS = dmin

(

ΛXS̄

)

; else dS ≥ M .

Proof: Let the side information at the receiver (SNR, S)
be wwwS = aaaS . Then the subcode XaaaS

to be decoded is
{

∑

k∈S akccck +
∑

k∈S̄ wkccck mod M
∣

∣

∣
wk ∈ ZM , k ∈ S̄

}

,

that equals ttt+ XS̄ mod M , where ttt =
∑

k∈S akccck mod M
is known at the receiver. Since the modulo operation is

TABLE I
BEST LINEAR INDEX CODES WITH CIRCULANT ENCODING MATRIX CCC .

M
K = n

2 3 4 5

4
(1,−2) (1,−2,−2) (1, 1,−1, 0) (1,−2, 1,−1, 0)

6.02 4.52 3.01 3.76

8
(1, 2) (1, 2, 0) (1, 0, 3, 3) (1,−1, 2, 2,−3)

4.65 3.49 4.01 4.70

16
(1,−4) (1, 2,−6) (1, 4,−6,−8) (1,−2,−5,−4, 5)

6.02 5.24 5.57 5.28

32
(1, 6) (1,−10, 14) (1, 10, 14, 2) (1,−8,−5, 15,−6)

5.85 5.73 5.80 5.77

64
(1,−28) (1,−26,−4) (1,−26, 20, 30) (1, 16, 18,−9, 21)

6.04 5.73 5.85 5.82

equivalent to the addition of an appropriate vector from MZK ,

we have

XaaaS
= ttt+ XS̄ mod M ⊂ ttt+ XS̄ +MZK = ttt+ ΛXS̄

.

Hence, dmin(XaaaS
) ≥ dmin(ttt+ ΛXS̄

) = dmin(ΛXS̄
).

If a shortest vector of ΛXS̄
lies in MZK , then dmin(ΛXS̄

) =
dmin(MZK) = M , and hence dmin(XaaaS

) ≥ M . This proves

the second part of the lemma.

To prove the first part we will now show that

dmin(XaaaS
) ≤ dmin(ΛXS̄

) if www is a shortest vector of ΛXS̄
and

www /∈ MZK . Note that www mod M 6= 000 and www mod M ∈ XS̄ .

Hence, dmin (XS̄) ≤ ‖www mod M‖ ≤ ‖www‖. Since XaaaS
is a

coset of XS̄ in ZK
M , we have dmin(XaaaS

) = dmin(XS̄). Thus,

we have dmin(XaaaS
) = dmin(XS̄) ≤ ‖www‖ = dmin(ΛXS̄

). This

completes the proof.

Lemma 1 provides the exact value of dS , and hence
10 log

10

(

d
2

S
/d2

0

)

/RS , only if we can find a shortest vector

www ∈ ΛXS̄
such that www mod M 6= 000. Otherwise, the lemma

yields only a lower bound on 10 log
10

(

d
2

S
/d2

0

)

/RS.

B. Computer search

We use a computer search to find linear index codes with

large side information gains. To reduce the complexity of the

exhaustive search we restrict our search space to codes whose

encoding matrices CCC are circulant. We present results for

n = K = 2, 3, 4, 5 and M = 4, 8, 16, 32, 64. For each choice

of CCC , with det(CCC) ∈ U(ZM ), we found that the value of S
that minimizes 10 log

10

(

d
2

S
/d2

0

)

/RS yields a lattice ΛXS̄
with a

shortest vector www such that www mod M 6= 000. Hence, using

Lemma 1, we were able to calculate the exact value of

Γ = minS 10 log
10

(

d
2

S
/d2

0

)

/RS for each candidate index code.

For each M,K , Table I lists one index code with the largest

side information gain Γ among all codes with circulant en-

coding matrices. The table shows the first row of the circulant

matrix CCC and the side information gain Γ (in dB/b/dim).

All the index codes have Γ ≥ 3 dB/b/dim, and for M ≥ 16,

the gain is at least 5.24 dB/b/dim. In comparison, the codes

from [13] provide Γ ≈ 6 dB/b/dim. Since the construction

of [13] relies on the Chinese remainder theorem, the resulting

message sizes |W1|, . . . , |WK | are powers of different primes.

Here, we circumvent this problem by using codes over ZM ,

but rely on numerical techniques to estimate Γ.
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Fig. 2. Performance of the 16-QAM index code used as a modulation scheme
with two identical (4000, 2000) LDPC codes and iterative decoders.

IV. SIMULATION RESULTS & CONCLUSION

The proposed index codes are effective in exploiting receiver

side information, but are sensitive to channel noise. The

channel coding gain can be improved by encoding the K
information sources independently with channel codes, and

modulating the resulting K coded streams using a QAM index

code. Consider K = 2 independent messages to be broadcast

to three receivers, with S = ∅, {1}, {2}, respectively. We

use the 16-QAM index code of Examples 1 and 2 (optimal

from Table I) concatenated with K = 2 identical rate-1/2
(4000, 2000) regular LDPC codes (variable-node degree 3,

check-node degree 6) catalogued in [17] using bit interleaved

coded-modulation (BICM) [18]. For each information source,

2000 information bits are encoded into a 4000 length LDPC

codeword, which is then interleaved using a random inter-

leaver. Four coded bits, two each from the two interleaved se-

quences, are mapped to two Z4 symbols, which are then mod-

ulated to a 16-QAM point using the index code of Example 1.

The coded bit rate of each source is R1 = R2 = 1/2 b/dim.

Each receiver regards the two information sources as in-

dependent users, and employs an iterative multiuser detec-

tor [19] composed of three soft-in soft-out (SISO) a posteriori

probability blocks [20]: one 16-QAM demodulator, and two

LDPC decoders. Each LDPC decoder block uses 50 iterations

between the check nodes and variable nodes, and the multiuser

iterative demodulator-decoder uses 16 iterations between the

three SISO blocks. For the receivers with S = {1}, {2}, the

side information is fed as input a priori probabilities to the

corresponding LDPC decoder.

From [12], we know that a rate tuple (R1, R2) is achievable

if and only if 1/2 log2 (1 + SNR) >
∑K

k=1 Rk −RS for every

receiver (SNR, S). For the three receivers corresponding to

S = ∅, {1}, {2}, RS equals 0 b/dim, R1 = 1/2 b/dim and

R2 = 1/2 b/dim, respectively. It follows that the minimum

required SNR at the three receivers are 4.77 dB, 0 dB and

0 dB, respectively.

Fig. 2 shows the performance of the LDPC-coded 16-QAM

index code for S = ∅, {1}, {2} and the capacity limits on the

SNR. At bit error rate 10−4, the system performs 2.4 dB from

capacity for S = {1}, {2}, and 4.3 dB away for S = ∅. While

the LDPC code has contributed to channel coding gain, the

symbol mapping provided by the inner index code has yielded

significant SNR gains for the receivers that know either of the

two messages a priori.

We have presented the first known family of index codes

for the Gaussian broadcast channel that admit equal message

rates, and with message sizes that are powers of 2. The

method employed to obtain these codes is limited to small

values of M and K because of the complexity involved in

the computer search. An analytical approach could extend the

results to larger number of messages. Our simulations used

a standard LDPC code designed for the single-user AWGN

channel to improve noise resilience. Designing efficient coded-

modulation techniques matched to the proposed modulation

schemes may be crucial to achieve higher coding gains.
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