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Improving Generalized Spatial Modulation Using Translation Patterns

Lakshit Singla and Lakshmi Prasad Natarajan , Member, IEEE

Abstract— Generalized spatial modulation (GSM) is a
spectral-efficient technique used in multiple-input multiple-
output (MIMO) wireless communications when the number of
radio frequency chains at the transmitter is less than the number
of transmit antenna elements. We propose a family of signal
constellations, as an improvement over GSM, which splits the
information bits into three parts, and encodes the first part into a
set of complex symbols, the second part into the choice of a subset
of antennas activated for transmission (as in GSM), and the third
into a translation pattern that offsets the symbols transmitted
through the activated antennas. The nominal coding gain (the
ratio of the squared minimum distance between transmit vectors
to the transmit power) of our scheme is higher than that of GSM
by at least 0.86 dB, and this improvement can be as much as
2.87 dB based on the system parameters. We show that the new
scheme has advantages over other known signal constellations
for GSM, in terms of error performance, nominal coding gain
and design flexibility.

Index Terms— Coding gain, generalized spatial modula-
tion (GSM), MIMO, minimum distance.

I. INTRODUCTION

THE high complexity involved in the design of commu-

nication terminals with multiple radio frequency (RF)

chains can lead to scenarios where the number of RF chains

na available in a wireless transmitter is less than the number

of antenna elements nt [1]. Generalized spatial modulation

(GSM) [2]–[4] is a well-known modulation technique that

provides high spectral efficiencies in such scenarios. In GSM,

the choice of na antenna elements activated for transmission

out of the nt available elements, called antenna activation

pattern, conveys a part of the information bits.

Several signal constellations have been proposed in

the literature that improve the error performance of

GSM [5]–[9], albeit with some design limitations. Enhanced

Spatial Modulation (ESM) and its variants [5], [6] have been

designed for limited choice of system parameters (for example,

complex symbols must take values from 16- or 64-QAM and

na must be even for ESM-Type2 constellations [6]). The signal

constellation in [7] relies on computer search and is available

only for na = 2. The scheme from [8] does not modulate an

integer number of information bits, and its transmit vectors

contain irrational components. Note that, to minimize the cost

of digital-to-analog conversion at the transmitter it is desirable

to use signals that do not contain irrational components [10].

The signal design technique of [9] relies on a numerical opti-

mization algorithm whose complexity increases exponentially

in the spectral efficiency.
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In this letter, we exploit a technique which is the essence

of Construction A of lattices [11] to obtain new signal con-

stellations for GSM. This technique uses the codewords of

an error correcting code [12] to generate high-density lattice

packings. In our proposed communication scheme we partition

information bits into three blocks, the first is modulated

into complex symbols, the second into an antenna activation

pattern, and the third into a translation pattern or vector that

offsets the complex symbols transmitted through the activated

antennas. The translation patterns used in our scheme arise

from the codewords of the single-parity check code. We use

the ratio of the squared minimum distance of the constellation

to the transmit power, which we refer to as the nominal coding

gain, as the figure-of-merit of a scheme. We show that the

proposed scheme provides improvements in nominal coding

gain over GSM by at least 0.86 dB and up to 2.87 dB.

In comparison with [5]–[9], our technique allows a simple

and explicit construction for any choice of alphabet size

(for the complex symbols), and any choice of nt, na ≥ 2.

This flexibility allows us to achieve a wide range of spectral

efficiencies, including the ability to encode integer number

of information bits. Further, the transmit vectors in our con-

stellation do not contain irrational components. Simulation

and numerical results show that our scheme provides a lower

error rate and larger nominal coding gain than GSM and the

schemes from [5] and [7], and the error performance is similar

to that of the scheme proposed in [6].

Notation: We denote column vectors and matrices using bold

lower and upper case letters, respectively. For any vector x,

the symbols xT, kxk and kxk0 denote the transpose, Euclidean

norm (`2-norm) and the `0-norm of x, respectively. For a

positive integer N , [N ] denotes the set {1, . . . , N}. For sets

A, B, the symbol A \ B is the set of all elements in A that

are not in B. CN (0, σ2) is the circularly symmetric complex

Gaussian distribution with zero mean and variance σ2.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a wireless slow fading channel with nt transmit

and nr receive antennas, modelled as y = Hx + w, where

x ∈ Cnt is the transmit vector, H ∈ Cnr×nt is the channel

matrix, y ∈ Cnr is the received vector and w ∈ Cnr is the

additive noise at the receiver. We assume Rayleigh fading,

i.e., each entry of H is an independent CN (0, 1) random

variable, and that only the receiver knows the value of H

and the transmitter does not. The entries of w are indepen-

dent CN (0, No) random variables. In this letter we consider

modulation schemes for this channel that span only one time

slot, i.e., we do not consider coding across time. We further

assume that the transmitter is equipped with na RF chains,

where 2 ≤ na ≤ nt. This implies that the number of active

antennas, at any given time instance is at the most na, i.e., any

transmit vector x must satisfy kxk0 ≤ na.
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A signal constellation C for nt transmit antennas and na RF

chains is a finite set of complex vectors each of length nt and

with `0-norm less than or equal to na. We assume that each

vector in C is equally likely to be transmitted. The spectral

efficiency of C is η = log2 |C| bits/sec/Hz, the average transmit

power is P =
∑

x∈C kxk2/|C|, and the resulting signal to

noise ratio is SNR = P/No. The minimum Euclidean distance

between the points in C is dmin(C) = min{ kx−x0k | x,x0 ∈
C, x 6= x0 }. We will assume that the receiver employs

the maximum likelihood detector, i.e., the detector output

is argminx∈C ky − Hxk2. The pair-wise error probability

between x,x0 ∈ C is upper bounded by [13]

(4 No)
nr

kx − x0k2nr

=
4nr Pnr

SNR
nrkx− x0k2nr

≤ 4nr

SNR
nr

(
P

d2
min(C)

)nr

.

The nominal coding gain δ(C) of the constellation C is

δ(C) = d2
min(C)/P . We deduce that the pairwise error prob-

ability between any pair of transmit vectors is at the most

( 4 / SNR δ(C) )
nr . Typically, a large value of δ(C) indicates a

small probability of error.

A. Review of Generalized Spatial Modulation [2]–[4]

In GSM, na information-bearing complex symbols are

transmitted through a set of na antennas among the avail-

able nt transmit antennas. The choice of the antennas trans-

mitting these symbols carries additional information. Let

A = {A1, . . . , AL} be a collection of L distinct na-sized

subsets of [nt], i.e., A` ⊂ [nt] and |A`| = na for each ` ∈ [L].
Each A ∈ A denotes a possible collection of na antennas

that can be activated for transmission. Clearly, L ≤
(

nt

na

)
.

It is not uncommon to choose L as the largest power of 2

less than or equal to
(

nt

na

)
, i.e., log2 L = blog2

(
nt

na

)
c.

If an M -ary complex alphabet � ⊂ C, such as M -QAM,

is used for encoding, then na log2 M information bits are

modulated into a collection of na symbols z1, . . . , zna
∈ �.

An additional log2 L information bits are encoded into the

subset A ∈ A of antennas activated for transmission. Then

the symbols z1, . . . , zna
are transmitted through the subset

A of antennas. Hence, the spectral efficiency of GSM is

ηGSM = na log2 M + log2 L bits/sec/Hz.

Throughout this letter, we will refer to the set C ⊂ Cnt

of transmit vectors as signal constellation or simply the

constellation. We will also use complex signal sets, such as

� ⊂ C, to design new constellations. We will refer to such

complex signal sets as complex alphabets or simply alphabets.

III. PROPOSED SIGNAL CONSTELLATION

We present the new family of signal constellations in this

section for any choice of nt and 2 ≤ na ≤ nt.

A. Complex Alphabets

We denote the set of Gaussian integers as Z[i], i.e., Z[i] =
{a + ib | a, b ∈ Z}, and denote the complex number 1/2 + i/2

as α. The set Z[i] + α = {x + α | x ∈ Z[i] } consists of all

complex numbers whose real and imaginary parts are half-

integers, i.e., are of the form q/2 where q is an odd integer.

Note that Z[i]+α does not contain 0, and the smallest squared

Fig. 1. Left: modified square 16-QAM alphabet �� (red asterisks), and its

translation ��+α (blue squares) that will be used in our constellation design.
Right: conventional 16-QAM. Axes are real and imaginary parts.

absolute value among the elements in Z[i]+α is 1/2, which is

achieved by ±1/2±i/2. Our construction makes use of complex

alphabets �̃ that satisfy the following two properties

Property P1. �̃ ⊂ Z[i] + α, and Property P2. − α /∈ �̃.

(1)

Example 1: Modified square QAM alphabets: Let M be

such that
√

M is an even integer. The conventional M -

ary square QAM alphabet � is the set of all complex

numbers whose real and imaginary parts belong to
√

M -ary

PAM, i.e., {−
√

M+1
2 , −

√
M+3
2 , . . . , −1

2 , 1
2 , . . . ,

√
M−1
2 }. Note

that � ⊂ Z[i] + α and −α = −1/2 − i/2 ∈�. Thus, � sat-

isfies property P1, but not P2. We design �̃ by starting

with �, and replacing the element −α with an element

β ∈ (Z[i] + α) \�, i.e., �̃ =� ∪ {β} \ {−α}. In order to

reduce the transmit power, we choose β = −(
√

M+1)/2 − i/2.

We refer to this resulting alphabet �̃ as modified square QAM.

It is clear that �̃ satisfies properties P1 and P2 in (1). The

modified 4-QAM alphabet consists of the points 1/2 + i/2,
1/2 − i/2, −1/2 + i/2 and −3/2 − i/2, where the last element

is β. The modified 16-QAM alphabet is shown in Fig. 1. �

For an arbitrary value of M , we can obtain an alphabet �̃

satisfying (1) using an inexpensive computer search. To reduce

the transmit power we require points x ∈ (Z[i]+α)\{−α} for

which |x|2 + |x+α|2 is small; see (6). We obtain the alphabet

�̃ by sorting the elements x of the set {a + ib | |a|, |b| ∈
{ 1

2 , 3
2 , . . . , dM

2 e+ 1
2}}\{−α} in the ascending order of |x|2+

|x + α|2, and choosing the first M elements in this list.

In order to analyze the transmit power of our proposed

constellation, we require the values of the average energies of

the symbols in the alphabets �̃ and �̃+α = {x+α | x ∈ �̃}.

When �̃ is the modified square M -QAM, straightforward

calculations show that the energies of these alphabets are

E(�̃) =
1

M

∑

x∈��

|x|2 =
M − 1

6
+

1

4
+

1

2
√

M
, (2)

E(�̃+ α) =
1

M

∑

x∈��+α

|x|2 =
M − 1

6
+

3

4
. (3)

In comparison, the energy of the conventional square M -QAM

is (M − 1)/6.

B. New Constellation Using Translation Patterns

Our new constellation uses the following ingredients:
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(i) Any M -ary complex alphabet �̃ satisfying properties

P1 and P2 in (1).

(ii) Any collection A = {A1, . . . , AL} of antenna activation

patterns, where each A` is an na-sized subset of [nt].
(iii) A set T of translation vectors or translation patterns,

described below, that consists of 2na−1 complex vectors,

each of length na, i.e., T ⊂ Cna and |T | = 2na−1.

We restrict all the components of every translation vector

to be equal to either 0 or α, and let T be the set of all such

vectors whose components contain an even number of α’s,

i.e., T = { t ∈ {0, α}na | ktk0 is even }. Note that T has the

same structure as the binary single-parity check code [12],

except that the 1’s in the single-parity check code are replaced

with α’s. From the well-known properties of the single-parity

check code, we deduce that |T | = 2na−1, and for any l ∈ [na]
if a translation vector is picked uniformly at random from T ,

the value of its lth component is equally likely to be 0 or α.

Our scheme encodes na log2 M + log2 L + na − 1 infor-

mation bits. The first na log2 M bits are modulated, log2 M
bits at a time, into the complex symbols z1, . . . , zna

∈ �̃,

yielding the vector z = (z1, . . . , zna
)T. The next block of

log2 L information bits select the antenna activation pat-

tern A ∈ A. The remaining na − 1 information bits, say

b1, . . . , bna−1, are encoded into a single-parity check code-

word, and the 1’s appearing in this codeword are converted

into α’s to obtain the translation pattern t ∈ T , i.e., t =
α × (b1, . . . , bna−1,⊕na−1

i=1 bi)
T, where ⊕ denotes the binary

XOR operation.

We translate the vector z using t, and transmit the na

components of the resulting vector z+ t through the antennas

with indices in A. Let A = {j1, . . . , jna
} with j1 < j2 <

· · · < jna
. The function x = ψA(z+ t), defined below in (4),

maps the entries of z + t into the components of x indexed

by A,

xjl
= zl + tl for all l ∈ [na], and xj = 0 if j /∈ A. (4)

The proposed constellation CT(�̃,A, T ), or simply CT, is

CT =
⋃

A∈A
⋃

t∈T

{
ψA(z + t)

∣∣∣ zl ∈ �̃, l ∈ [na]
}

. (5)

The process of modulating na log2 M bits into complex

symbols z1, . . . , zna
, and using log2 L bits to select an

antenna activation pattern A are similar to GSM. The addi-

tional steps used by our scheme are computing the parity

⊕na−1
i=1 bi and the sum z+t, which have negligible complexity.

Example 2: Consider nt = 4 and na = 3. In this case, T
consists of the four vectors (0, 0, 0)T, (0, α, α)T, (α, 0, α)T,

(α, α, 0)T. Let L = 4 and A be the collection of the four

subsets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. The number of

information bits encoded by CT is na log2 M +log2 L+na−
1 = 3 log2 M + 4. Out of these, 3 log2 M bits are encoded

into complex symbols z1, z2, z3 ∈ �̃, 2 bits are used to select

one of the activation patterns from A, and the remaining 2 bits

are used to choose one of the four possible translation vectors

in T . If the chosen translation vector is (t1, t2, t3)
T, then the

transmitted vector x is of the form

(z1+t1, z2+t2, z3+t3, 0)T, (z1 + t1, z2 + t2, 0, z3 + t3)
T,

(z1+t1, 0, z2+t2, z3+t3)
T or (0, z1 + t1, z2 + t2, z3 + t3)

T

which correspond to the antenna activation patterns {1, 2, 3},

{1, 2, 4}, {1, 3, 4} and {2, 3, 4}, respectively. �

Transmit Power of CT: Let E denote the expectation oper-

ation. We assume that the na components of z are uniformly

distributed over �̃, t has uniform distribution over T , and

all the activation patterns A in A are equally likely. Since

x = ψA(z + t), we observe that kxk2 = kz + tk2. Thus,

the power of the constellation CT is P (CT) = E kxk2 =
E kz+tk2 =

∑na

l=1 E |zl + tl|2. Note that for each l ∈ [na], zl

and tl are independent, zl is uniformly distributed in �̃, and

tl is equally likely to be 0 or α. Hence, E |zl|2 = E(�̃) and

E |zl + α|2 = E(�̃+ α), and

P (CT) =
∑na

l=1
E |zl|2+E |zl+α|2

2 = na
E(��)+E(��+α)

2 . (6)

Minimum Squared Distance of CT: We will show that

d2
min(CT) = 1 through the following lemmas. We will assume

that the alphabet �̃ satisfies the properties in (1).

Lemma 1: For any z ∈ �̃na , t ∈ T and A ∈ A, the vector

x = ψA(z + t) satisfies |xj |2 ≥ 1/2 for all j ∈ A and xj = 0
for all j /∈ A.

Proof: For a given j ∈ A there exists an l ∈ [na] such

that xj = zl + tl. If tl = 0, then xj = zl ∈ �̃ ⊂ Z[i] + α, and

since every element in Z[i] + α has squared absolute value at

least 1/2, we have |xj |2 = |zl|2 ≥ 1/2. On the other hand,

if tl = α, then the real and imaginary parts of xj = zl +α are

both integers, and hence, xj ∈ Z[i]. Also, zl 6= −α since −α /∈
�̃, and hence, xj 6= 0. In this case, |xj |2 ≥ 1. We conclude

that |xj |2 ≥ 1/2 for all j ∈ A. Also, by construction, xj = 0
for j /∈ A, see (4).

Lemma 2: Let z, z0 ∈ �̃na and t, t0 ∈ T be any choice of

vectors such that (z, t) 6= (z0, t0). Then kz+t−(z0+t0)k2 ≥ 1.

Proof: Since �̃ ⊂ Z[i] + α, the real and imaginary parts

of every component of z and z0 are half-integers, i.e., belong

to Z + 1/2. This implies that the real and imaginary parts of

each component of z − z0 is an integer, i.e., z − z0 ∈ Z[i]na .

We first consider the case t = t0. Necessarily z 6= z0, and at

least one of the components of z − z0 is non-zero. Since this

component of z− z0 belongs to Z[i] and is non-zero, we have

kz + t − (z0 + t0)k2 = kz − z0k2 ≥ 1.

Now consider t 6= t0. Since the vectors t and t0 have even

number of non-zero elements (i.e., α’s), they differ in at least

two components, say l, m ∈ [na]. The lth and mth components

of t− t0 belong to the set {α,−α}. Now consider the vector

z+t−(z0+t0) = (z−z0)+(t−t0). The lth component of z−z0

belongs to Z[i] and the lth component of t − t0 is ±α. Thus,

the lth component of (z−z0)+(t−t0) belongs to Z[i]+α, and

therefore, this component has squared magnitude at least 1/2.

Similar result holds for the mth component of (z−z0)+(t−t0)
as well. We conclude that the squared norm of this vector is

at least 1/2 + 1/2 = 1.

Theorem 1: The minimum distance of CT is dmin(CT) = 1.

Proof: We will show that d2
min(CT) ≥ 1 and

d2
min(CT) ≤ 1.

Lower bound: Let x and x0 be generated using the tuples

(z, t, A) and (z0, t0, A0), respectively, i.e., x = ψA(z+ t) and

x0 = ψA′(z0+t0). We will assume that (z, t, A) 6= (z0, t0, A0).
Assume A 6= A0. There exist j ∈ A \ A0 and j0 ∈

A0 \ A, since A 6= A0 and |A| = |A0|. From Lemma 1,
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|xj |2, |x0
j′ |2 ≥ 1/2. Since the jth and j0 th components of x−x0

are xj and −x0
j′ , we conclude kx−x0k2 ≥ |xj |2 + |−x0

j′ |2 ≥
1/2 + 1/2 = 1.

If A = A0, then (z, t) 6= (z0, t0) and kx − x0k2 = kz +
t − (z0 + t0)k2. From Lemma 2, we conclude kx − x0k2 =
kz + t − (z0 + t0)k2 ≥ 1.

Upper bound: Consider any z ∈ �̃na and A ∈ A. Let

t = (0, . . . , 0)T and t0 = (α, α, 0, . . . , 0)T. Consider the

codewords x = ψA(z + t) and x0 = ψA(z + t0). Then

d2
min ≤ kx− x0k2 = kz + t− (z + t0)k2 = kt− t0k2 = 1.

Nominal Coding Gain of CT: Using (6) and Theorem 1,

δ(CT) =
d2
min(CT)

P (CT)
=

2

na( E(�̃) + E(�̃+ α) )
. (7)

Observe that δ(CT) is inversely proportional to the energies of

the alphabets �̃ and �̃ + α. A larger value of M requires

the use of a larger alphabet �̃, which increases the energies

E(�̃) and E(�̃ + α), and thereby reduces δ(CT). From (5),

note that |CT| = MnaL2na−1 and the spectral efficiency is

na log2 M + log2 L + na − 1. Thus, for given values of

nt, na and spectral efficiency, we can maximize the nominal

coding gain by using as small a value of M , or equivalently,

as large a value of L, as possible. Finally, note that when �̃

is the modified square M -QAM, using (2) and (3) in (7),

δ(CT) =
[
na

(
M−1

6 + 1
2 + 1

4
√

M

)]−1

. (8)

Decoding Complexity: The maximum-likelihood decoder

computes argminx∈CT
ky−Hxk2, where y and H are chan-

nel output and channel matrix, respectively. From (4) and

Lemma 1, kxk0 = na for all x ∈ CT. Section V-C of [6]

shows that if every transmit vector x satisfies kxk0 = na,

as is the case with our constellation CT, then the number of

complex floating point operations (flops) required to compute

ky − Hxk2 for all choices of x is 2η(2nr(na +1)−1), where

η = log2 |CT|. Our receiver complexity is identical to the ML

decoding complexity of GSM and the constellations from [6],

[7] for the same of values of na, nr and spectral efficiency η.

C. Comparison With GSM

We compare the new constellation with GSM when the

spectral efficiencies are equal. For fairness, we will also

assume that both schemes use the same number of antenna

activation patterns L. We will assume that CT uses a modified

square QAM alphabet of size M = 22m, where m ≥ 2 is a

positive integer. Then the spectral efficiency of CT is 2mna +
log2 L+na−1. To achieve the same spectral efficiency, GSM

must use two different complex alphabets — it encodes one

symbol using 22m-ary square QAM, and the remaining na−1
symbols using a 22m+1-ary QAM. We assume that both the

alphabets are subsets of Z[i] + α, and the latter alphabet is a

cross QAM [14] of size 22m+1 (note that the energy of cross

QAM is less than that of the rectangular QAM of size 22m+1).

It is straightforward to show that the minimum distance of this

GSM constellation is equal to 1. The energy of the 22m-ary

square QAM is (22m − 1)/6, and that of the 22m+1-ary cross

Fig. 2. Comparison with GSM, na = 3, η = 22 bits/sec/Hz.

QAM is (31 × 22m+1/32 − 1)/6, see [14]. Using this we

obtain the power of the GSM constellation CGSM

P (CGSM) =
22m − 1

6
+ (na − 1)

31 × 22m+1/32 − 1

6
,

and the nominal coding gain δ(CGSM) = 1/P (CGSM). Using

this with (8), and after straightforward manipulations,

δ(CT)

δ(CGSM)
=

31

16
×

1 − 16
31M

− 15
31na

1 + 2
M

+ 3
2M

√
M

. (9)

For large values of M = 22m and na, the ratio δ(CT)/δ(CGSM)
approaches 31/16 ≈ 1.94, which is a gain of 2.87 dB. Observe

that the second term on the RHS of (9) is an increasing

function of M and na. Thus, substituting the smallest possible

values for M and na, i.e., M = 16 and na = 2, in the RHS

of (9) shows that δ(CT)/δ(CGSM) is lower bounded by 60/49
(approximately 0.86 dB), for any m ≥ 2 and na ≥ 2.

IV. SIMULATION RESULTS

We now present simulation results to compare the trans-

mit vector or codeword error rate (CER) of the new

constellation with known schemes in the literature under

maximum-likelihood decoding at the receiver. We do not

consider schemes whose transmit vectors contain components

with irrational real or imaginary parts. All simulations pre-

sented in this section use nt = 4.

Fig. 2 shows the comparison of the new scheme CT

with GSM for spectral efficiency 22 bits/sec/Hz, na = 3
active antennas and for three different values of nr, viz.,

4, 8 and 12. Both schemes use L = 4 antenna activation

patterns. While the new scheme uses the modified square

64-QAM alphabet and 2na−1 = 4 translation patterns (as in

Example 2), GSM modulates two of the three transmit symbols

using cross 128-QAM and the remaining symbol using square

64-QAM. Fig. 2 shows that the new scheme is better, and the

performance gap is larger for larger values of nr. From (9),

the nominal coding gain of CT is larger than that of GSM by

1.92 dB. Note that [5]–[7] do not provide constructions for

na = 3.

Fig. 3 compares the new scheme with GSM, spatial

multiplexing (SMX) [13], and Enhanced Spatial Modu-

lation (ESM)-Type2 from [6] for na = 2, nr = 8 and

η = 14 bits/sec/Hz. Among the schemes presented in [6] that

do not perform coding across time, ESM-Type2 has the best
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Fig. 3. Comparison with ESM Type2, GSM and SMX.

Fig. 4. Comparison for na = 2, nr = 4, η ≈ 11 bits/sec/Hz.

error performance. SMX uses two transmit antennas and cross

128-QAM alphabet. GSM uses square 64-QAM and L = 4
antenna activation patterns. ESM-Type2 exploits all possible,

i.e.,
(

nt

na

)
= 6, pairwise antenna activations in addition to

single-antenna activations. For fairness, the new scheme CT

(see (5)) uses L = 6 activation patterns. We use a 37-ary

alphabet �̃ satisfying (1), along with 2na−1 = 2 translation

patterns, yielding η slightly more than 14 bits/sec/Hz. Fig. 3

shows that ESM-Type2 and the new scheme have similar CER,

and both of them perform better than GSM and SMX. The

nominal coding gains δ of ESM-Type2 and the new scheme

are 0.0821 and 0.079, respectively, a loss of 0.17 dB for the

new scheme with respect to ESM-Type2.

In Fig. 4 we consider na = 2, nr = 4 and spectral efficien-

cies close to 11 bits/sec/Hz. We compare two new schemes,

New-1 and New-2, with the Hurwitz integers based con-

stellation from [7] and Enhanced Spatial Modulation (ESM)

from [5]. The scheme from [7] uses L = 6 antenna activation

patterns, while ESM uses 6 pairwise antenna activations and

4 single-antenna activations, and both these schemes have

η = 11 bits/sec/Hz. The new scheme New-1 uses modified

square 16-QAM (see Fig. 1) and L = 4 yielding η = 11. To be

fair with respect to the number of antenna activation patterns,

we include the performance of New-2, which uses L = 6 and

a 13-point constellation �̃ yielding η = 10.99 bits/sec/Hz.

Fig. 4 shows that New-1 performs better than ESM, even

though it uses less number of antenna activations than ESM,

and New-2 outperforms both ESM and the Hurwitz integer

based constellation. For completeness, Fig. 4 also shows

the performance of spatial lattice modulation (SLM) based

on Barnes-Wall lattice [15] with η = 11 that requires four

transmit RF chains. All other schemes in Fig. 2 use na = 2
RF chains. The nominal coding gains δ of New-1, New-2,

the Hurwitz integer scheme [7], ESM [5] and SLM [15] are

0.1633, 0.1985, 0.1901, 0.0773 and 0.5314, respectively.

V. CONCLUSION

We showed that carefully designed translation patterns,

in addition to antenna activation patterns, can be used to

encode information in GSM. Comparing with known schemes

whose transmit vectors consist of only rational components,

the new constellation performs nearly as well as ESM-

Type2 [6], and outperforms [5], [7] and GSM in terms of error

performance and nominal coding gain. Explicit construction

of ESM-Type2 is available only for limited choice of system

parameters (only for 16 and 64-QAM alphabets, nt = 4, 8
and na even). In comparison, our framework provides con-

structions for any choice of nt, na ≥ 2 and alphabet size M .
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