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We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of
uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density
functional theory (DFT) and the effect of uniform strain fields are accounted for using the dipole
tensor approach. We report complex migration pathways and non-cubic symmetry associated with
the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for
to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous
strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly
predict the change in the energy barrier between the strained and the unstrained case. Diffusivities
are computed using kinetic Monte Carlo (KMC) simulations for both neutral and fully charged
state of uranium single and di-vacancies. We calculate the effect of strain on migration barriers in
the temperature range 800 –1800 K for both vacancy types. Homogeneous strains as small as 2%
have a considerable effect on diffusivity of both single and di-vacancies of uranium, with the effect
of strain being more pronounced for single vacancies than di-vacancies. In contrast, the response
of a given defect to strain is less sensitive to changes in the charge state of the defect. Further,
strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very
sensitive to the nature of the applied strain field for strain of equal magnitude. Our results suggest
that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies
dominate the defect structure, such as sintering, while the effects will be much less substantial under
irradiation conditions where di-vacancies dominate.

I. INTRODUCTION

Uranium dioxide (UO2) is the ubiquitous nuclear
fuel, whose properties play a key role in the relia-
bility and safety of nuclear reactors.1–3 As a ceramic
insulator/wide-band semiconductor (having a bandgap
of 2.0 eV), UO2 has low thermal conductivity and high
brittleness at low temperatures.4–6 However, at high tem-
peratures and under irradiation UO2 can undergo time-
dependent creep.1,4,5,7 The transition temperature from
irradiation-induced8–10 to thermal creep11–14 is approx-
imately 1100 ◦C.4,8 Compared to the creep of metals,
the creep behavior of UO2 is much more complex, de-
pending strongly on the O/M ratio11,15and, microstruc-
tural features14,15 such as grain size and porosity, as well
as temperature4,11,14 and stress state12,13,16. Dozens of
mechanisms have been proposed for the high temperature
thermal creep. These mechanisms can be broadly classi-
fied into lattice diffusion controlled1,11,14, grain boundary
diffusion12,17–19, and dislocation glide/climb controlled
diffusion.12–14,16 In the case of UO2, lattice diffusion con-
trolled creep, known as Nabarro-Herring creep, involves
vacancy transport within grains, with the rate controlled
by the diffusion of uranium vacancies. Dislocation con-
trolled creep falls in two regimes: Harper-Dorn creep at
low stresses and a power-law regime at high stresses. The

power-law regime involves both glide and climb of dislo-
cations. The dislocation climb rate is determined by the
diffusion of vacancies to the core of the dislocation.

There is no consensus in the literature as to the domi-
nant mechanism of thermal creep in UO2. This can be at-
tributed, at least in part, to the wide variability of the mi-
crostructure, stoichiometry, temperature, and presence
of fission products, all of which affect the creep mecha-
nism. To begin to re-address this complex problem in
UO2, we attempt to understand the diffusion of uranium
vacancies as a function of temperature, stress state of the
fuel and their interaction with the dislocations. In our
simulation approach, we make use of Density Functional
Theory (DFT) calculations20–22 to accurately calculate
the migration barriers of the single and di-vacancies of
uranium as function of their charge state. This permits
us to address uranium vacancy diffusion not only in UO2

but also in UO2+x, where, in addition to the charged va-
cancy (dominant in UO2), neutral and di-vacancies are
also important. Our focus is on cation vacancy diffusion
as this will be the rate limiting specie controlling phe-
nomena such as diffusion-controlled creep. We use the
Kinetic Monte Carlo (KMC) method23,24 to calculate the
uranium diffusivity at relevant fuel temperatures.

This work addresses the issue of ionic transport in
strained oxide materials, using UO2 as a prototypical
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material, both because of its importance in the gener-
ation of nuclear energy but also because its structure,
fluorite, is common to many technologically important
materials. Thus, our results have implications beyond
the specific material studied, in particular for the trans-
port properties of various systems such as complex oxide
hetero-structures25,26, strained oxide thin films27,28, and
strain enhanced ionic conductivity in fluorite structured
oxide materials like CeO2 and stabilized ZrO2 (YSZ)29–31

which are commonly used in solid oxide fuel cells, as well
as sintering and creep properties of zirconia and hafnia
based thermal barrier coatings32,33. In many of these ap-
plications, the presence of strain can alter atomic scale
events and the overall evolution of the system. Impor-
tantly, as the size of these materials systems is reduced to
the nanoscale and interfacial strains dominate the prop-
erties of the material, understanding the potential con-
nection between that strain and mass transport is crucial.
In addition, many other important processes that are im-
portant for a wide range of oxide ceramics involve the
coupling of strain and diffusion, including sintering and
creep. Finally, our work provides the foundation for an
ab initio informed KMC approach and can be extended
to any system where strain influences mobility.
The rest of the paper is organized as follows. In Sec.II

we discuss the DFT and KMC methodologies, as well
as the method to calculate the dipole tensor, which is
used to address the effect of homogeneous and complex
strain fields on diffusivity. We then report the migration
barriers and dipole tensor values calculated for uranium
vacancies using DFT (in Sec. III A and Sec. III B) as
well as diffusivities for both single and di-vacancies as
function of homogeneous strains and temperature in Sec.
III C. Our discussion and conclusions are presented in
Sec. IV.

II. METHODOLOGY

A. Density functional theory calculations

The DFT calculations are performed with the Vi-
enna Ab Initio Simulation Package (VASP)34–36 using the
projector-augmented-wave (PAW) method.37,38 The elec-
tron exchange and correlation potential is described by
the local density approximation (LDA) with the LDA+U
functional used for the correlated U 5f electrons.39 In ac-
cordance with the earlier studies, the U and J values are
set to U (4.5 eV) and J (0.51 eV); i.e., U-J (3.99 eV).
Defect properties are calculated using a 2×2×3 supercell
(with 144 atoms for stoichiometric UO2). A 2×2×1 k-
point mesh is used for all calculations. The supercells are
allowed to fully relax, both in volume and atomic coor-
dinates. The migration barriers are calculated using the
climbing-image nudge elastic band (CI-NEB) method.40

For each barrier we applied three, four or five nudged
elastic band images, depending on the complexity of the
migration path. The reported data represent the low-

est energy solution which, for both stoichiometric and
defect containing UO2, corresponds to the phase with a
Jahn-Teller distortion of the oxygen sub lattice.21 Fur-
ther details of the DFT calculations are presented in the
work by Andersson et al.20,21

B. Kinetic Monte Carlo simulations

The Kinetic Monte Carlo (KMC) method23,24 is used
to simulate the long time evolution of uranium vacan-
cies in UO2. While molecular dynamics41 (MD) sim-
ulations have been used to simulate uranium vacancy
dynamics in UO2

42,43, but it is limited by the accessi-
ble timescale, which is typically in the range of nanosec-
onds, while processes such as uranium diffusion occur on
much longer time scales, even at elevated temperatures.
The KMC method overcomes this time-scale limitation
by exploiting the fact that the dynamics consists of ad-
vancing a uranium vacancy from one minimum energy
state to the next. Thus, in principle it can take into ac-
count all diffusion pathways and the diffusion rates for
each of these pathways, provided they are known. Here,
these pathways and rates for uranium vacancy are calcu-
lated using DFT, which are then the input to the KMC
simulations. In this work, we have employed a recently
developed KMC Method23,44 to efficiently account for ar-
bitrary strain fields. In this method, the strain-induced
changes to the migration barrier are computed using the
dipole tensor approach45–48, as described in Sec. II C.
The main assumption of this technique is that the defect
is in a bulk-like environment and the underlying topol-
ogy of the potential energy surface does not change un-
der relatively low strains. Under this assumption, strain
serves only to change the relative heights of the station-
ary points on the energy surface. This is a valid assump-
tion under small external strains, where the effect are
within the linear elastic regime. The impact of strain
on the pre-factor are not included as they are expected
to be less important than the changes in the migration
energy.49,50 The jump rates of uranium vacancies are cal-
culated by an Arrhenius relation as

k = ν0 exp

(

−Emig

kBT

)

(1)

where Emig is the migration barrier to carry the vacancy
from an initial equilibrium (or minimum of potential en-
ergy landscape) state to a saddle state, T is the abso-
lute temperature, kB is Boltzmann’s constant and ν0 is
the migration prefactor, a measure of the entropy of mi-
gration for the process.51 Here, Emig is calculated using
DFT and ν0 from the empirical potential calculations,
as described in more detail elsewhere.21. The values for
Emig and ν0 for the two vacancy species studied in this
work are listed in Table I. The diffusivity is computed
from the KMC simulations using the relation between the
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FIG. 1. Diffusivity of single charged uranium vacancy as com-
puted from the KMC simulations. The solid line is a linear
fit to the KMC data points shown in diamonds.

TABLE I. Migration parameters for a single uranium vacancy
and a uranium di-vacancy. The first column gives the migra-
tion barrier (Emig) in eV and second column the rate pre-
factor (ν0) in sec−1, taken from reference.21

Defect Emig ν0

V×
U 4.95 2.38× 1012

V
′′′′

U 4.72 2.38× 1012

V×
U2

3.27 1.82× 1014

V
′′′′′′′′

U2
2.84 1.82× 1014

mean square displacement (MSD) as function of time,
〈

R2
i

〉

= 2Dit (2)

where, i ∈ [x,y,z] and the MSD,
〈

R2
i

〉

is averaged over
400 independent trajectories. The dynamics of the ura-
nium vacancy via KMC simulations is validated by com-
paring it with the Arrhenius relation (Eq. 1) for the
unstrained case. As expected, diffusion is isotropic (DX

= DY = DZ) and the computed value of the diffusion
coefficient for a single charged uranium vacancy D

V
′′′′

U

is 8.9 × 10−30m2sec−1 at 1000 K. The migration bar-
rier (Emig) and effective frequency (ν0) calculated from
the slope of the linear fit to the diffusion data are 4.72
eV and 2.39 × 1012sec−1, demonstrating the correctness
of the KMC implementation, which are same as the in-
put values of 4.72 eV and 2.38× 1012sec−1, demonstrat-
ing the correctness of the KMC implementations. Emig

is extracted from the KMC simulation from the slip
of ln[D = D0exp(−Emig/kBT )] vs inverse temperature
while ν0 is found from the relationship D0 = 1

6fZS2ν0,
where f = 1, Z = 12 and S = 0.386nm.

C. Dipole tensor formalism

Point defects can introduce lattice distortions both
at short and long range. The short range distortions
consist of relatively large displacements of ions in the
immediate neighborhood of the defect, whereas long

range distortions can be understood from linear elastic-
ity theory.46,47,52 A point defect or the lattice distortion
associated with it interacts with external strains, which
induces a change in the defect’s energy of formation. This
change in energy due to external strain can be described,
to first order, by the elastic dipole tensor.45–47,53,54 The
change in energy is given by

∆E = −tr(G · ε) = −Gijεij (3)

where ∆E is the change in the energy of formation of
the defect between the strained and unstrained environ-
ments. Gij is the second-rank elastic dipole tensor and
εij is the external strain tensor. Gij and εij are sym-
metric tensors and the right hand side of Eq.3 is shown
in Einstein summation convention. Note that, from the
definition of G, it is a property of the defect, has units
of energy (eV) and, in the linear elastic regime, is inde-
pendent of the externally applied strain. Techniques to
compute the elastic dipole tensor G were first developed
in the mid-1950s, and can be broadly grouped into three
methods: the Kanzaki-Hardy force method54,55, Gillan’s
strain derivative method46,47, and the stress/strain-based
method48,56. In the present work, we have used the
stress/strain-based method, since it is computationally
less expensive than the others, requiring only the exam-
ination of a single defect configuration. Gillan’s strain
derivative method involves calculation of the energy of
formation of the defect at different strain states and
computing the derivative of the energy with respect to
the strain. The Kanzaki-Hardy force method on the
other hand, as discussed in literature46,47 can be difficult
to apply, especially for more complex defect structures.
Gillan’s and stress/strain methods have been shown to
be more accurate than Kanzaki-Hardy force method.46,48

For the purpose of verification we have tested the Gillan
and stress/strain method for the simpler case of a va-
cancy in Zr and found the calculated dipole tensor to be
very close to the other reported values.23

The calculation of the dipole tensor G from the
stress/strain-based method is quite straightforward and
can easily be applied to the common supercell approach
uses in atomistic and electronic-structure calculations for
impurities and point defects. Point defect calculations
based on DFT can be carried out in two ways. One way
of introducing the defect is by keeping the supercell size
and shape fixed with respect to the bulk (defect free)
structure (εij = 0) and allowing only for relaxations of
atomic positions. We will refer to this as constant volume
of strain-controlled approach. In this approach a simu-
lation box containing a defect will develop a finite stress
σij , which gives the measure of the dipole tensor G for
the point defect. Alternatively, atomic simulation can be
done where supercell size, shape and atomic coordinates
are allowed to relax to zero stress (σij = 0). This is the
constant pressure or stress-controlled approach, where
the simulation box containing the defect will develop a
finite strain εij , measured with reference to the equilib-
rium bulk (defect free) structure. The general expression
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to calculate the dipole tensor G from the stress/strain-
based method has been derived in the literature48,56 and
is given by

Gij = V (Cijklεkl + σij) (4)

where V is the volume of the simulation cell containing
the point defect, Cijkl is the elastic constant tensor, σij

and εij are the stress and strain tensor of the defect struc-
ture as mentioned in the discussion above. The elastic
constants57 used in Eq. 4 are those of the perfect (defect
free) bulk UO2. The difference in elastic constants be-
tween the defect and perfect structure58–60 can have an
effect on the dipole tensor calculations, but in our simu-
lations we find this to be negligible. Calculation for the
dipole tensor via both stress and strain controlled ap-
proaches, as discussed next, show very good agreement.
Further, after evaluating the energy vs. volume curves
(which are related to the elastic constants) for both the
perfect and defect structures, we find both curvature to
be very close. It is thus reasonable to assume that the
elastic constant Cijkl do not change much from the bulk
value for the studied concentration of defects and small-
applied strains. For the strain-controlled limit (ε = 0),
Eq. 4 reduces to

Gij = V0σij (5)

where V0 is the volume of simulation cell containing the
point defect, which is the same as the volume of the
perfect-crystal structure. σij is the stress of the defect
simulation cell calculated from atomistic calculations. In
the stress-controlled limit (σ = 0), Eq. 4 reduces to

Gij = V Cijklεkl (6)

where εkl is the strain of the relaxed defect simulation cell
(with volume V) with respect to the bulk simulation cell.
Once we know the elastic dipole tensor G for the defect
in a given configuration, we can calculate the change in
defect energy ∆E due to strain using Eq. 3 and use this
to recompute the migration barrier Emig is defined as

Emig = Esaddle − Eminimium (7)

where Esaddle and Eminimum are the energy of the migra-
tion ion at the saddle point and the equilibrium minimum
site, respectively. Under the external strain, Emig will be
modified due to changes in both Esaddle and Eminimum

as

Estrained
mig = [Esaddle +∆Esaddle]− [Emin +∆Emin]

= Emig +∆Estrained
mig (8)

Estrained
mig =

[

Esaddle − Emin

]

−

(

Gsaddle
ij εij −Gmin

ij εij

)

(9)

Estrained
mig =

[

Esaddle − Emin

]

−

(

(Gsaddle
ij −Gmin

ij )εij

)

=
[

Esaddle − Emin

]

−

(

∆Gmig
ij εij

)

(10)

where the ∆E are given by Eq.3 for the saddle and the
minimum, respectively and ∆Emig = ∆Esaddle - ∆Emin is
the measure of change in migration barrier due to strain.
Thus, the dipole tensor G must be calculated for both
the saddle and the minimum energy structure to esti-
mate the change in the migration energy. Expanding Eq.
8 using the definition of the dipole tensor from Eq. 3,
we can write Eq. 9. Note that the strain εij may not
always be same at the saddle and minimum site; for ex-
ample in the case of a dislocation, the strain field varies
with the distance from the dislocation core. However,
under homogeneous external strains such a uniaxial ten-
sile, compression or shear, the strain εij will be same at
both the saddle and the minimum, and therefore, Eq. 9
can be further simplified in Eq. 10 and hence, using Eq.
8 we can define ∆Emig as change in the migration barrier
under homogeneous external strains as

∆Estrained
mig = −tr(∆G

mig · ε) (11)

The elastic response of both the minimum and sad-
dle to external strain is then completely embedded in
∆Gmig

ij = Gsaddle
ij −Gmin

ij . This is an important relation,
as it shows that the change in migration barrier ∆Emig

depends on the dipole tensor of the saddle state with re-
spect to the minimum state, i.e. to the difference ∆Gij

under homogeneous strains, and not on the individual
dipole tensors of the saddle and minimum. This is in line
with the recent study by Hinterberg et al.61 who employ
an activation volume tensor ∆Vmig approach to study the
effect of different homogeneous strain states (uniaxial, bi-
axial and isotropic) on oxygen vacancy diffusion. In their
approach, the modified migration barrier ∆Hmig changes
is an external strain field by -tr(σ·∆Vmig) where σ is the
externally applied stress tensor and ∆Vmig the activation
volume tensor of the defect. The elements of the tensor
∆Vmig,kl are calculated for the saddle state with respect
to the initial state.

III. RESULTS

Using barriers and pre-factors computed using DFT
and empirical potentials, respectively, we parameterize a
KMC model that uses rates modified by imposed strains
as calculated via dipole tensor formalism. We first de-
scribe the detailed pathway for uranium vacancy mi-
gration and then results on the computed diffusivity of
both single vacancies and uranium di-vacancies using the
KMC model under homogeneous external strains. Var-
ious strain states have been considered: uniaxial and
shear strains (up to ± 2% in all cases). We also per-
formed calculations for biaxial and isotropic strains, but
the results were qualitatively similar to these cases so
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FIG. 2. (A) UO2 unit cell. Uranium (small/blue) ions are
arranged in an FCC lattice; oxygen (large/red) ions occupy
tetrahedral sites forming a simple cubic lattice. (B) Shows a
vacancy at a uranium site (small/gray) and a possible hop to
a neighboring uranium site along a 〈110〉 direction type.

they are not further considered. The diffusivities are
found to be highly sensitive to the applied strain and,
as expected, on the vacancy type (single or di-vacancy).
The response of the single and di-vacancy diffusion to
strain is very different and is discussed in detail in the
next sections.

A. Migration paths and energy barriers

Uranium dioxide (UO2) has a fluorite crystal structure
as shown in Figure 2 with U4+ ions forming a FCC lat-
tice and O2− ions occupying all eight tetrahedral sites,
thereby forming a simple cubic lattice. The space group
of fluorite crystal structure is Fm3̄m (number 225) with
cations occupying the 4a Wyckoff sites while anions oc-
cupy 8b sites. The migration energies for uranium self-
diffusion in non-stoichiometric as well as stoichiometric
UO2 have been studied experimentally.62–65 However, a
detailed exploration of the defect energies, energy bar-
riers and uranium migration paths has only been made
possible recently by first-principles based density func-
tional theory (DFT) calculations.20–22,66–68 In this study,
we use the work of Andersson et al.21 in which vari-
ous charged single uranium vacancies and their clusters
have been studied for UO2−x, UO2 and UO2+x, both
for intrinsic and irradiation conditions. For stoichiomet-
ric UO2, the fully charged uranium vacancy (V

′′′′

U ) is the
thermodynamically stable defect20,66,69 and hence con-
trol uranium diffusion. For UO2+x, and under irradia-
tion conditions, clusters of two uranium vacancies can be
present and can contribute significantly to transport as
they have lower migration barrier than the single ura-
nium vacancies.
The diffusion mechanism of a uranium ion involves mi-

gration from its equilibrium lattice site (minimum) to its
nearest uranium vacancy site along 〈110〉 type directions,
as shown schematically in Figure 2. This involves signif-
icant displacement of oxygen ions close to the migration
path of the uranium ion.22 The migration of the uranium

vacancy follows a curved path between the vacancy and
its nearest neighbor rather than the direct path along the
〈110〉direction, i.e., the uranium vacancy passes close to
an empty octahedral position in the unit cell, as shown
in Figure 3. A similar curved path for oxygen diffusion
in perovskite-type oxides70 as well as in δ-Bi2O3, whose
structure is related to the fluorite structure, has been seen
experimentally71 and discussed in atomic simulations.72

At the saddle point, the two nearest oxygen ions are sig-
nificantly displaced to make way for the migrating ura-
nium ion and the saddle point is not located halfway be-
tween the initial and final positions. Instead, Andersson
et al.20,21 observed a two-saddle pathway for a migrat-
ing uranium vacancy forming a split vacancy structure
(Figure 3) between the two saddles, corresponding to a
shallow minimum at the mid-way point along the path.
A schematic of the energy landscape is shown in Figure 4.
Further, the migration path of the uranium ion from one
lattice site to another is tilted by a small angle of about
1.2 degrees from the (001) plane (dotted line in Figure 5).
Hence, as shown in Figure 5, due to the curved migration
path and the 2-fold symmetry along the 〈110〉 direction,
migration of the uranium ion can occur via a total of four
symmetric paths for a given 〈110〉 direction.

B. Dipole tensor calculations

1. Single uranium vacancy

An ideal cation vacancy in the fluorite structure has
cubic symmetry, as it can be visualized as residing at a
center of the cube formed by the first eight neighboring
oxygen ions. As discussed by Leslie52 and Freedman56

the dipole tensor for a defect in an ideal cubic symmetry
has only diagonal elements. However, the symmetry of
a cation lattice in UO2 may actually deviate from ideal
cubic symmetry due to Jan-Teller distortion of the oxy-
gen sub-lattice at low temperature, by lowering the sym-
metry as well as the energy of the system.20,73,74 This
Jahn-Teller distortion is directly linked to the orienta-
tion of the magnetic moment of uranium ions.73,75,76 In
our calculations, 1k antiferromagnetic (AFM) ordering
is employed, as it has been argued that 1k AFM order
is closer to the actual paramagnetic state at high tem-
perature, and is shown to be a good approximation for
defect energies.20,77 Consistent with this, DFT+U calcu-
lations of UO2 show deviations from cubic symmetry for
uranium vacancy and, therefore we observe off-diagonal
elements for dipole tensor compared to relatively large di-
agonal components. In this study, we have investigated
two extreme charge states for vacancies and di-vacancies:
neutral and fully charged. The calculated dipole tensor
(in eV) of a neutral uranium vacancy (V×

U ) and the sad-
dle point along the curved path along the 〈110〉 direction
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(A) (B) (C) (D) (E) 

FIG. 3. Snapshots of uranium vacancy migrating to its nearest neighbor position along the 〈110〉 direction, as predicted from
the DFT calculations. The migrating uranium ion is shown in yellow, the dashed black line represents the straight path along
〈110〉 direction, whereas the black curve traces the actual path (curvature exaggerated for visualization). The vacancies are
indicated in gray. (C) shows the metastable intermediate minimum along the migration path, as described in Figure 4.
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FIG. 4. Schematic of the energy vs. the migration path for
the uranium vacancy, showing an intermediate shallow mini-
mum, corresponding to the migrating ion residing close to an
interstitial site and forming a split vacancy structure.

(A) (B) (C) 

FIG. 5. (A) Two-fold rotation symmetry along the 〈110〉 di-
rection in the fluorite structure; (B) Saddle structure with
the migrating uranium ion slightly off (angle 1.2 degrees) the
(001) plane, as marked by dashed lines; (C) Schematic of
all four reconstructed paths along 〈110〉 direction; the angle
between the different planes of migration is exaggerated for
clarity.

are

Gmin

V
×

U

=





−10.83 −0.14 2.06
−0.14 −17.10 −1.46
3.06 −1.46 −9.35



 eV

Gsaddle

V
×

U

=





13.29 −2.18 −1.80
−2.18 −1.50 11.76
−1.80 11.76 1.72



 eV

We note that, in contrast to the dipole tensor for the
minimum, there is no constraint that dipole tensor of the
saddle point has to be diagonal, even in the cubic crystal,
as it does not have to retain the cubic symmetric of the
crystal. The negative diagonal components of the dipole
tensor for the minimum state express the tendency of the
crystal to contract due to the presence of a uranium va-
cancy (V×

U ). A major part of this contraction comes from
the U5+ ions present in the neutral supercell that form
spontaneously to compensate for the missing electrons
due to the missing uranium ion. Also, we notice that the
largest element of the dipole tensor of the minimum coin-
cides with the direction of the plane containing the high-
est concentration of U5+ ions. To account for diffusion of
the uranium vacancy in the KMC simulations, we need
to consider all possible paths of a single uranium vacancy
to its twelve nearest neighboring sites, each lying along
a different but equivalent 〈110〉 direction. Since the path
to a single neighboring uranium ion has four-fold degen-
eracy (Figure 5), and given a uranium vacancy has twelve
nearest neighbor uranium atoms in fluorite structure, it
has a total of forty-eight unique paths by which it can
hop from one uranium site to another. Further, because
each path is comprised of two saddles and an intermedi-
ate minimum, there are ninety-six saddles that represent
the hop of one uranium vacancy to a nearest neighbor
site in UO2. As discussed in Sec. II, the change in mi-
gration barrier due to homogeneous strain depends only
on the relative dipole tensor ∆Gmig

ij of the saddle with

respect to the minimum. In Table II, we report ∆Gmig
ij

for the fully charged and neutral uranium vacancy. The
reported dipole tensors are for one particular direction
(i.e. [110]); dipole tensors for the remaining forty-seven
paths are calculated by applying tensor operations that
account for crystal and path symmetry, as discussed in
the appendix.

2. Uranium di-vacancy

A single uranium vacancy can form a di-vacancy with
another uranium vacancy present at any of its twelve
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TABLE II. Calculated ∆Gij (in eV) for charged and neutral
single uranium vacancy

Dipole tensor ∆G11 ∆G22 ∆G33 ∆G12 ∆G13 ∆G23

∆G
V

′′′′

U

24.67 11.13 12.04 −0.16 −0.16 7.53

∆G
V

×

U

24.12 15.61 11.07 −2.03 −4.86 13.22

[001] 

[100] (A) (B) 

FIG. 6. (A) The six distinct di-vacancy configurations within
first nearest neighbors in UO2 unit cell, all other possibilities
would be a simple translation of the above six configurations.
(B) The four possible sites a single di-vacancy can hop to in
order to maintain a di-vacancy pair.

nearest neighboring sites along 〈110〉 type direction.
However, only six of these are distinct orientations. For
example a uranium vacancy at (0,0,0) can for a di-
vacancy configuration with neighboring uranium sites
at
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, as shown in Figure 6. The dipole tensor for a
uranium di-vacancy oriented along [110] is given as

Gmin

V
×

U2

=





−24.25 5.47 −1.50
5.47 −24.82 −2.09
−1.50 −2.09 −24.79



 eV

Migration of the uranium di-vacancy can be understood
in terms of migration of one of its constituent vacancies21,
with one vacancy fixed at its lattice site and other va-
cancy hopping to the nearest uranium site (Figure 7). In
order to preserve the low energy (V×

U–V
×
U ) pairing (bind-

ing energy21 of -0.01 eV and -0.30 eV for V
′′′′

U –V
′′′′

U pair), a
migrating vacancy comprising the di-vacancy complex is
constrained to move to one of the four nearest di-uranium
vacancy sites (Figure 6), because the site to which it mi-
grates should be a nearest neighbor to both the migrating
vacancy and to the non-migrating vacancy. Either va-
cancy in the di-vacancy cluster can hop to one of its four
nearest neighboring sites via two distinct paths, there-
fore for a di-vacancy there are sixteen possible paths (2
vacancies × 2 path per vacancy × 4 neighboring states)
to hop from one state to another instead of the forty-
eight paths for a single vacancy.(Note that, in contrast
to the mono-vacancy in which there are four paths for
each hop direction, there are only two for the di-vacancy
due to the presence of the second vacancy). However,
the overall KMC catalog for the di-vacancy is much more

TABLE III. Calculated ∆Gij (in eV) for charged and neutral
uranium di-vacancy

Dipole tensor ∆G11 ∆G22 ∆G33 ∆G12 ∆G13 ∆G23

∆G
V

′′′′′′′′

U2

10.86 9.73 −4.80 −0.76 −4.67 4.04

∆G
V

×

U2

13.05 15.33 −3.75 −0.96 −3.83 4.91

complex, as there are six distinct di-vacancy states; thus
we have in total ninety-six paths with two saddles per
path. The migration path is similar to that of a single
vacancy as discussed in Sec. III A, which is a curved path
along 〈110〉 direction consisting of two saddles (shown in
Figure 7). As mentioned, a di-vacancy has sixteen possi-
ble migration paths and to account for dipole tensor for
all the saddles, we applied tensor operations as per the
symmetry of the system. The dipole tensor for a saddle
specific to migration path along [110] is given as

Gsaddle

V
×

U2

=





−11.19 4.51 −5.33
4.51 −9.49 2.82
−5.33 2.82 −28.54



 eV

C. Homogeneous strains

The strain state of the fuel pellet in operation can
be very complex, as it depends on factors such as the
temperature distribution, presence of fission products,
changes in microstructure, and pellet-clad interaction.1

Nevertheless, simple strain states such as uniaxial ten-
sion, compression and shear can provide useful insight
into the much more complex problem. Here we report the
effect of homogenous strain states (uniaxial and shear)
on the diffusion rate of uranium single and di-vacancies.
KMC simulations based on the dipole tensor approach
are used to calculate diffusion rates, as they explicitly
incorporate the effect of strain on all paths (48 paths for
single vacancy and 96 paths for six distinct di-vacancy
states) as well as their saddles.

1. Single uranium vacancy

Both neutral and charged point defects in uranium
dioxide have been studied.20,21,66,67 Charged defects
are thermodynamically more favorable in stoichiometric
UO2; however neutral defects may be favored under non-
stoichiometric conditions, more specifically in UO2+× for
which the Fermi level is close to the valence band edge.
In this work, we have investigated the diffusivity of both
fully charge and neutral defects. We first report the
change in migration barrier ∆Emig from Eq. 11 using

the dipole tensor ∆Gmig
ij as listed for single vacancies

in Table II, followed by diffusion coefficients as a func-
tion of temperature as well as strain state. Emig and
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FIG. 7. (A) Schematic showing that the migration of a uranium di-vacancy (dashed line) is related to the migration of one of
its constituent vacancies. (B) Combined snapshots of the migrating uranium ion (shown in yellow in Fig. 7A) to the nearest
vacancy along 〈110〉 direction, as determined from the DFT calculations. The green solid line represents straight path along
〈110〉, but from the snapshots it is clear that the path is curved away from the 〈110〉 direction as well as tilted (Fig. 7C) from
the (001) plane, similarly to the behavior for the single vacancy as discussed in the text.
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FIG. 8. Schematic showing the change in migration (transi-
tion from A to B) for one of the paths oriented along [110] for
an applied tensile strain of 1% along [100] for V×

U . The dotted
red curve corresponds to the unstrained energy barriers. The
red solid curve shows the change in energy barrier for both
saddles to an 1% applied tensile strain.

ν0 values for the unstrained case are listed in Table I.
In our calculations, we make the approximation that the
effect of strain on diffusivity is primarily due to change
in Emig and ν0 is kept constant. We computed ∆Emig

for both neutral and fully charged vacancies under uni-
axial strain to measure if they respond differently to the
applied strain. Figure 8 shows the change in migration
barrier ∆Emig for a neutral vacancy, for a specific path
in the [110] direction under the uniaxial tensile strain of
1% along the [100] direction. A uniaxial tensile strain de-
creases the energy barriers compared to the unstrained
case (as ∆Emig<0) for both saddles along a given path
(Figure 8 solid red curve)) and hence , a [100] tensile
strain will increase the diffusion rate along [110]. The
energy of the two saddles changes by different magni-
tudes to the applied 1% tensile strain with the energy of
one saddle decreasing by 0.16 eV and that of the other by
0.11 eV. In the KMC simulations, the change in barrier
height for both the saddles due to strain are calculated,
but only the higher of the two barrier is used in KMC
simulations to calculate the diffusion rate from site A to
B. This is justified because the minimum at state C is
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FIG. 9. (A) Schematic showing the applied strain along the
[100] direction with the black arrows points towards the ura-
nium vacancy possible migrations along the [110] and [011]
directions. (B) Change in the migration barrier ∆Emig for
V×

U under applied uniaxial tensile strain along [100] for mi-
gration path oriented along [110] (open diamonds) and [011]
directions (solid diamonds).

very shallow (with depth of only 0.3 eV and 0.8 eV for
the single and di-vacancy, respectively) especially com-
pared to the unstrained barrier of 4.72 eV and even to
the changes in barrier height of 0.16 and 0.11 eV due to
strain. Therefore, the true trajectory would not thermal-
ize in the shallow state at temperatures where the 4.72
eV barrier can be overcome and it is appropriate to not
explicitly consider it in the KMC rate catalog. Hence, our
KMC model selects the higher of the two barriers after
explicitly calculating the change in barrier height for the
both of the saddles under strain. For a uniaxial strain
along [100], the change in barrier energy along each of
the four [110] paths is effectively same (-0.11 eV), though
which of the two saddles change more in energy depends
on the details of the path. Further, we have determined
the change in migration barrier ∆Emig as a function of
the orientation of the path relative to the strain. Fig-
ure 9 schematically illustrates the relative orientation of
two different paths to a tensile strain in the [100] direc-
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tion, and the change in migration energy barriers along
the [110] and [011] directions in response to an externally
applied tensile strain along [100]. Directions, which are
normal to the applied strain i.e. of 〈011〉 type, respond
differently than the 〈110〉 and 〈101〉 families of directions,
which have some component of applied strain parallel to
them. This asymmetry in the diffusion is expected be-
cause the tensile strain along [100] will affect the paths
in (001) plane and normal to the (001) plane differently.
In the first case, there is a component of strain along the
pathway, which is not so in the second case. In Figure
10, the relative diffusivities of charged uranium vacancies
are calculated at 1800 K, which is a reasonable temper-
ature for an intrinsic diffusion within the fuel; these are
plotted as function of temperature in Figure 11. A uniax-
ial strain along [100], enhances the diffusivities in all the
there cubic directions [100], [010] and [001] with D[100] 6=
D[010] ∼ D[001]. This is anticipated, as a uniaxial strain
will change the ideal cubic symmetry of the unstrained
fluorite structure to tetragonal symmetry. We also note
that ∆Emig is negative and positive for the tensile and
compressive strains, respectively for both of the charge
states of the single vacancy, and the magnitude of in-
crease in diffusivity under tension is greater than the re-
duction under the compressive strain of same order. This
is expected given the exponential dependence of diffusion
rate to the change in migration barrier (Eq. 1) and sim-
ilar observations has also been observed in simulations
on strained fluorite-structured CeO2.

78 The relative dif-
fusivity is found to be less sensitive to the charge state of
the single vacancy, when subjected to the same uniaxial
strain state (as shown in Figure 14). We next analyze
the effect of shear strain on diffusivity. A fuel pellet can
develop shears strain along with the normal components
during initial synthesis processes such as hot pressing.79

Moreover, under operation conditions within the reactor,
the stress state on the fuel pellet can be quite complex.
Therefore it is relevant to characterize the effect of shear
strain on diffusivity, in particular to understand the dif-
fusion as its related to sintering processes. The computed
∆Emig shows that the shear strain decreases the migra-
tion barrier more significantly for paths oriented in plane
of shear as compared to paths oriented normal to it. Fig-
ure 13 shows that the overall diffusivity increases with
increasing shear strain, with relative increase being more
prominent at lower temperature. Comparing the diffu-
sion coefficients of neutral and charged vacancies under
the same shear strain states, we find that their behavior
is significantly different. Under a shear strain along 〈110〉
the diffusivity of the neutral vacancy increase by the fac-
tor of two more than that of the charged vacancy (Figure
14). This is a significant difference, even at temperature
as high as 1800 K.
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FIG. 10. Relative diffusivity of the fully charged uranium va-

cancy (V
′′′′

U ) under (A) tensile and (B) compressive strains at
1800 K. D0 corresponds to the diffusivity under no external
strain. Red, green and blue curves, represent relative diffu-
sivities along the [100], [010] and [001] directions, respectively
and the black curve represents the overall relative diffusivity.
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FIG. 11. Relative diffusivity of the fully charged uranium
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U ) as a function of temperature under uniaxial
tensile strain. D0 corresponds to the diffusivity at each tem-
perature under no external strain.

2. Uranium di-vacancy

In UO2+x (i.e. in an oxidizing environment) and un-
der irradiation conditions, the uranium di-vacancy can
be an important defect due to its higher overall concen-
tration, as suggested by Andersson et al.21 DFT calcu-
lations predict that the di-vacancies have low migration
barrier compared to that of the single uranium vacancy
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FIG. 12. (A) Schematic showing the applied shear strain in
the (001) plane along with the black arrows indicating the
in-plane and out-of-plane (relative to the applied shear) mi-
gration pathways of the uranium vacancy. (B) Change in

migration barrier ∆Emig for (V
′′′′

U ) under the applied shear
strain for paths oriented in plane (open diamonds) and normal
(solid diamonds) to the shear plane.
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FIG. 13. Relative diffusivity of the full charged uranium va-
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U ) as a function of temperature under shear strain.

(see Table I) and can thus increase the overall uranium
diffusivity, even if they are only present in small concen-
trations. The difference in response to uniaxial and shear
strain between the single vacancy and the di-vacancy is
due to the difference in the dipole tensor ∆Gmig

ij for the
two defects. The magnitude of the diagonal and some
of the off-diagonal elements of the dipole tensor for the
di-vacancy are smaller than for the single vacancy (Ta-
ble III). However, it is not just the magnitude but also
the sign of the elements of the dipole tensor that deter-
mines the overall change in diffusivity. One clear differ-
ence between the two defects is in the response to shear
strain. For a single vacancy, shear strain significantly
increases the in-plane diffusivity but only increases the
out-of-plane relative diffusivity by a small amount (Fig-
ure 12). However, the di-vacancy has both lower out-
of-plane and in-plane relative diffusivities because of its
positive and negative off-diagonal elements, which can
couple with specific orientations of shear strains. The
calculated diffusivity for the neutral uranium di-vacancy
as a function of strain and temperature are presented in
Figure 15. As expected, the effect of strain is substantial
at relatively low temperatures, less than 1200 K, at which
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FIG. 14. Comparison of diffusivities of neutral and charge
uranium vacancies, (A) under a uniaxial strain along the [100]
and (B) shear strain along the [110] at 1400K.

U diffusion is slow. A neutral di-vacancy is found to in-
teract more strongly with the external uniaxial strain, as
the increase in its diffusivity is about three times more
than that for a charged di-vacancy (Figure 15). For a
uniaxial strain along 〈100〉, we find that the diffusion
rates for a neutral di-vacancy (Figure 15) follows a trend
D〈100〉 <D〈010〉 ∼ D〈100〉. For a shear strain, we see a
small decrease in overall diffusivity for strains up to 1%
and then an increase for higher shear strains (Figure 15),
for both neutral and charged di-vacancy.

IV. DISCUSSION AND CONCLUSIONS

The diffusivities of a single uranium vacancy and a di-
vacancy were studied as a function of external homoge-
neous strain, temperature and charge state of the defect.
We reported curved migration paths and non-cubic sym-
metry for the uranium vacancy. This is different from
the straight migration paths and cubic symmetry of an
ideal cation vacancy in the fluorite structure. A dipole
tensor approach was used to calculate the change in mi-
gration barrier due to external strains. We have shown
(Eq. 11) that under homogeneous strain fields, only the
dipole tensor of the saddle with respect to the minimum
i.e. ∆Gmig

ij = Gsaddle
ij - Gmin

ij is required to correctly cal-
culate the change in energy barrier ∆Emig between the
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FIG. 15. (A) Relative diffusivity of the neutral di-vacancy under tensile strain as function of temperature. D represents the
calculated diffusivity under strain, and D0 is the diffusivity at zero strain at same temperature. (B) Relative diffusivity of
neutral di-vacancy (V×

U2
) at 1400 K under tensile strain along [100]. Relative diffusivities along [100], [010] and [001] directions

are shown via the red, green and blue curves, respectively and the overall diffusivity by black curve. (C) and (D) compare the
diffusivity of charged and neutral di-vacancies under tensile and shear strains, respectively.

strained and the unstrained case. Table IV compares
the effect of strain for different types of applied strain
on the four different defect structures considered in this
manuscript. As is evident from the table, the changes
in relative diffusivity are less sensitive to the charge of
the defect than the size of the defect. Further, single va-
cancies are more sensitive to all nature of applied strain
than di-vacancies. This has important implications for
the evolution of the fuel, particularly thermal creep and
sintering. During sintering, a thermal process, the ma-
jority of the vacancies will be single vacancies. The dif-
fusivity of these defects is particularly sensitive to the
strain state and thus the sintering kinetics will be sen-
sitive to the detailed microstructure of the material. In
contrast, irradiation induced creep will be controlled, to a
greater extent, by the kinetics of di-vacancies which does
not vary as significantly with strain. Thus, to first order,
creep rates in the irradiated fuel will be less sensitive to
the overall strain state of the fuel. These conclusions im-
ply that it is more critical to understand the strain state
for predicting sintering under thermal conditions than it
is for predicting creep in irradiated fuel.
More generally, the strain-induced anisotropy of point

defect diffusion should be taken into account in calcu-
lating the defect fluxes to sinks like dislocations, cavities
etc., as accurate evaluation of the sink absorption effi-
ciency for point defects is critical in determining creep
rates80. Sinks create an elastic strain field in their vicin-
ity, which will lead to anisotropic diffusion of point de-

fects and therefore a biased flux of point defects to those
sinks. Hence, understanding diffusion rates as a function
of major crystal directions as well defect type like vacan-
cies, interstitials etc., is important in calculating creep
rates, swelling behavior, and dislocation substructures
etc.81,82 In our results (Figure 10 and Figure 15) we show
diffusivities of single and di-uranium vacancies as func-
tion of major crystal directions 〈100〉, 〈010〉 and 〈001〉 un-
der a homogeneous uniaxial strain along 〈100〉 and report
that the diffusion along 〈010〉 and 〈001〉 is more favored
compared to diffusion along 〈100〉. That is, the strains
couple with defect diffusion in complex ways, with strains
along one direction significantly influencing diffusion in
perpendicular directions. These anisotropies mean that,
in the complex strain fields associated with dislocations,
the flux of defects to the dislocations will be quite con-
voluted, in contrast to the assumptions made by simple
cylinder models of defect fluxes to dislocations.83 For ex-
ample, while the strain fields of edge dislocations indi-
cate that defects and fission products will be attracted
to the core84,85, the coupling with the dipole tensors sug-
gests that greater enhancements in diffusion might occur
along the edge dislocation line rather than toward the
core (perpendicular to the line direction). These insights
have important implications in understanding fuel creep
and point to the need of comprehensive models that ac-
count for these anisotropies.
This dipole tensor approach can easily be extended to

measure the effect of any arbitrary strain state on dif-
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TABLE IV. Summary of the relative diffusivities D/D0, where
D0 is the diffusivity at 0% strain, for different strain states
for the four defects considered here, at a strain of 2% and
temperature of T=1800 K.

Defect Tensile ǫ[100] Compressive ǫ[100] Shear ǫ[110]

V×
U 10.12 0.11 1.64

V
′′′′

U 10.7 0.16 0.99

V×
U2

2.97 0.24 1.03

V
′′′′′′′′

U2
1.87 0.42 0.92

fusivity, as long as the applied strains are small enough
to not change the migration topology of the defect. In
this work, applied strains were within 2%. During op-
eration, the thermal gradients that develop within the
fuel can easily lead to such magnitudes of strain.1,86–88

We found that strain has a significant effect on the diffu-
sivity, especially at low temperatures, with compressive
strain leading to lower diffusivity and tensile strain to
higher diffusivity. The diffusivity of a single uranium
vacancy changed more significantly under homogeneous
strain than that of a di-vacancy cluster. Further, based
on our simulations of both single and di-vacancies, we
observe that the individual paths interact differently to
the applied strain, i.e. the changes in their barrier height
are different, depending on the magnitude and direction
of applied strain. We also find that the effect of external
strain on diffusivity depend on the charge state of the
defect,as neutral defects tend to have larger components
in their relative dipole tensor (∆Gmig

ij ) than charge de-
fects and thus interact with strain field more strongly.
This work provides the foundation to analyze other de-
fects (such as interstitials, fission gases, fission products
etc.) and their interaction with much more complex
strain fields, due to dislocations, dislocation loops, grain
boundaries and other microstructural features individu-
ally or in combination, as function of temperature and
relatively longer times via KMC simulations. The stoi-
chiometry of UO2 can affect the concentration of various
defect types in the fuel and therefore, studying different
vacancy types, both in charged and neutral configura-
tions, can provide insight into the diffusion behavior of
defects in different chemical environments. All of this
information is important for building physical models of
the evolution of the fuel in service.

Finally, these results have important implications for
mass transport in fluorite structured oxides29–31, beyond
the specific material studied here, in which mechanical
strains have been proposed as a new means of enhancing
ionic conductivity. For example, an experimental study31

on YSZ has shown about 18% improvement in oxygen ion
mobility under tensile stresses, with improvement more
prominent at relatively lower temperatures. Many appli-
cations of oxides involve complex strain states, including
thin film geometries and nanocomposites25–28. Our re-
sults show that the coupling between strain and diffusion

can be rather complex, with significant changes in mo-
bility in directions perpendicular to the applied strains.
For example, vertical strains are shown to dominate the
overall strain state in epitaxial thin film composites27

with thickness over 20 nm, promising greater control of
functional properties beyond those typical of the lateral
strains in such films. In applications involving zirconia
and hafnia-based advanced thermal barrier coatings32,33,
it is reported that thermal gradients result in strains and
strain gradients, which ultimately affect metal cation dif-
fusivities. Therefore knowledge of ionic diffusivity as a
function of strain aids in understanding both creep as
well as sintering rates and, hence, in predicting the dura-
bility these coatings.
To conclude, this work provides a link between atom-

istic simulations and mesoscale representations of the
material. Diffusion is an average property, accounting
for the effect of strain on all possible paths and their
transition states. Dipole tensors for all defects and their
transition states have been calculated from DFT calcu-
lations, which formed the basis of KMC simulations that
can account for changes in behavior with strain and aver-
age these changes over all pathways in the system. That
said, there are still several outstanding and important
questions, such as what is the effect of the magnetic state
and intermediate charge states of defects in UO2 on the
nature of the dipole tensor. Questions, pertaining to the
nature dipole tensor, such as how sensitive each element
of the dipole tensor is to the underlying symmetry of the
distorted fluorite structure also warrant further investiga-
tion. In summary, the coupling of DFT calculations and
KMC simulation via the dipole tensor approach used in
this study provides an extensive and systematic assess-
ment of the effect of homogeneous strains (within linear
elasticity) on the diffusivity of uranium single and di-
vacancies in UO2. Our results can also provide physical
parameter for higher length scale model to predict and
understand fuel mechanical behavior.

Appendix A

A single uranium vacancy can migrate to it twelve
nearest neighbors along 〈110〉. As discussed in Sec. II,
the uranium vacancy migration path is complicated, in-
volving two saddles (S1 and S2 in Figure 16) along a
curved path (Figure 4), rather than a simple transition
between nearest uranium sites along 〈110〉 directions.
Given a two-fold symmetry along 〈110〉 direction and the
curved migration path, each migration direction actually
consists of four paths, making a total of forty-eight pos-
sible paths for uranium vacancy to migrate to it nearest
neighbor position along 〈110〉 direction. To obtain a full
KMC catalog of dipole tensors for single uranium vacan-
cies (involving forty-eight paths and ninety-six saddles,
as each path has two saddles), we performed symmetry
operations on the dipole tensor of the saddle from the
DFT calculations, to obtain dipole tensors for all other
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FIG. 16. (A) schematic of four equivalent paths along one particular [110] direction. (B) Schematic diagram of how to obtain
the dipole tensors for four paths along a specific [110] direction, which is a two-fold symmetry direction in UO2. Path 2 is
obtained by reflection in the (1̄10) plane of path 1, and path 3 and 4 are obtained by reflection of path 1 and 2 though the
(001) plane, respectively. (C) Schematic for obtaining all in-plane dipole tensors corresponding to other 〈110〉 directions in the
(001) plane, namely [11̄0], [1̄1̄0] and [1̄10] by in-plane rotation of 90 ◦ about the four-fold [001] axis. Vacancy sites (or minima)
are shown as M0, M1, M2 and M3.

symmetrically equivalent paths. These symmetry oper-
ations can be characterized by performing simple tensor
operations, defined as

Ā = RAR
T (A1)

where A is any second-rank tensor and Ā is the final
resultant tensor after applying the symmetry operation.
R is the reflection or rotation matrix depending on the
specific symmetry operation and RT is its corresponding
transpose. In our calculations, the general form of ma-
trix R, involving rotation about an axis oriented along
a arbitrary unit vector 〈u, v, w〉 by angle θ is given by
transformation matrix R.89 First, we apply symmetry
operations to obtain dipole tensors for both saddles for
the four-degenerate path along a single [110] direction,
followed by symmetry operations to obtain the dipole

tensor of the saddles for all the remaining in-plane and
out-of-plane directions. As shown in Figure 16, paths
1, 2, 3 and 4 corresponds to transition from the initial
state M0 to final state M1 along [110]. Dipole tensors for
path 1 when reflected through the (1̄10) and (001) planes
give dipole tensors for path 2 and 3, respectively, and the
dipole tensors for path 4 can be obtained by reflection of
path 2 across the (001) plane. In-plane dipole tensors
along [11̄0] (M0 → M2), [1̄1̄0] (M0 → M3) and [1̄10] (M0
→ M4) are obtained by rotating path 1 (M0 → M1) by
90◦, 180◦ and 270◦, respectively around the [001] axis,
followed by the same set of reflections as for [110] (M0
→ M1), to obtain dipole tensors for all equivalent paths
along those directions. Out-of-plane dipole tensors, i.e.
for planes (100) and (010), are obtained by 90◦ clock-
wise rotation of [110] (M0 → M1) around [010] and 90◦

anti clockwise rotation of [110] (M0 → M1) around [100],
respectively.

R =







u2 + (1− u2)cosθ uv(1− cosθ)− wsinθ uw(1− cosθ) + vsinθ 0
uv(1− cosθ) + wsinθ v2 + (1− v2)cosθ vw(1− cosθ)− usinθ 0
uw(1− cosθ)− vsinθ vw(1− cosθ) + usinθ w2 + (1− w2)cosθ 0

0 0 0 1






(A2)
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