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Shear banding is a plastic instability in large

deformation of solids where the flow becomes

concentrated in narrow layers, with broad

implications in materials processing applications

and dynamic failure of metals. Given the extremely

small length and time scales involved, several

challenges persist in studying the development of

shear bands. Here, we present a new approach to

study shear bands at low speeds using low melting

point alloys. We use in situ imaging to directly capture

the essential features of shear banding, including

transition from homogeneous to shear banded flow,

band nucleation and propagation dynamics, and

temporal evolution of the flow around a developing

band. High-resolution, time-resolved measurements

of the local displacement and velocity profiles during

shear band growth are presented. The experiments

are complemented by an analysis of the shear band

growth as a Bingham fluid flow. It is shown that shear

banding occurs only beyond a critical shear stress

and is accompanied by a sharp drop in the viscosity

by several orders of magnitude, analogous to the

yielding transition in yield-stress fluids. Likewise,

the displacement field around a nucleated band

evolves in a manner that resembles boundary layer

formation, with the band thickness scaling with time

as a power law.

1. Introduction
Shear banding is a remarkable phenomenon in

deformation of solids where the flow becomes spatially

concentrated in narrow layers (shear bands) even when

the remote loading is homogeneous. Shear banding

has been documented in a diverse range of material

2020 The Author(s) Published by the Royal Society. All rights reserved.
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systems, including geological materials [1], polymers [2,3] and metals, both crystalline [4,5]

and amorphous [6–8]. The occurrence of shear bands in ductile polycrystalline metals has

long received particular attention because of their adverse consequences for material failure in

processing applications involving large material deformation such as forming [9,10] (also see

[11]), machining [12] and wear (tribology) [13]. In addition, shear banding is now recognized

as an important mechanism for fracture in high-strain-rate applications such as shock and impact

[14,15]; and is also considered as one of the ‘hot-spot’ ignition mechanisms in powdered and

granular explosives [16].

Some distinguishing characteristics of shear bands are their small (but finite) thicknesses in

the range of 5–100 µm [17], large plastic strains greater than 10 [18,19], long aspect ratios and

unrestrained propagation across microstructural features such as grain or phase boundaries,

extremely high strain rates of about 105–106 s−1 [20], large local temperatures close to melting,

and high propagation speeds up to a kilometre per second [21]. To date, shear bands in metals

have been studied almost exclusively through post-mortem techniques, with only a few in situ

observations made of the localization process. Notable exceptions in this regard are the shear

band displacement measurements in dynamic torsional experiments by Duffy’s group [22] and

Giovanola [20,23], where high-speed photography was used to measure the distortion of a grid

that is inscribed onto the sample surface. Unfortunately, in both cases, the spatial resolution was

coarser than the overall shear band thickness. Similarly, high-speed infrared imaging techniques

were used [21,24] to measure the temperature distribution across a shear band that was generated

by impacting on a pre-notched plate. These types of measurements, particularly involving

characterization of the localized plastic flow in and around the band, are of special importance for

understanding the post-localization behaviour of shear bands and eventual transition to fracture.

For example, in certain metals, the commencement of localization is immediately followed by

fracture, while in other instances, the shear band acts as a site for further plastic flow (with strains

sometimes exceeding approx. 100 [18]). The underlying reasons for these differences are unclear.

Furthermore, since the characteristic shear band strains and strain rates lie well beyond those

that are accessibly by ordinary material tests, measurements made in the neighbourhood of a

band may also prove useful for understanding the material response under extreme deformation

conditions. However, even to date, high-resolution measurements of velocity, displacement and

strain profiles in the region of a developing shear band are scarce, mainly because of the

experimental difficulties associated with the very small length (µm) and time (µs) scales involved.

Recently, a micro-marker method has been developed by Sagapuram et al. [19,25] to measure

shear band displacement and strain fields at high resolution (submicrometre) and under strain

rates up to 105 s−1. The kinematic field data from this technique were further used to deduce the

local constitutive response of the shear band. The material in the vicinity of the band was shown to

exhibit boundary layer characteristics of a Bingham fluid. While this method has enabled detailed

spatial characterization of the boundary layer structure and local material constants (dynamic

viscosity), and also appears to be applicable to a variety of metals, being an ex situ technique, it is

not capable of resolving the temporal dynamics of shear band boundary layer formation.

Here, we introduce a new approach to study shear band formation in situ using low melting

fusible alloys that have melting points in the range of 50–150◦C. A remarkable characteristic

of these alloys is that they show similar plastic flow properties to those of conventional

(high-temperature) structural metals, while exhibiting shear banding at low strain rates of

approximately 10 s−1. In prior work [26,27], this has enabled us to capture key details of shear

band nucleation, namely, the initiation location, nucleation stress and propagation velocity. In the

present paper, we study the post-nucleation growth phase of shear banding with specific focus

on the temporal evolution of the shear band boundary layer structure. For this, time-resolved

displacement and velocity measurements in the vicinity of a developing shear band are made

at high spatial resolution of approximately 1 µm. These observations are complemented by force

measurements and a viscous sliding model for the shear band growth so as to analyse the local

behaviour of the shear band as a function of the external (imposed) strain rate. Our studies reveal

that shear banding occurs only beyond a critical shear stress and is accompanied by a large drop
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in the material viscosity, in a manner analogous to the ‘solid-to-liquid’ phase transition in yield-

stress fluids. Our experiments also provide a mechanistic explanation for widening of the shear

band thickness, previously conjectured in rate-dependent solids using boundary layer analysis

[28,29].

2. Experimental set-up

(a) Shear loading configuration

Two-dimensional plane-strain cutting as shown in figure 1a was used as an experimental

framework to impose controlled shear deformation under different strain rates. In this geometry, a

thin layer of material of predefined thickness t0 is removed in the form of a chip by shearing action

of a sharp wedge-shaped tool. A unique aspect of the cutting geometry is that shear deformation

is imposed in a well-characterized and confined zone (red shaded area, figure 1a). The average

strain rate within the zone can be approximated as εV0/� [30], where V0 is the relative velocity

of sample with respect to tool, ε is the effective (von Mises) strain imposed in the chip and � is

the shear zone thickness (typically 50–100 µm). This scaling enables a study of shear behaviour

of metals over a range of strain rates by simple variation of V0. Since strains in cutting of ductile

metals are typically in the range of 0.5–5 [30], strain rates from 1 to 105 s−1 are easily accessible by

cutting [19,31]. Furthermore, from the standpoint of studying shear bands, an inherent advantage

of cutting when compared to some other deformation geometries (e.g. ballistic impact or radial

collapse of thick cylinders) is that the evolution of a single shear band can be studied in isolation

without interfering effects from the other bands, since only one shear band is active at any given

time instant [31].

In our experimental set-up (figure 1b), the metal sample is in the form of a rectangular plate

(75 × 25 × 2 mm) that is moved with respect to a stationary tool using a linear slide at a controlled

velocity V0. A ground high-speed steel wedge-shaped tool (edge radius <10 µm and average

surface roughness of 0.45 µm) was used as the cutting tool. t0 was kept constant at approximately

250 µm; this t0, which is much smaller than the sample width (2 mm), was chosen to ensure plane-

strain deformation conditions. The tool rake angle α (figure 1a) was varied from 0◦ to +40◦. V0

was in the range of 0.01 to 10 mm s−1. Under cutting conditions where shear banding occurred,

we observed that periodic undulations of approximately 3 µm develop on the machined surface.

In such cases, before proceeding to the next cut, the surface of the sample was brought back to

its original condition (average surface roughness of 1 µm) by making a series of very thin cuts at

slow speeds.

The cutting forces in two orthogonal directions (along and perpendicular to V0) were

measured using a piezoelectric dynamometer (Kistler 9129AA, 3.5 kHz natural frequency),

mounted directly below the cutting tool (figure 1b). The plastic flow and shear band formation

were observed in situ using a high-speed CMOS camera (pco dimax HS4), coupled with an

optical microscope with a 10× objective. To prevent out-of-plane flow and ensure plane-strain

deformation at the surface that is being imaged, the side surface of the workpiece was lightly

constrained using a sapphire glass plate. Although the camera is capable of recording image

sequences at up to 50 000 frames per second, in the present study, frame rates of about 100–2000

per second (depending on V0) were found to be adequate for capturing the shear band evolution.

The spatial resolution of our imaging was 0.98 µm per pixel.

(b) Material system

The material studied is a low melting point bismuth-based alloy, commonly known as Wood’s

metal, with a nominal composition of 50% Bi, 26.7% Pb, 13.3% Sn and 10% Cd (by weight) and

a melting point of 70◦C. The material was obtained in an ingot form from RotoMetals Inc. (San

Leandro, California). Measurements of thermophysical properties (thermal conductivity, thermal

diffusivity and specific heat) of this material were made at Thermophysical Properties Research
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Figure 1. (a) Schematic illustrating shear deformation in a two-dimensional plane-strain cutting process. The deformation

zone (OA) where plastic shearing occurs is highlighted in red. (b) Schematic of the experimental set-up used for in situ imaging

of shear bands and plastic flow. (Online version in colour.)

Table 1. Thermophysical properties of Wood’s metal at 23◦C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

composition (wt %) 50% Bi, 26.7% Pb, 13.3% Sn, 10% Cd
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

melting point (Tm) 70◦C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density (ρ) 9.26 × 103 kg m−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thermal diffusivity (κ ) 0.14 × 10−4 m2 s−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

specific heat (C) 165.7 W s kg−1 K−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thermal conductivity (k) 21.5 W m−1 K−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Laboratory Inc. (West Lafayette, Indiana). The room-temperature (23◦C) properties are listed in

table 1. The thermal diffusivity (κ) was measured using the laser flash technique (ASTM E1461),

while the specific heat (C) was measured using a standard differential scanning calorimeter

(Perkin-Elmer, ASTM E1269). Bulk density (ρ) was calculated from the sample geometry and

mass, and thermal conductivity (k) taken as the product of κ , ρ and C.

Compression tests were carried out initially to evaluate the plastic flow behaviour of this alloy

under quasi-static conditions. For this, cylindrical samples of 10 mm diameter and 20 mm height

were prepared by first heating the metal to 200◦C and slowly pouring the molten metal into
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Figure 2. Schematic and a picture illustrating the casting set-up used for sample preparation. The sample was prepared by

pouring the molten metal (heated to 200◦C) into the 75 × 25 mm slot bounded by the four glass plates. The metal was left to

solidify under ambient conditions. (Online version in colour.)

glass cylindrical test tubes with a diameter that is slightly larger than 10 mm. After solidification,

the metal was extracted by breaking the test tube and machined on a lathe to the final desired

dimensions. For cutting experiments, rectangular plate specimens were prepared using the

casting set-up shown in figure 2. A glass plate was used as a base plate and four 2 mm thick

rectangular glass plates were used to create a rectangular boundary of 75 × 25 mm. A rectangular

aluminium plate with a machined slot was used as top cover through which the molten metal was

poured slowly and allowed to spread uniformly in the rectangular region surrounded by the four

glass plates. The metal was left to solidify by air cooling, after which the top cover and the glass

plates were removed to retrieve the final sample. Both the above casting techniques resulted in

samples without any bulk or microscopic porosity. Multiple compression and cutting tests were

also carried out to confirm the consistency and repeatability of results from sample to sample.

(c) Time-resolved characterization of shear band displacement profiles

The evolution of deformation field around a shear band was characterized both qualitatively

and quantitatively in terms of streaklines, displacements, velocity and strain by analysing

the recorded image sequences using an image correlation method, particle image velocimetry

(PIV) [32]. PIV is predominantly used in fluid mechanics where particles (markers) injected

into the fluid are tracked at different time instances to yield spatial displacement or velocity

distributions that characterize the fluid flow [33]. In the current study, the surface roughness

features, deliberately introduced onto the side surface of the workpiece, played the equivalent

role of markers. In PIV, the displacements are computed by first overlapping an artificial grid on

the images and choosing an interrogation window surrounding the grid point. Then, for each grid

point, cross correlation is performed between the interrogation window of consecutive images. If

f (i, j) and g(i, j) represent the interrogation windows corresponding to the first and second image,

respectively, the cross correlation between the interrogation windows is given by

f ∗ g(x, y) =
∑

i

∑

j

f (i, j) × g(i + x, j + y), (2.1)
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where x and y are the displacements of the interrogation window g(i, j) with respect to f (i, j).

The displacement of the interrogation window g(i, j) corresponding to the maximum value of

cross correlation gives the displacement vector at the grid point under consideration. Similar

analysis on all the grid points in an image yields a displacement field map. The other deformation

parameters such as velocity, strain rate and strain are then determined using the displacement

data. The velocity field (u, v) results directly from the displacement field information and the

time interval between consecutive images, whereas the strain rate is evaluated from spatial

differentiation of the velocity field as

ε̇xx =
∂u

∂x
, ε̇yy =

∂v

∂y
, γ̇ = 2ε̇xy =

∂v

∂x
+

∂u

∂y

and

ε̇ =

√

4

9

(

1

2

[

(ε̇xx − ε̇yy)2 + ε̇2
xx + ε̇2

yy

]

+
3

4
γ̇ 2

)

, (2.2)

where ε̇ is the effective plastic strain rate. The plastic strain field is then calculated by integrating

the strain rate field as a path integral from the start until the end of the experiment.

3. Results
The in situ study of the plastic flow during cutting using imaging has provided insights into

transition from the homogeneous to shear banded flow as well as temporal dynamics of the

localized flow near the band, post the instability onset. The observations suggest that band

formation occurs when the shear (flow) stress attains a critical value, while the dynamics of the

shear band boundary layer growth is determined by the local viscosity parameter.

(a) Plastic flow behaviour of Wood’s metal

The initial set of experiments have focused on understanding the overall plastic flow behaviour

of the Wood’s metal using compression tests (ASTM E9-09). The tests were carried out under

different compression speeds between 0.001 and 1.0 mm s−1; the corresponding (nominal) strain

rates were in the range of 10−5–10−2 s−1. An oil-based lubricant (petroleum jelly) was used to

minimize the friction between the sample and compression platens. No significant barrelling

was observed up to strains of about 0.6. The representative true stress–strain curves at different

strain rates are shown in figure 3a. The material is seen to exhibit a slight amount of softening

immediately after yielding, followed by flow stress saturation beyond strains of approximately

0.3. This strain-softening behaviour is most likely a consequence of the material’s low melting

point. In this regard, it may be noted that the room temperature at which the tests were conducted

corresponds to a high homologous temperature (TH = T(K)/Tm(K)) of 0.86. From the figure, it is

also evident that the material is highly rate sensitive. Figure 3b illustrates the rate dependence

where the yield stress (σy) is plotted against the strain rate (ε̇) on a logarithmic scale. The linear

plot suggests that the material can be described using a constitutive law of the form: σ = Kε̇m,

with m being the strain rate sensitivity. Similar analysis at different strain levels showed that

m falls in the range of 0.13–0.17. It should be noted that the above equation which ignores

strain and temperature dependence is a simplified form of the full constitutive law. As will be

shown in the subsequent sections, the plastic strains at which shear bands typically initiate are

�0.5, with the strains within the band themselves being an order of magnitude higher. Given

that the temperature rise in our low-speed cutting experiments is no more than a few degrees

Celsius (e.g. see discussion in §4a and also table 2), and considering that the flow stress is

independent of the strain at strains ≥0.3 (figure 3a), the above power-law equation provides a

good description of material flow behaviour under large strain conditions of particular interest to

this study.

It should be also noted that this type of ‘purely’ rate-dependent material behaviour (i.e. with

little dependence on strain) is prototypical of regular high-temperature metals (Tm > 600◦C)
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Figure 3. Plastic flow behaviour of the Wood’s metal. (a) True stress–strain curves from the compression tests carried out at

room temperature under different strain rates. (b) Logarithmic plot showing yield stress (σy) dependence on the strain rate (ε̇).

(Online version in colour.)

Table 2. τ data at different V0 (α = 0◦). For V0 ≥ 0.4 mm s−1 (shear banding regime), τ corresponds to the critical shear

stress τC at band formation, calculated from equation (3.1). For each V0 condition, the mean and one standard deviation values

reported come from 100+ bands. For V0 < 0.4 mm s−1 (homogeneous flow), τ represents the average shear flow stress of the

material.�θ is the temperature rise at the onset of band formation, estimated using equation (4.1).

V0 (mm s−1) 0.01 0.05 0.1 0.4 0.6 0.8 1.0 4.0 8.0

τ (MPa) 52.62 54.15 57.11 72.52 66.72 67.76 68.58 74.10 78.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

±1 s.d. ±2.4 ±2.3 ±2.5 ±2.0 ±1.8 ±4.2 ±2.5 ±2.4 ±2.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�θ (◦C) 0.16 0.24 0.31 0.39 1.5 2.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

under high strain rates >104 s−1; for example, see high-strain-rate data for Al, Cu, iron and

steels in [34,35]. Furthermore, the near-adiabatic (plastic) heating in high-strain-rate deformation

may be expected to result in high homologous temperatures (TH ∼ 0.6–0.9), similar to that in

the present case. Therefore, we regard the low melting point Wood’s metal as a ‘model’ system

for replicating all the essential features of high-strain-rate behaviour of metals, including shear

banding, as will be shown below.

(b) Transition from homogeneous to shear banded flow

An exploration of the cutting behaviour of Wood’s metal under different V0 and α revealed

primarily two modes of plastic flow—homogeneous flow and shear localized flow—with a flow

transition occurring between the two upon increasing V0. Figure 4 shows this transition with V0

at α = 0◦. The PIV-measured effective strain field (ε) and streaklines (white lines), superimposed

on the raw images, are shown. At V0 = 0.01 mm s−1 (figure 4a), the flow is homogeneous as can

be seen from the smooth streaklines and relatively uniform deformation in the chip. This type

of flow results from uniform shear in the deformation zone, and has been the basis for most

of the theoretical analyses of cutting. By contrast, at a higher V0 of 0.6 mm s−1 (consequently,

higher strain rate), the flow in the chip is separated into two distinct regions: macroscopic shear

bands with high strains of approximately 4 and the low-strain regions (ε < 1) in between the

bands (figure 4b). The ‘serrated’ chip morphology and streaklines in figure 4b also reveal the

periodic localization of shear within the bands and an undulating flow pattern that is distinctly

different from that in figure 4a. Figure 4c,d shows the corresponding force traces, with FC and FT

being the force components along and perpendicular to the V0 direction, respectively. Clearly, the
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Figure 4. PIV (von Mises) plastic strain field (ε) and streaklines showing the transition from homogeneous to shear banded

plastic flow with increasing V0. (a) Laminar plastic flow at V0 = 0.01 mm s−1 characterized by the uniform strain field and

smoothly varying streaklines. (b) Shear banding at V0 = 0.6 mm s−1, exhibiting periodic flow localization along well-defined

macroscopic shear bands separated by low-strain regions. The ‘serrated’ morphology of the chip free surface is marked using

an arrow. The corresponding cutting forces, FC and FT along and perpendicular to V0 direction, respectively, are shown in (c)

and (d). (Online version in colour.)

forces are quite steady and exhibit little variation in the homogeneous flow case. On the other

hand, the shear banded flow exhibits strong periodic oscillations, with each force oscillation

corresponding to individual band formation. The development of both these flow types is also

shown in electronic supplementary material, videos S1 (0.01 mm s−1) and S2 (0.6 mm s−1).

At this point, it is worthwhile to distinguish the small-scale heterogeneities in the strain

field seen in the homogeneous flow case (figure 4a) from the macroscopic shear bands. An

important distinction is that the small strain heterogeneities do not traverse throughout the width

of the sample (chip), whereas shear bands do. This is illustrated using figure 5 which shows

the topography plots taken from the free surface of the chips using a three-dimensional optical

profilometer. The chip flow direction (VC) is also shown using an arrow in figure 5 for reference.

The free surface of the chip produced via homogeneous flow (figure 5a) is seen to be relatively flat,

albeit with some small undulations that are scattered randomly on the surface. By contrast, clear

surface shear steps about 170 µm deep, traversing the entire chip width, can be seen in figure 5b.

These surface steps directly correspond to the ‘serrations’ seen on the free surface of the chip,

when viewed from the side angle; for example, see at arrow in figure 4b. As will be shown in the

following section, these shear steps on the surface arise directly as a result of (periodic) localized

shearing within the shear band during its growth phase. The focus here will be on macroscopic

shear band structures such as in figures 4b and 5b.
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Figure 5. Free surface topography plots of chips produced under (a) homogeneous flow (V0 = 0.01 mm s−1) and (b) shear

banded flow (V0 = 0.6 mm s−1) conditions. Well-defined shear steps, traversing the chip width, are seen in the shear banding

case, whereas the homogeneous flow case is characterized by small-scale surface undulations. Note that the shear steps seen in

(b) directly correspond to the serrations on the free surface of the chip shown earlier in figure 4(b). The direction of chip velocity

(VC ) is shown for reference. (Online version in colour.)

It should be also noted that the above transition from homogeneous flow to shear banding

with increasing strain rate is well known in the engineering literature under different loading

configurations, including torsion [20,22], machining [12,31,36], punching [4] and impact [17].

However, in conventional high-temperature metals, this transition occurs only at high strain rates

beyond 104 or 105 s−1. That the low melting point Wood’s metal reproduces the exact same flow

transition at strain rates multiple orders lower in magnitude is noteworthy. Coupled with the fact

that its room temperature quasi-static flow behaviour resembles the high-strain-rate behaviour of

structural metals, this enables us to study shear band phenomena at slow speeds without being

burdened by the experimental challenges.
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(c) Shear band nucleation and growth

Figure 6a is a high-speed image sequence (with superimposed strain field) showing different

stages involved in the formation of a single shear band at V0 = 1.0 mm s−1 (α = 0◦). The

corresponding oscillatory force profiles are shown in figure 6b with points A–I on the plot

directly corresponding to the time instances of frames A–I in figure 6a. The time marked in

figure 6a corresponds to the time elapsed after the termination of a previous shear band. In frames

A–C, the smooth streaklines represent a stable flow which occurs under a steadily rising load. The

instability in the flow occurs in frame D, triggered by nucleation of a shear band at the tool tip,

which is seen as a pocket of high strain (see at arrow). The strain front, which is also the shear

band front, then propagates towards the free surface of the sample, reaching it in frame F. It may

be noted that the propagation of the band front is also accompanied by progressive formation

of ‘kinks’ in the streaklines, indicating the local deformation is that of shear. We refer to this

phase shown by frames D–F as the band nucleation, for it is during this phase that a well-defined

shear band plane PQ is fully established. The orientation of this shear band plane, inclined at

approximately 40◦ with respect to V0, is consistent with the plane of maximum shear stress.

Tracking of the band front during the nucleation phase shows that it propagates at a constant

velocity. For example, see figure 7 where the blue points represent the distance traversed by the

band front at different time instances, with respect to the tool tip (band initiation location). Of

the five points shown in figure 7, three correspond to frames D–F shown in figure 6a, where the

band front location is shown using an arrow. A linear plot with time reveals a nearly constant

propagation velocity (VN) of 4.3 mm s−1.

Frames G–I in figure 6a represent the subsequent growth (or sliding) phase of shear banding.

This phase is characterized by localized sliding of the material along the band plane PQ under a

falling load, as if the material in the immediate vicinity of the band has lost its resistance to flow

and material blocks on either side of the band begin to ‘slip’ as rigid bodies. From figure 6b, it is

seen that the onset of sliding coincides with the maximum in the force trace.1 It is also evident

that the shear step at the free surface and intense localized strains in the vicinity of the band

predominantly develop during this sliding process. To illustrate the shear step formation at the

surface, two surface points Q and R that are initially right adjacent to each other before the sliding

phase are marked in frame F. In frames G–I, these two points are seen to get displaced with respect

to each other, and thus forming a shear step QR, as a result of localized sliding between the low-

strain segments on either side of the shear band. The serrated surface morphology shown earlier

in figures 4b and 5b arises as a consequence of periodic events involving band nucleation and

sliding. That the shear steps resulting from sliding traverse across the width of the sample can be

also seen from figure 5b.

The sliding velocity characteristics during the band growth can be inferred from figure 7,

where the red points represent the shear step distance at the free surface, QR (frames G–I,

figure 6a), as a function of time. Again, the linear plot suggests that sliding occurs at a constant

sliding velocity (VS) of 1.2 mm s−1. This value is in fact very close to the resolved component of

the cutting velocity V0 along the band, approximately 1.5 mm s−1. In a prior study [27], VN was

shown to be a constant independent of V0, while VS varies proportionally with V0. After a finite

time (approx. 150 ms after the onset of sliding), the sliding process is terminated and deformation

switches to the neighbouring region, at which point, the load rises again. The phenomenological

details of shear band formation in the current material system, namely, band nucleation at the

tool tip, propagation towards the free surface and subsequent sliding, are in agreement with that

observed in other systems such as titanium [31].

(d) Characteristic stress for shear band formation

The fact that macroscopic sliding at the shear band always commences when the cutting force FC

reaches a maximum enables us to define a characteristic stress (τC) for the onset of shear band

1Observations of several other bands showed that the commencement of sliding strictly coincides with the maximum in FC,
but not necessarily FT .
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Figure 6. Dynamics of single shear band formation. (a) High-speed images (with superimposed streaklines and plastic strain

field) showing single shear band formation at V0 = 1.0 mm s−1. The plot in (b) shows oscillatory force profiles during shear

banding,with each oscillation corresponding to the formation of a single shear band. The points A–Imarked on the force profiles

correspond to the exact time instances of frames A–I shown in (a). The first three frames (A–C) show the formation of low-

strain region adjoining the shear bands. The shear band nucleation occurs near the tool tip in frame D, followed by propagation

towards the free surface (the band front location ismarked by awhite arrow for reference). In frame F, the band has just reached

the surface, with the load being maximum at this instant. Frames G–I show the subsequent stage which is characterized by

macroscopic sliding along the shear band. This slip accounts for most of the strain localization around the band. The shear step

at the free surface, QR (see frames G–I), is also developed during this sliding stage. (Online version in colour.)
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distance between the band front and the tool tip during nucleation (frames D–F, figure 6a), while red points correspond to the

lengthof the shear step at the free surface (markedbyQR in framesG–I, figure 6a) resulting fromsliding. The linear plots suggest

a constant band propagation (4.3 mm s−1) and sliding velocity (1.2 mm s−1). V0 = 1 mm s−1. (Online version in colour.)

growth. τC is simply the shear force along the band plane PQ, at the instant when FC reaches

maximum, divided by the plane area. Our experiments showed that at α = 0◦, both FC and FT

reach their maximum nearly at the same time instant, while this is not necessarily true for other

α. Therefore, for the present case (α = 0◦), τC is given by

τC =
FCmax sin φ cos φ − FTmax sin2 φ

(b × t0)
, (3.1)

where FCmax and FTmax are the peak cutting and thrust forces, respectively, φ is the shear band

angle (with respect to V0), and b is the sample width.

This yields a value for τC of about 70 MPa for the shear band discussed in figure 6, which is

nearly twice that of the shear yield stress of the material (figure 3). τC calculations for several

other bands at the same V0 have shown that its variation from band to band is quite small. For

example, figure 8a shows the τC data for 125 bands, gathered from a single cutting experiment.

Maximum variation in τC is seen to be less than 10%. Figure 8b is the frequency distribution

plot showing that τC follows a normal distribution, with a mean and standard deviation of

68.6 MPa and 2.5 MPa, respectively. Henceforth, mean values are used to represent τC for any

given experimental condition.

Interestingly, experiments at different V0 showed that τC is independent of the imposed

deformation rate (V0). Table 2 shows τC data for shear bands formed under different V0

conditions, varying over one order of magnitude (0.4–8 mm s−1).2 τC is seen to be essentially

constant, at about 70 MPa, suggesting a critical shear stress-type criterion (τ = τC) for band

formation. This in fact explains the steady-state homogeneous flow at lower V0. For instance,

for the homogeneous flow case, the material’s shear flow stress during cutting may be estimated

again from equation (3.1) by replacing FCmax and FTmax with the average steady-state forces,

and φ with the nominal shear zone angle. The shear flow stress values thus estimated for

V0 ≤ 0.1 mm s−1 are also given in table 2. At these low V0 conditions, the shear flow stress is

clearly seen to be lower than the critical stress τC, which explains the homogeneous nature of the

flow observed at these speeds.

2V0 above 10 mm s−1 resulted in completely fragmented chips, as opposed to continuous shear banded chips.
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Figure 8. (a) Critical shear stress (τC ) data for 125 shear bands formed at V0 = 1 mm s−1. The stress values fluctuate around

70 MPa, with less than 10% variation. (b) Frequency distribution plot of τC for the same dataset, showing that the data are

normally distributed. Themean (68.6 MPa) and standard deviation (2.5 MPa) aremarked by red dashed lines. (Online version in

colour.)

We also studied the effect of loading geometry by changing the tool angle α and found that

τC is insensitive (within experimental uncertainty) even to α, suggesting that it is a physical

characteristic of the material. However, the critical V0 at which shear banding first occurs

was found to increase with increasing α (more positive). Taken together, these experimental

observations suggest that the material around a nucleated band exhibits macroscopic slip when

the stress across that plane reaches a critical value.

(e) Spatio-temporal evolution of plastic flow during shear band growth

Spatio-temporal evolution of the flow adjacent to the band, post shear band nucleation, is studied

quantitatively using in situ imaging and PIV analysis. For this, a streakline passing roughly

through the centre of the chip was tracked at different time instances of the shear banding

process. Figure 9 depicts the evolution of such a streakline (V0 = 0.6 mm s−1), where the streakline

position after every 2.5 ms is shown. The darkest line corresponds to the time instant when the

shear band front has just reached the streakline (band nucleation phase), with the lightest shade

corresponding to the end of the shear band growth phase. The shear band centre, which is the

intersection point of the band front with the streakline, is also marked using a red asterisk for

reference. It should be noted that the locus of these points is a pathline, and thus represents the

general motion of the shear band centre plane in Eulerian space.

Figure 10a shows the time evolution of effective strain along two different streaklines (1 and

2) located at a distance of 280 and 115 µm from the tool tip. Relative positions of streaklines

1 and 2 with respect to the tool and workpiece/chip free surface are shown in figure 10b for

reference. Here, x is oriented along the length of the shear band, with x = 0 corresponding to the

tool tip. The other axis y is perpendicular to the shear band plane. In figure 10a, strain is plotted

against perpendicular distance from the band centre (which is represented by y = 0) at different

times (t) of the shear banding process, with t = 0 corresponding to the shear band nucleation

stage. At t ≈ 0, the strain profile in figure 10a is seen to be relatively flat. With increasing t,

the strain localization around the band is seen to evolve like a diffusion growth process, that

is to say not only the maximum strain at y = 0 grows with time, but also the localized strain

‘spreads’ laterally in y. Note also that the strain field evolves symmetrically around the shear

band plane.
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t

Figure 9. Time evolution of a streakline passing through the centre of a shear band (V0 = 0.6 mm s−1). Each curve represents

new shape and position (with respect to stationary tool) of the streakline after every 2.5 ms. The ‘intersection’ point of the

streakline with the band is marked by red asterisks, whose locus represents the pathline of the shear band plane. The streakline

with the darkest shade corresponds to the start of the growth phase, while and the lightest shade represents the end. (Online

version in colour.)

A further detailed analysis of the shear band growth, in terms of the displacement field, is

given in figure 11. Given the symmetry, only one side (right half) of the shear band plane is

considered here. Here, U(y, t) is the shear displacement at any point along the streakline located

at a perpendicular distance y at any time t, with the displacement calculated with respect to the

shear band plane frame of reference (red asterisk in figure 9). Umax(t) represents the maximum

shear displacement remote from the plane y = 0 at any time instance. The displacement field thus

obtained is shown as a spatio-temporal diagram in figure 11a, where the normalized displacement

U/Umax(y, t) in the vicinity of a shear band is colour-coded. The evolution of the displacement

profile U(y), as a function of time, is also shown in figure 11b. The displacement profiles are

immediately seen to evolve in a self-similar manner. At small t (≈0.01 s), the flow is essentially

confined to only around the band centre (y ≤ 5 µm). However, upon sliding (increasing t), the

flowing region grows laterally, eventually attaining a width of about 35 µm at the end of the

sliding process (t = 0.2 s). This lateral growth of shear band can be also seen from the white line

in figure 11a, which shows the temporal evolution of shear band half-thickness (which we define

as the y where U = 0.99Umax). This type of shear band growth with time closely resembles the

boundary layer growth in viscous fluids, where the layer thickness scales as t1/2 [37].

The spatial gradient in the displacement field in the direction along the length of the band

is shown in figure 11c,d, which are snapshots of the normalized displacement field U/Umax(y, x)

at a given time instance close to the end of the sliding process. Here, x is a spatial variable that

corresponds to the location along the band length, with x = 0 coinciding with the tool tip P. One

hundred streaklines covering a 170 µm distance across the band length (x = 260–430 µm) were

considered in these measurements. Note therefore that each vertical slice in figure 11c or each

curve in figure 11d represents an individual streakline. From figure 11d, all the displacement

profiles can be seen to be self-similar. The displacement profiles are also seen to be consistently
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Figure 10. Strain evolution during shear band growth. (a) The effective plastic strain around the shear band plane (y = 0)

plotted at different times. The time shown on the strain profiles is in ms. Data are taken from two different streaklines (1 and

2) from different locations along the band length. The relative positions of these two streaklines are shown in (b). An enlarged

view of the streakline, shown in (b), also illustrates the orientation of x- and y-axes with respect to the shear band. (Online

version in colour.)

more ‘diffuse’ at smaller x (i.e. streaklines closer to the tool tip). This is likely because of the

fact that streaklines close to the tool tip are those that are first intersected by the shear band

front, and as a result, at any given time instance, the ‘effective’ t for these streaklines will be

somewhat larger compared with those near the free surface. A simple calculation of the gradients

along the length of the shear band (x), however, shows that they are much smaller than those

perpendicular to the band plane (along y-direction). The characteristic gradients along x may be

obtained by looking at how the band thickness varies along the band length. From figure 11c, the

effective band thickness, characterized by y where U/Umax ≈ 0.99, is seen to vary from 40 µm to

20 µm over an x of 170 µm. This yields a gradient of approximately 0.12. On the other hand, the

y-gradient, which is simply the ratio of Umax to band thickness, is in the range of 2–5, more than

an order of magnitude higher than the x-gradient. This suggests that the shear band structure

may be approximated as one dimension.

(f) Binghammodel for shear band growth

Complementing the full-field shear band measurements presented in the previous section, we

explore a simple analytical model for the shear band growth with a view to understand the local
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Figure 11. Dynamics of shear band growth. (a) Spatio-temporal diagram showing the normalized displacement data (U/Umax)

around a shear band as a function of the normal distance from the shear band centre (y) and sliding time (t). Also shown inwhite

line is the location of ywhere U = 0.99Umax, which can be taken as the shear band thickness. (b) Raw shear band displacement

data plotted against y at different t. (c) Spatial diagram showing U/Umax as a function of y and different locations along the

length of the band (x), taken at a specific time instant t = 0.2 s. (d) Normalized displacement data at t = 0.2 s plotted against

y for different values of x . V0 = 0.6 mm s−1. (Online version in colour.)

constitutive behaviour of the boundary layer material adjacent to the band. Before proceeding

with the analysis, a discussion of the role of temperature in band growth is in order. As seen

from figure 11, by the end of the growth phase, the shear band attains a characteristic (half)

thickness of about 35 µm, which agrees well with the typical shear band thicknesses reported

in other material systems [8,17–19]. Traditionally, this length scale has been primarily attributed

to thermal diffusion around the shear band centre, with the band thickness associated with the

characteristic thermal diffusion length [7,8]. Thermal diffusion around the band may be analysed

by assuming the shear band plane to be a stationary planar heat source of constant strength, for

which the temperature solution is given by Carslaw & Jaeger [38]. In this case, the characteristic

thermal diffusion length, over which approximately 70% of heat is contained at any time instance

t, is given by
√

κt. For the present case where κ = 0.14 × 10−4 m2 s−1 (table 1) and taking t as the

total shear band sliding time (approx. 230 ms at V0 = 0.6 mm s−1), the thermal diffusion length

should be about 1.8 mm, which is two orders higher than the observed shear band half-thickness

and even larger than the spacing between individual shear bands (see figure 4b, for reference).

Coupled with the low deformation rates in this study where the band temperature rise is expected

to be small (see discussion in §4a), this clearly suggests that thermal diffusion cannot be the main

factor governing the shear band growth.

The three observations above, namely lateral growth of shear band thickness with time, slow

variation of the flow field along the length of the band, and little contribution of temperature to

the band growth, led us to model the shear band flow kinematics as a boundary layer problem,

similar to that in our previous study [19]. During the band sliding (growth) phase, we treat the

band half-space as a semi-infinite viscous block sliding past a stationary interface located at y = 0.

Specifically, at t = 0 when the band plane is just established, the viscous half-spaces on either side

of the band are at rest, and for t > 0, they slide with a velocity of VS/2 in opposite directions
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with no-slip boundary condition at the interface (y = 0). It may be noted that this flow geometry

is equivalent to the classical velocity-driven Rayleigh problem. In view of the fact that shear

band sliding sets in when the shear stress reaches a critical value τC (table 2), coupled with the

observation of boundary layer-like flow kinematics during the band growth (figure 11), we also

assume that the material in the vicinity of the shear band to be a Bingham fluid with a yield

stress τC and a constant dynamic viscosity µ. For this flow geometry, in the absence of pressure

gradients, the momentum equation is

∂V(y, t)

∂t
=

1

ρ

∂τ (y, t)

∂y
, (3.2)

where τ is the shear stress and ρ is the density. By taking the material to be at rest at t = 0,

and applying the boundary conditions of no-slip at the interface (Vy=0 = 0) and constant remote

velocity (Vy≫0 = VS/2) for t > 0, the above equation can be solved to arrive at the velocity field

V(y, t). Pascal [39] has studied the Rayleigh problem for a generalized Herschel–Bulkley fluid and

showed that for an ideal Bingham fluid, the velocity solution converges to that of a Newtonian

fluid, while for a shear-thinning fluid, it converges to that of a power-law pseudoplastic fluid.

The equivalence between the Bingham fluid and Newtonian fluid in Rayleigh flow has been also

discussed by Huilgol [40]. Therefore, for the present case, the velocity equation reduces to the

well-known diffusion equation: VS/2erf (ξ ), where ξ = y/
√

4νt is the self-similarity variable and

ν = µ/ρ is the kinematic viscosity. Time integration of this equation leads to the displacement

field U(y, t):
U

Umax
= −2ξ2erfc(ξ ) + erf(ξ ) +

2ξ
√

π
exp(−ξ2). (3.3)

From equation (3.3), it is clear that the only variable in the model is the band viscosity (given

by µ or ν). Also for a given viscosity, the model correctly predicts the lateral growth of band

thickness with time, consistent with the experimental observations (figure 11a,b). The normalized

shear band displacement data from experiments, scaled using the fitting variable ν, are plotted

as a function of ξ in figure 12. The individual displacement profiles shown in the figure come

from two different streaklines (indicated by black and grey coloured points) and different time

instances of the shear banding process. By appropriate selection of ν, all the profiles are seen to

cluster together and roughly fall on a single master ‘curve’, matching with the curve predicted

by equation (3.3) (solid blue curve). In view of the approximations made, the agreement between

experimental data and the model is surprisingly good. Firstly, this suggests that the shear band

growth is indeed (momentum) diffusion dominated which can be described by a Bingham-type

rheology. Secondly, this also allows us to back-calculate the local shear band viscosity. The band

viscosity µ, as obtained from the fitting variable ν, is shown in the inset to figure 12. It is seen

that µ slightly decreases during the initial stages of localization, but remains in a small range of

1–2.5×10−5 Pa s. The small viscosity also a posteriori justifies the fluid-like rheology assumption

for the material in the vicinity of the band.

(g) Shear band displacement profiles at other V0
To further test the validity of the Bingham model and band viscosity characteristics under

different strain rates, additional imaging experiments were carried out at different V0 conditions.

The shear band displacement data for two other V0 conditions, 0.3 and 1 mm s−1, are shown

in figure 13. Of these, we note that 0.3 mm s−1 was the critical velocity at which shear banding

was first observed in Wood’s metal at α = 0◦. In both cases (figure 13a,c), it can be seen that the

displacement profiles evolve self-similarly, with the band thickness growing with time, similar

to the previous observations made at V0 = 0.6 mm s−1 (figure 11), indicating this to be a general

characteristic of the shear band growth. The band thicknesses of about 26 µm (0.3 mm s−1) and

35 µm (1 mm s−1) are also comparable to that at 0.6 mm s−1. Figure 13b,d shows the normalized

displacement plots, where the experimental profiles are scaled using ν; the corresponding band

viscosity is shown in the insets as before. At each V0 condition, two streaklines across the band
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4νt. The experimental profiles are fitted using the adjustable parameter ν .

They are seen to fall on a single curve, closely following the theoretical profile (solid blue line) predicted by the Bingham fluid

model (equation (3.3)). The inset shows the shear band viscosity,µ. V0 = 0.6 mm s−1. (Online version in colour.)
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were chosen for comparison with the model. Again, the model (equation (3.3)) appears to fit the

data well in both cases. The agreement is slightly better at the lower speed (0.3 mm s−1), where

the band viscosity is also seen to remain constant during the shear banding process. At a higher

V0 of 1 mm s−1, the band viscosity exhibits a slight drop. Note, however, that the viscosity values

at different V0 are all in the same 10−5 Pa s range.
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In the above, we restricted ourselves to the analysis of shear band displacement results within

the framework of an ideal Bingham fluid law with a linear rate dependence. Here, the primary

goal has been to demonstrate the boundary layer growth during shear banding as a consequence

of the fluid-like flow in the vicinity of the band, and to provide an order of magnitude estimate for

the local viscosity. Nevertheless, it is quite likely that some perhaps weak power-law dependence

(e.g. Herschel–Bulkley type) exists which our present model cannot capture. For the current flow

geometry, self-similar solutions in general do not exist for a generalized non-Newtonian rheology

[41], although the case of shear-thinning power-law fluids appears to have been solved by Bird

[42] for specific exponents. Together with the direct measurements of the displacement fields, we

hope this will provide a basis to explore a full Herschel–Bulkley-type model in the future.

4. Discussion
The experimental study with a low melting point alloy (Wood’s metal) has reproduced all the

essential features of shear banding in crystalline metals at low, approximately millimetre per

second, speeds. Coupled with in situ imaging, this has enabled us to capture the dynamics of

shear band nucleation and propagation, and time-resolved measurements of the plastic flow field

around a developing shear band to be made at a high spatial resolution (approx. 1 µm). Inferences

of the local shear band properties (band nucleation stress and dynamic viscosity) have been made

at different strain rates. The observations pertaining to shear band onset at a critical stress and

subsequent boundary layer-like (plastic) flow together support the Bingham-type description for

the shear band.

(a) Critical stress criterion for shear band formation

Beginning with Zener [4,18], it is generally believed that shear banding is a consequence of loss of

stability in the plastic flow due to temperature rise resulting from the deformation itself. That is,

if the flow stress drop due to plastic heating is greater than the increase due to strain/strain-rate

hardening, unstable flow will arise in a localized portion of the specimen as a shear band. This

general idea has been successful in qualitatively explaining the prevalence of shear banding in

metals under high strain rates (greater than 103 s−1) characterized by efficient plastic heating, and

also under very low temperatures (less than 50 K), where, despite the low ambient temperature

conditions, large temperature rises can still occur in the material due to the very small heat

capacity value at cryogenic temperatures [43]. Therefore, an attempt was made to estimate the

extent of temperature rise in the present case. Since we are concerned with the thermal conditions

prevailing at the onset of the instability, we consider the temperature rise at the shear plane/zone

(e.g. region OA, figure 1a) under the limiting case when the shear band has not yet formed

and the flow is still homogeneous. Various analytical treatments, primarily based on Jaeger’s

moving heat-source solution [38], have been proposed for studying the shear zone temperatures

in cutting. Here, we proceed in a manner similar to that of Loewen & Shaw [30]. In brief, we shall

assume the chip–workpiece interface at the shear plane to be a ‘sliding’ contact, with chip and

workpiece being the stationary and sliding members, respectively, and over which a constant heat

flux Q ∼ τVS is uniformly distributed; τ is the shear stress and VS is the velocity component along

the shear plane. The temperature solutions on both sides of the plane are obtained independently

by assuming a portion of the heat leaves with the chip, while the remainder flows into the moving

workpiece. As a last step, the unknown heat partitioning coefficient is obtained by using Blok’s

postulate [44] by matching the maximum temperatures on either side of the plane. While this

procedure is approximate, the experimental results have been found to be in good agreement

with the calculated temperatures [30]. For the present case (V0 ∼ 0.3–8 mm s−1, α = 0◦), where the

characteristic Péclet number Pe ∼ V0t0/κ ∼ 10−3–10−1 ≪ 1, the temperature solution reduces to

�θ =
√

3κετV0t0

k(κ
√

π + V0t0)
, (4.1)
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where �θ is the temperature rise and ε is the strain right before shear band initiation, while

other symbols have their usual meanings. The temperature rise �θ is predicted at different V0

by taking ε ∼ 0.5 (from PIV), τ to be the same as τC ∼ 70 MPa, and room-temperature values

for the thermophysical properties (table 1). These data are given in table 2. It can be seen that

the temperature rise is no greater than 2 or 3◦C over the entire range of V0, indicating that

temperature should have little effect on the shear banding instability. These temperature estimates

have been also confirmed in our experiments, where a thermocouple was used to measure the

temperature rise at three different locations: tool–chip contact, deformation zone and the free

surface where workpiece material is transformed into a chip. Good agreement with the estimated

temperatures (table 2) was found, with the maximum temperature rise (at tool–chip contact)

being less than 4–5◦C even at the highest cutting speed (8 mm s−1). A more critical evaluation

of the ‘maximum load’ criterion for shear band formation has been also made by considering the

individual contributions to the flow stress, arising from strain, strain rate and temperature. These

details are presented in appendix A, but it suffices to note here that the flow stress hardening term

(due to rate effects) is always much greater (by two orders) than the temperature softening term,

again suggesting weak thermal contribution to shear banding in the V0 range investigated here.

In addition to the thermal softening mechanism, several other fracture-type criteria [24] have

been also proposed for shear band onset, including those based on critical plastic strain, stress

intensity factor and J integral. However, these have not been supported by direct experimental

observations. At a microstructural level, some postulated mechanisms for shear band initiation

include those based on dynamic recrystallization [45–47], dislocation ‘avalanche’ mechanism

[48–50], texture softening [51] and flow softening due to formation of microscopic voids.

In contrast to the above, our in situ observations of shear banding, together with force

measurements, strongly suggest a simple stress-based criterion where macroscopic flow

localization along a thin shear band sets in when the shear stress along the plane of maximum

shear reaches a critical value τC. That τC remains constant over a range of V0 (table 2) provides

further support for this. As discussed earlier, the stress-based criterion for band formation

explains the flow transition with increasing V0 (figure 4). At low V0 (less than or equal to

0.1 mm s−1), because the shear flow stress is below τC (table 2), shear band formation is precluded

and the flow remains homogeneous. Upon increasing V0, because of the rate sensitivity, the flow

stress is raised to τC, resulting in shear banding and associated flow localization. Furthermore, the

picture of critical τC, or equivalently, critical strain rate since the flow stress depends only on the

strain rate at large strains (figure 3a), is also consistent with the following several observations we

have made during this study.

— As noted earlier, at α = 0◦, the homogeneous to shear banded flow transition occurred

at about 0.3 mm s−1. Experiments at different α showed that this critical transition speed

actually increases with α : 0.4 mm s−1 for +20◦ and 1 mm s−1 for +40◦ [26]. This behaviour

may be understood by noting that at a higher α (more positive), the strain imposed in the

chip is smaller. Therefore, the V0 required to reach the critical strain rate/shear stress

necessary for shear band formation is correspondingly higher.
— Experiments performed at a higher t0 of 500 µm at α = 0◦ showed that the critical V0

for the flow transition increases to 1 mm s−1 (S.Y. and D.S. 2019, unpublished data). It is

believed that this results from the fact that the shear zone thickness �, which determines

the strain rate (ε̇ = εV0/�), scales similarly with t0 [30]. Therefore, again a higher V0

must be needed to achieve the critical strain rate at which the τC condition for banding is

satisfied.
— No shear banding was observed in our compression tests, consistent with the fact that the

strain rates in compression are very small (10−5–10−2 s−1) and much below the critical

strain rate (approx. 10 s−1) required for band formation. According to our critical stress

criterion, for the case of uniaxial compression, shear banding should be expected to occur

when the shear stress on the plane of maximum shear (i.e. plane oriented at 45◦ with

respect to the loading axis) reaches σ/2. From figure 3a, it may be seen that this value is

much below the critical τC, more than by a factor of 2, under all testing conditions.
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Lastly, we must mention that the constant shear stress criterion for banding is not limited to

Wood’s metal, but has been also confirmed in two other metal systems with different melting

points (47 and 138◦C). These results and dependence of τC on the material properties (melting

point, for example) will be the subject of a separate publication.

(b) Boundary layer formation and fluid-like behaviour of shear band

The in situ study has enabled direct time-resolved measurements of the displacement and velocity

profiles inside a developing shear band at high resolution. These observations have revealed,

among other things, the self-similar temporal evolution of flow profiles during shear band

growth; widening of the band thickness roughly as t1/2; slow variation of the velocity and

displacement field along the band length compared to across the thickness direction; and little

dependence of the band growth dynamics on the external V0 conditions. While such temporal

evolution for the band growth, following the instability, has been postulated before [28,29],

we believe our study provides the first direct experimental evidence. Furthermore, agreement

between experimental data and the Bingham model has demonstrated viscous-like sliding near

the shear band interface and provided a mechanism for shear band growth, based on momentum

diffusion. Incidentally, this type of viscous sliding mechanism is known to be operative in metal

interfaces also at a much smaller scale, for example, inside the slip bands [52] and near grain

boundaries [53].

Given the low melting point of the alloy investigated in this study, a discussion of the

generalizability of the flow observations to other systems is in order. Firstly, as noted earlier, the

flow behaviour of this alloy at room temperature closely resembles that of conventional metals

under high strain rates (more than 103 s−1) where shear banding is typically observed—both

in its constitutive form (high strain-rate dependence, high TH, negligible strain hardening) as

well as the flow phenomenology (homogeneous flow to shear banding transition with increasing

strain rate). Secondly, recent evidence does show that the viscous sliding mechanism associated

with banding is indeed a more general characteristic of polycrystalline metals. This result

was established in our earlier studies [19,25] using post-mortem measurements of shear band

displacement profiles in three different high-temperature alloys (pure Ti, Ti-6Al-4V alloy and

Ni-base superalloy) and under high strain rates of 104–105 s−1, several orders higher than in the

current study. The band viscosity in these metals was again found to be very small, however, in the

mPa s range, suggesting some material dependence of this parameter. Given the vast difference

in the strain rates and material properties between both the studies, the common observation of

fluid-like behaviour of shear bands with a small viscosity is remarkable.

The above observations of similar shear band flow profiles across different material systems

also make a case for continuum-level description of the band growth without the need for precise

microstructure-level details. An effort to analytically study the spatio-temporal aspects of shear

band flow, for instance, was made by Gioia & Ortiz [28]. Here, the extreme thinness of the

bands, coupled with the fact that the field variation across the band thickness is much more

rapid compared with other directions, was exploited to model shear band flow as a boundary

layer problem. This facilitated analytical characterization of the boundary layer structure (shear

band) in terms of velocity, plastic work and temperature fields. It follows from the theory that the

velocity (and, consequently, displacement) profile around the band spreads out in time from an

initial ‘step’ like profile, eventually approaching a steady state (see fig. 9 in [28]). Similarly, using

boundary layer methods, DiLellio & Olmstead [29] have considered temporal evolution of a shear

band and shown that the band first narrows down during the very initial stages of localization,

which is followed by a growth stage characterized by an increase in the band thickness (as a

power law with time) and attendant stress collapse. All these observations are in qualitative

agreement with our shear band displacement field measurements, and are suggestive that shear

banding belongs to the class of laminar plastic boundary layer problems [54]. Other solutions

describing the spatial distribution of strain rate, velocity and temperature around a shear band

include those by Wu & Freund [55] and Glimm et al. [56], although the viscoplastic law assumed
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for the material is different in these studies. We hope that our time-resolved measurements

of particle displacements and velocities in the neighbourhood of the shear band will help to

validate (and extend) these analyses that are capable of incorporating all three effects (strain

hardening/softening, rate hardening and thermal softening) into the constitutive law.

However, it is noteworthy that even with a simplified linear rate-dependent Bingham model,

considerable insight is derived into the local flow character of the band and structural changes

accompanying the instability. For example, a key finding from the analysis of experimental

displacement results is the small material viscosity (10−3 to 10−5 Pa s) during the band growth

that is indicative of the local fluid-like character of the shear band. This is in contrast to the

flow behaviour of the starting material, characterized by the power-law relationship: σ = Kε̇m

(figure 3). The effective ‘bulk’ viscosity (µb) of this material may be estimated by writing σ as µbε̇,

where µb = Kε̇1−m. Substituting the representative values for K and m, µb at typical shear band

strain rates (10–100 s−1 for Wood’s metal) is seen to fall in the 108 Pa s range, which is several

orders of magnitude greater than the typical band viscosity. These main characteristics of shear

banding—the onset of instability at a critical stress, followed by a large viscosity drop by several

orders (more than 10) of magnitude—are reminiscent of the yield-stress fluids which behave in a

solid-like manner (i.e. large viscosity value) below a critical yield stress, but flow as fluids above

this stress. Akin to this ‘solid to liquid’ phase transition in yield-stress fluids, a breaking down of

the microstructure at a critical stress (τC) may be also envisioned for the present case during shear

band nucleation, which causes the material in the vicinity of the band to flow with little resistance

during the subsequent growth phase. This picture of shear banding is also self-consistent with

our choice of the Bingham constitutive law for the band in the first place.

Experimental examples of unsteady flow and boundary layer formation in ideal Bingham yield

stress fluids under the flow geometry close to our case are rare, so a direct comparison of shear

band profiles with that of actual fluids is not possible. However, the transient flow of a Herschel–

Bulkley-type yield stress fluid (carbopol microgel) in a Couette cell has been shown to involve

propagation of a plastic ‘wave’ (the boundary between the fluidized and non-fluidized regions)

[57], similar to power-law shear band growth dynamics in the present case (figures 11 and 13).

Similarly, the displacement and velocity profiles inside a yield stress fluid (two-dimensional)

boundary layer, formed adjacent to a moving plate in a stationary fluid [58], are also in qualitative

agreement with our observations.

5. Conclusion
In this study, a new experimental approach, using low melting point alloys, is developed to

study the phenomenon of plastic flow localization in thin narrow layers—shear banding—at low

speeds. Shear bands arise from an instability when a certain material plane loses its resistance to

flow and thus accumulates large strains in its vicinity. Using in situ imaging, the dynamics of shear

band nucleation, propagation and growth is characterized quantitatively. This has provided direct

time-resolved measurements of the displacement and velocity profiles of the large strain plastic

flow inside a shear band. Evolution of the shear band thickness roughly as a power law with

time, analogous to boundary layer formation in fluids, is established using these measurements.

A Bingham fluid model, formulated based on experimental observations, accurately captures the

temporal evolution of shear band flow profiles and provides a mechanism for the band growth,

based on momentum diffusion. The goal here has been to introduce a simple continuum-level

model (with just one fitting parameter) that quantitatively predicts the shear band flow evolution

and provides insight into the local flow character of the band, post the instability onset. The

observations demonstrate fluid-like behaviour in the vicinity of the shear band, characterized

by a very small viscosity. Coupled with the experimental result that shear band instability

occurs at a critical stress, this casts a new perspective on shear banding as a ‘solid-to-liquid’-

type transition in yield-stress fluids, with the shear band itself being the boundary layer. It is

believed that this picture of shear banding as a plastic boundary layer formation is common to a

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

5
 O

ct
o
b
er

 2
0

2
2
 



23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20190519
...........................................................

range of crystalline metals. We regard this viewpoint as complementary to other analyses of shear

localization phenomena in metals.
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Appendix A
We carry out a critical evaluation of the well-known ‘maximum’ load criterion for predicting the

shear band onset, originally proposed by Zener [18] and later extended by others [12]. According

to this criterion, the homogeneous plastic flow will be no longer stable when the stress–strain

curve of a material develops a negative slope. For a general flow stress function σ = f (ε, ε̇, θ ), the

critical condition for the instability is

dσ

dε
=

(

∂σ

∂ε

)

ε̇,θ

+
(

∂σ

∂ε̇

)

ε,θ

dε̇

dε
+

(

∂σ

∂θ

)

ε,ε̇

dθ

dε
≤ 0, (A 1)

where θ is the temperature. We perform an order-of-magnitude analysis of the individual terms

in the above equation. Given that the temperature rise in the velocity range of interest is small

(table 2), we evaluate these terms at θ ∼ 23◦C. Earlier, we have noted that the strain (within the

matrix/segment) at which shear bands initiate is about 0.5. Given that the slope of the stress–

strain curve at this strain level is ≈0 (figure 3a) at all strain rates, the first term (∂σ/∂ε)ε̇,θ can be

safely assumed to be zero.

Also, from figure 3b, we have seen that the flow stress (in MPa) at any given strain can

be represented as Kε̇m, with m being in the range of 0.13–0.17 and K showing little variation

with ε. Coupled with the fact that the nominal strain rate in cutting can be given by εV0/�

(where the shear zone thickness � is about 50 µm), the second term as a whole can be written

as Kmεm−1(V0/�)m. Substituting the representative values, the second term in equation (A 1) is

seen to fall in the 30–72 MPa range, depending on V0 (0.3–8 mm s−1).

Lastly, we estimate the last term by obtaining dθ/dε from equation (4.1), while the (∂σ/∂θ )ε,ε̇

term is obtained from the literature (due to lack of data for Wood’s metal). Since ∂σ/∂θ for various

low melting point alloys (Tm < 220◦C) is found to lie between −1/7 and −1/3 MPa ◦C−1 [59,60], a

value of −1/6 MPa ◦C−1 is used for the present calculations. Putting together these values gives

an estimate for the third (flow softening) term in equation (A 1) in the range of −0.04 to −0.9 MPa.

Note that precise choice for the ∂σ/∂θ value does not introduce a large error in the calculation.

Importantly, this shows that the thermal softening term is much smaller than the strain-rate

hardening term, by about two orders of magnitude, under conditions where shear bands were

experimentally observed. These observations suggest that a re-assessment of the (commonly

used) maximum load criterion for shear band formation is in order.
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