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Abstract

We propose numerical simulations of viscoelastic fluids based on a hybrid algorithm combining Lattice-

Boltzmann models (LBM) and Finite Differences (FD) schemes, the former used to model the macroscopic

hydrodynamic equations, and the latter used to model the polymer dynamics. The kinetics of the polymers

is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic

dumbbells with Peterlin’s closure (FENE-P). The numerical model is first benchmarked by characteriz-

ing the rheological behaviour of dilute homogeneous solutions in various configurations, including steady

shear, elongational flows, transient shear and oscillatory flows. As an upgrade of complexity, we study the

model in presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM

description using the “Shan-Chen” model. The problem of a confined viscoelastic (Newtonian) droplet in a

Newtonian (viscoelastic) matrix under simple shear is investigated and numerical results are compared with

the predictions of various theoretical models. The proposed numerical simulations explore problems where

the capabilities of LBM were never quantified before.
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I. INTRODUCTION

Lattice Boltzmann methods (LBM) are nowadays recognized as powerful computational tools

for the simulation of hydrodynamic phenomena [1–6]. Historically, the main successful appli-

cations in the context of computational fluid dynamics pertain the weakly compressible Navier-

Stokes equations [1–4] and models associated with more complex fluids involving phase transi-

tion/separation [7, 8]. However, the spectrum of applications and strengths of LBM in simulating

new challenging problems keeps on expanding [6, 9–14]. The LBM does not solve directly the hy-

drodynamic conservation equations, but rather models the streaming and collision (i.e. relaxation

towards local equilibria) of particles, thus offering a series of advantages [1–6]. In this paper, we

apply the LBM to the simulation of multicomponent viscoelastic fluids. Emulsions or polymer

melts, which are present in many industrial and everyday life products, are good examples of such

fluids, having the relevant constituents a viscoelastic -rather than a Newtonian- nature [15]. We

will introduce the kinetics of the polymers using constitutive equations for finitely extensible non-

linear elastic dumbbells with Peterlin’s closure (FENE-P) [16, 17], in which the dumbbells can

only be stretched by a finite amount, the latter effect parametrized with a maximum extensional

length squared L2. The model supports a positive first normal stress difference and a zero second

normal stress difference in steady shear. It also supports a thinning effect at large shear, which

disappears when L2 ≫ 1, a limit where we recover the so-called Oldroyd-B model [18]. Both the

FENE-P and Oldroyd-B models have been investigated in many details with other methods based

on finite differences [19, 20], finite volumes [21], diffuse interface models [22, 23], finite elements

[24] and spectral element methods [25]. There have been already various attempts done with LBM

in this direction too. Qian & Deng [26] proposed a modification of the equilibrium distribution to

account for the elastic effects, whereas in Ispolatov and Grant [27] the elastic effects are taken into

account within the framework of a Maxwell model. In Giraud et al. [28, 29] and in Lallemand

et al. [30] LBM schemes for solving the Jeffreys model were proposed, with the hydrodynamic

behavior of the LBM emerging with memory effects. In a recent paper, Malaspinas et al. [31]

proposed a new approach to simulate linear and non-linear viscoelastic fluids and in particular

those described by the Oldroyd-B and FENE-P constitutive equations. The authors studied and

benchmarked the model against various problems, including the 3D Taylor-Green vortex decay,

the simplified 2D four-rolls mill, and the 2D Poiseuille flow. A similar approach was used by

Denniston et al. [32] and Marenduzzo et al. [33] for the simulation of flows of liquid crystals.
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In other works by Onishi et al. [34, 35], the Fokker-Plank counterpart for the Oldroyd-B and

FENE-P models was introduced to carry out simulations with the help of the LBM. The numerical

results presented explored the problem of droplet deformation under steady shear. A formulation

based on the Fokker-Planck equation was also recently studied by Ansumali & coworkers [36]:

the approach was benchmarked by determining the bulk rheological properties for both steady

and time-dependent shear and extensional flows, from moderate to large Weissenberg numbers.

Finally, we also remark that due to the efficiency of LBM solvers, the latter have been used to

replace macroscopic flow solvers for describing dilute polymer solutions [37].

As witnessed by an increasing amount of works (see [6] and references therein), LBM has been

proven to be particularly suitable to the study of multicomponent systems where interfacial dy-

namics and phase separation are present, since it can capture basic essential features, even with

simplified kinetic models. Significant progress has recently been made in this direction, as evi-

denced by many LBM that have been developed on the basis of different points of view, including

the Gunstensen model [38, 39], the “Shan-Chen” model [7, 8, 40], the free-energy model [41].

However, investigations of viscoelastic flows within the framework of non-ideal multicomponent

LBM are rare. The work that better fits these requirements is probably the one by Onishi et al.

[34, 35], but the problems there presented suffer of scarce exploration of the effects of confinement

and structure of the flow [42–47]. Here we go a step forward by presenting a comprehensive study

related to the characterization of viscoelastic effects for multicomponent LBM in confined ge-

ometries. We numerically and theoretically explore the potentiality of a coupled approach, based

on LBM and Finite Difference (FD) schemes, the former used to model two immiscible fluids

with variable viscosity ratio, and the latter used to model the polymer dynamics. The numerical

model is first benchmarked without phase separation, by characterizing the rheological behaviour

of dilute homogeneous solutions with FENE-P model in various steady states (shear and elon-

gational) and transient flows. As an upgrade of complexity, we study the model in presence of

non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM description

using the “Shan-Chen” interaction model [7, 8, 40, 48]. The problem of a confined viscoelastic

(Newtonian) droplet in a Newtonian (viscoelastic) matrix under steady shear is investigated and

numerical results are compared with the prediction of various theoretical models.
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II. COMPUTATIONAL MODEL

In this section we report the essential technical details of the numerical scheme used. We refer

the interested reader to the reference papers [7, 8, 19, 40, 49–52], where all the details can be found.

We consider the Navier-Stokes (NS) and FENE-P equations for a mixture of two components

(A,B) in the following form:

∂tρσ +∇ · (ρσu) = ∇ ·DS,σ ; σ = A,B (1)

ρ [∂tu+(u ·∇)u] = −∇p+∇ ·σS +
ηP

τP
∇ ·σP +∑

σ
gσ ; (2)

∂tC +(u ·∇)C = C · (∇u)+(∇u)T ·C −
σP −1

τP
. (3)

Here, ρσ is the density of the σ-th component (ρ =∑σ ρσ indicates the total density), u represents

the baricentric velocity of the mixture, and pσ = c2
s ρσ (c2

s = 1/3 is a constant in the model) is the

internal ideal pressure of component σ , with p = ∑σ pσ . The diffusion current of one component

into the other and the viscous stress tensor of the solvent (S) fluid are

DS,σ = µ

[

(

∇pσ −
ρσ
ρ
∇p

)

−

(

gσ −
ρσ
ρ ∑

σ
gσ

)]

(4)

σS = ηs

(

∇u+(∇u)T −
2

3
1(∇ ·u)

)

+ηb1(∇ ·u). (5)

The viscosity coefficients are the shear viscosity ηs and the bulk viscosity ηb, while the coefficient

µ is a mobility parameter regulating the intensity of the diffusion. The term ∑σ gσ in equation

(2) refers to all the contributions coming from internal and external forces. As for the internal

forces, we will use the “Shan-Chen” interaction model [7] for multicomponent mixtures. The

force experienced by the particles of the σ-th species at x, is due to the particles of the other

species at the neighbouring locations

gσ (x) =−G ρσ(x)∑
α

∑
σ ′ 6=σ

wα ρσ ′(x+cα )cα σ = A,B (6)

where G is a parameter that regulates the interactions between the two components. The sum in

equation (6) extends over a set of interaction links cα coinciding with those of the LBM dynamics

(see below). When the coupling strength parameter G is sufficiently large, demixing occurs and

the model can describe stable interfaces with a surface tension. The effect of the internal forces can

be recast into the gradient of the pressure tensor P (int) [48], thus modifying the internal pressure
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of the model, i.e. P = p1+P (int), with

P (int)(x) =
1

2
G ρA(x)∑

α
wα ρB(x+cα )cαcα +

1

2
G ρB(x)∑

α
wα ρA(x+cα )cαcα . (7)

Upon Taylor expanding the expression (7), we get (explicit dependence on x is omitted for sim-

plicity)

P =

(

p+ c2
sG ρAρB +

1

4
c4

sG ρA∆ρB +
1

4
c4

sG ρB∆ρA

)

1+
1

2
c4

sG ρA∇∇ ρB+
1

2
c4

sG ρB∇∇ ρA+O(∇ 4)

(8)

where we recognize a bulk pressure contribution, Pb = p + c2
sG ρAρB, and other contributions

which are proportional to the derivatives of both densities. The gradient terms establish a diffuse

interface whenever phase separation is achieved in the model [40]. Consistently, the term gσ in

(2)-(4) may be viewed with its associated Taylor expansion

gσ =−c2
sG ρσ ∇ ρσ ′ −

c4
s

2
G ρσ∆∇ ρσ ′ +O(∇ 5). (9)

We refer the interest reader to [48], for a detailed discussion on the relation between the force gσ

and the lattice pressure tensor P . We wish to stress that the equilibrium properties of the model

can also be reformulated in the framework of a free energy model [40, 53]. In particular, with

such formulation, the square bracket of equation (4) would become proportional gradient of the

associated chemical potential, thus being compliant with a thermodynamic framework, where the

diffusion force is established by inhomogeneities in the chemical potential. More details can be

found in [53].

A proper tuning of the density gradients in contact with the wall allows to model the wetting prop-

erties. In all simulations described in this paper, the resulting contact angle for a droplet placed in

contact with the solid walls is θeq = 90◦ (i.e. neutral wetting).

As for the polymer details in equations (2) and (3), C ≡ 〈RR〉 is the polymer-conformation tensor,

i.e., the ensemble average of the tensor product of the end-to-end distance vector R, normalized in

such a way that C equals the identity tensor (C = 1) at equilibrium, ηP is the viscosity parameter

for the FENE-P solute and τP the polymer relaxation time. The polymer feedback into the fluid

is parametrized by
ηP
τP
σP = ηP

τP
f (rP)C , being σP = f (rP)C the dimensionless counterpart. The

FENE-P potential is encoded in f (rP) ≡ (L2 − 3)/(L2 − r2
P), which ensures finite extensibility;

rP ≡
√

Tr(C ) and L are the trace and the (dimensionless) maximum possible extension, respec-

tively, of the polymers [17]. As L decreases, the polymer dumbbell becomes less extensible and
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the maximum level of stress attainable is reduced. In a homogeneous steady uniaxial extension, the

extensional viscosity of the polymers increases proportionally to the maximum dumbbell length

squared and it becomes infinite in the limit L2 ≫ 1 [18] (see subsection (III B)).

The fluid part of the model (equation (2)) is obtained from LBM featuring a multiple relaxation

time scheme (MRT). Further technical details of the algorithm can be found in [49–51], here we

just report the essential features of the model. The LBM equation considers the probability density

function, f (σ)
α (x, t), to find a particle of component σ in the space-time location (x, t) with dis-

crete velocity cα . In a unitary time lapse, the evolution equation for f (σ)
α (x, t) is (double indexes

are meant summed upon)

f (σ)
α (x+cα , t +1)− f (σ)

α (x, t) =−Λαβ

(

f (σ)
β −E(σ)

β (ρσ ,u)
)

+

(

Iαβ −
1

2
Λαβ

)

Sβ(u,gσ).

(10)

The equilibrium functions are chosen to be

E(σ)
α (ρ,u) = wα ρ

[

1+
cα ·u

c2
s

+
uu : (cαcα − c2

s1)

2c4
s

]

(11)

where the weights wα for the D3Q19 [49] LBM used are

wα =



















1
3

α = 0

1
18

α = 1−6

1
36

α = 7−18.

(12)

The relaxation towards equilibrium is regulated by the matrix Λαβ , the same for both species. The

source term Sα (u,gσ) is chosen as

Sα (u,gσ) = wα

[

(cα −u)

c2
s

+
(cα ·u)

c4
s

cα

]

·gσ (13)

and the macroscopic variables are the hydrodynamic density (one for each specie) and the common

fluid velocity

ρσ(x, t) =
18

∑
α=0

f (σ)
α (x, t) ρũ(x, t) = ∑

σ

18

∑
α=0

cα f (σ)
α (x, t). (14)

We also choose the equilibrium velocity as the velocity of the whole fluid plus half of the to-

tal forcing contribution, i.e. the standard way to define the hydrodynamic velocity in the lattice

Boltzmann scheme [3, 40]

u(x, t) = ũ(x, t)+
∑σ gσ

2ρ
. (15)
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In order to perform the relaxation process towards equilibrium, in the spirit of the MRT mod-

els, we need to construct sets of linearly independent moments from the distribution functions in

velocity space. The moments are constructed from the distribution function through a transfor-

mation matrix T comprising a linearly independent set of vectors, i.e. f̂ (σ) = T f (σ), with the

transformation matrix T suitably constructed in terms of the velocity links [49–51]. In the mo-

ments space, the collisional operator Λαβ in the lattice Boltzmann equation (10) is diagonal, thus

offering the particular advantage to relax the various processes (diffusive processes and viscous

processes) independently. The relaxation times of the momentum (τM), bulk (τb) and shear (τs)

modes in (10) are indeed related to the transport coefficients of hydrodynamics as (The relaxation

times for the non-hydrodynamic modes are kept fixed to unitary values)

µ =

(

τM −
1

2

)

ηs = ρc2
s

(

τs −
1

2

)

ηb =
2

3
ρc2

s

(

τb −
1

2

)

. (16)

Some of the modes (Π
(eq)
σ (We refer to eeq, e2,eq, peq

xx , peq
ww, peq

xy , peq
yz , peq

xz defined soon after equa-

tion (26) for the D3Q19 model in [49]) of the equilibrium distribution functions E(σ)
α (ρσ ,u) are

explicitly affected by the second order tensor of the distribution [49–51]. The polymer stress

ηP
τP
σP = ηP

τP
f (rP)C appearing in equation (3) is then added to these modes with a weight that

depends on the species, i.e.

Π
(eq)
σ =Π

(eq)
σ −

ρσ
ρ

ηP

τP
f (rP)C . (17)

The recovery of the hydrodynamic limit described by equations (1-2) is ensured by the Chapman-

Enskog analysis [2, 3]. Repeating the calculations reported in [49], a contribution coming from the

polymer stress is found to affect the viscous stress of the equations. Such contribution is measured

to be rather small in all the numerical simulations done, ensuring that the balance equations (1-3)

are reproduced in our simulations. In particular, the weight function ρσ/ρ ensures that the global

momentum balance equation (2) has the total stress
ηP
τP

f (rP)C in the rhs. The idea of changing the

lattice Boltzmann stress with a contribution directly related to the polymers feedback stress echoes

the work by Onishi et al. [34, 35], although the authors there used a simple single relaxation time

scheme. A comprehensive comparison with the results of Onishi et al. [35] is discussed in B. We

also remark that the very rich survey of numerical simulations explored in this paper revealed that

the idea of changing the lattice Boltzmann stress with a polymer contribution is much more stable

than applying the polymer feedback stress as a force term in the LBM. The technical reason of

this enhanced stability is presently not understood from the analytical point of view, although it is

surely motivating for dedicated studies for future publications.
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The relaxation frequencies in (16) are chosen in such a way that τM = 1.0 lbu (lattice Boltzmann

units) and τs = τb, corresponding to 2
3
ηs = ηb in equation (5). The viscosity ratio of the Lattice

Boltzmann fluid is changed by letting τs depend on space

ρc2
s

(

τs −
1

2

)

= ηs = ηA f+(φ)+ηB f−(φ) (18)

where φ = φ(x) = ρA(x)−ρB(x)
ρA(x)+ρB(x)

represents the order parameter. We have indicated with ηA,B the

shear viscosities in the regions with a majority of one of the two components (A or B). The

functions f±(φ) are chosen as

f±(φ) =
(

1± tanh(φ/∆)
2

)

. (19)

The smoothing parameter ∆ = 0.1 is chosen sufficiently small so as to recover a matching with

analytical predictions for droplet deformation and orientation in shear flow (see A).

As for the polymer constitutive equation, we are following the two references [19, 52] to solve the

FENE-P equation (3). We maintain the symmetric-positive-definite (SPD) nature of conformation

tensor at all times by using the Cholesky-decomposition scheme [19, 52]. This addresses two dif-

ficulties found in earlier formulations. First, the polymer extension, represented by the trace of the

conformation tensor, can numerically exceed the finite extensibility length causing the restoring

spring force to change sign and the calculation to rapidly diverge. In the Cholesky decomposition

scheme, the conformation tensor is redefined so that this possibility no longer exists. Secondly, the

conformation tensor must remain symmetric and positive definite at all times for the calculation to

remain stable. Technically speaking, we first consider the equation for σP = f (rP)C . Since C and

hence σP are SPD matrices, we can write σP =L L
T , where L is a lower-triangular matrix with

elements ℓi j = 0 if j > i. Thus, the equation for σP yields an equation set that ensures the SPD

of C if ℓii > 0 [52], a condition which we enforce explicitly by considering the evolution of lnℓii

instead of ℓii [19]. Since the equation for the conformation tensor has no diffusion terms (or other

dissipative terms), there is the possibility of generation of sharp gradients (shocks). The Cholesky

decomposition scheme eliminates the negative eigenvalues, but to smooth out the shocks in C ,

we add an artificial stress-diffusivity [19] term to equation (3). We have tested our code with ex-

plicit second, fourth and sixth order central finite-difference scheme in space and a second-order

Adams-Bashforth method for temporal evolution, finding a stable solution. Hence, we used an

explicit second-order central-finite-difference scheme in space to solve the FENE-P equation (3).

As for the boundary condition for the conformation tensor C , we use linear extrapolation at the
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boundaries.

Finally, in order to study separately the effects of matrix and droplet viscoelasticity, we follow the

methodologies already developed by Yue et al. [22], by allowing the feedback in equation (2) to

be modulated in space with the functions f±(φ).

ρ [∂tu+(u ·∇)u]=−∇P +∇
[

(ηA f+(φ)+ηB f−(φ))(∇u+(∇u)T )
]

+
ηP

τP
∇[ f (rP)C f±(φ)].

(20)

We remark that other possibilities already exist for implementing the polymer dynamics in LBM

[31, 34–36], either by considering directly the evolution equation (3) [31], or considering the

the Fokker-Plank counterpart [34–36]. Our algorithm is surely curing problems related to the

polymer extension and conformation tensor, which have to remain bounded and positive definite

at all times, respectively, for the calculation to remain stable. Nevertheless, we stress that it is

not the aim of this paper to propose a comparative study with respect to other existing LBM (or

closely related) approaches, as we are interested in assessing the robustness of the methodology

in simulating confined problems with multicomponent phases and viscoelastic nature.

III. HOMOGENEOUS DILUTE SUSPENSIONS: RHEOLOGY

In order to validate the numerical scheme described in section II, we examined the bulk rheolog-

ical properties in some canonical steady flow situations, i.e. simple shear flow (section III A) and

extensional flow (section III B), and also benchmarked time-dependent situations, by verifying the

linear viscoelastic behaviour in a small-amplitude oscillatory shearing (section III C) and the stress

relaxation after cessation of a shear flow (section III D) [54, 55]. To do that, we switch to zero the

coupling constant G in equation (6), thereby reducing to the case of two miscible gases with an

ideal equation of state. We will work with load conditions ensuring very weak compressibility of

the system. To properly establish a link between the evolution equation of the conformation tensor

(3) and known results published in the literature [54, 55], we prefer to rewrite the equation for the

polymer feedback stress. Starting from the dimensionless polymer feedback stress

σP = f (rP)C =
(L2 −3)

(L2 −Tr(C ))
C (21)

9



and taking the trace of equation (21), we find Tr(C ) =
L2 Tr(σP)

L2−3+Tr(σP)
and the feedback (21) can be

rewritten as

σP =
(L2 −3)

(L2 − L2Tr(σP)
L2−3+Tr(σP)

)
C =

L2 −3+Tr(σP)

L2
C = Z(Tr(σP))C (22)

where we have defined Z(Tr(σP)) =
L2−3+Tr(σP)

L2 . The equation of the conformation tensor (3),

with the substitution C = σP/Z, becomes

τP

[

1

Z
DtσP −

1

Z
σP · (∇u)−

1

Z
(∇u)T ·σP −

σP

Z2
DtZ

]

=−σP +1 (23)

or equivalently

Z (σP −1)+ τP
[

DtσP −σP · (∇u)− (∇u)T ·σP −σPDt logZ
]

= 0 (24)

which directly maps into the equation considered by Bird et al. [54] (their equation (10) and subse-

quent developments). In the following sections we provide benchmark tests for various situations.

All the analytical results used can be found in other papers [17, 54–56] and we limit ourself to a

brief review for the sake of completeness.

A. Steady Shear Flow

We consider equation (24) under the effect of a homogeneous shear flow, ux = γ̇y, uy = 0,

uz = 0. The equations, written out in components, become

Z











σP,xx −1 σP,xy 0

σP,yx σP,yy −1 0

0 0 σP,zz−1











− τP











γ̇











2σP,yx σP,yy 0

σP,yy 0 0

0 0 0





















= 0. (25)

We find σP,yy = σP,zz = 1 so that Z =
L2−1+σP,xx

L2 . The xx and xy components of equation (25) reduce

to the system










(

1+ N
L2

)

N = 2ΛS
(

1+ N
L2

)

S = Λ
(26)

where N = (σP,xx−1), Λ = τPγ̇, S = σP,xy. The quantities N and S represent the first normal stress

difference and the polymer shear stress [17, 54] developing in steady shear, respectively. The

first normal stress difference is a typical signature of viscoelasticity [17], while from the polymer
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shear stress we can extract (by dividing for the shear rate) the polymer contribution to the shear

viscosity. We immediately see from equations (26) that the first normal stress difference hinges on

the knowledge of the polymer shear stress

N = 2S2 (27)

with S satisfying the following equation

2
S3

L2
+S−Λ = 0. (28)

This equation can be solved exactly [17, 54, 56]

S(Λ,L) = 2

(

L2

6

)1/2

sinh

(

1

3
arcsinh

(

ΛL2

4

(

L2

6

)−3/2
))

(29)

and, from equation (27) we find N as

N(Λ,L) = 8

(

L2

6

)

sinh2

(

1

3
arcsinh

(

ΛL2

4

(

L2

6

)−3/2
))

. (30)

Going back to equation (2), we see that the polymer shear stress
ηP
τP

σP,xy =
ηP
τP

S produces a constant

shear viscosity only in the Oldroyd-B limit (S ≈ Λ = γ̇τP as L2 ≫ 1), while thinning effects are

present for finite values of L2.

In figure 1 we present numerical simulations to benchmark these results. The numerical simu-

lations have been carried out in three dimensional domains with Lx ×H ×Lz = 2× 60× 2 cells.

Periodic conditions are applied in the stream-flow (x) and in the transverse-flow (z) directions.

The linear shear flow ux = γ̇y, uy = uz = 0 is imposed in the LBM scheme by applying two oppo-

site velocities in the stream-flow direction (ux(x,y = 0,z) = −ux(x,y = H,z) = Uw) at the upper

(y = H) and lower wall (y = 0) with the bounce-back rule [3]. We next change the shear in the

range 10−6 ≤ 2Uw/H ≤ 10−2 lbu and the polymer relaxation time in the range 103 ≤ τP ≤ 105

lbu for two values of the finite extensibility parameter, L2 = 102,104, and fixed ηP = 0.136 lbu.

In figure 1 we report the first normal stress difference (left panel) and the polymer shear viscosity

(right panel), both rescaled with the viscosity ηP, as a function of the dimensionless shear Λ = τPγ̇.

The values of the conformation tensor are taken when the simulation has reached the steady state.

All the numerical simulations collapse on different master curves, dependently on the value of L2.

The normal stress difference N increases at large Λ to exhibit variable levels depending on L2, and

consistently with the theoretical prediction of equation (30). The dependence of the normal stress

N from L2 directly reflects in the presence of thinning effects visible in the plot of the polymer

shear viscosity (see right panel of figure 1).

11



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100

N
/τ

P

Λ

L2=104, LBM-FD
L2=102, LBM-FD

L2=104, theory
L2=102, theory

 0.1

 1

 10

 0.001  0.01  0.1  1  10  100

S
/Λ

Λ

L2=104, LBM-FD
L2=102, LBM-FD

L2=104, theory
L2=102, theory

FIG. 1: We plot the first normal stress difference and the polymer shear viscosity (both scaled with the

viscosity ηP) as a function of the dimensionless shear Λ = τPγ̇. Symbols are the results of the LBM-

FD simulations with different imposed shears, different τP and different L2 (see text for details). All the

numerical simulations collapse on different master curves, dependently on the value of L2: L2 = 102 (circles)

and L2 = 104 (squares). The lines are the theoretical predictions based on equations (29) and (30).

B. Steady Elongational Flow

We consider equation (24) under the effect of a steady elongational flow, uz = ε̇z, ux =−ε̇x/2,

uy =−ε̇y/2, with ε̇ the elongation rate. Again, writing out all the components we get

Z











σP,xx −1 0 0

0 σP,yy −1 0

0 0 σP,zz−1











+ τP











ε̇











σP,xx 0 0

0 σP,yy 0

0 0 −2σP,zz





















= 0 (31)
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implying σP,xx = σP,yy. Defining T = Tr(σP)− 3 and D = σP,zz −σP,xx, and introducing the di-

mensionless elongation rate Λe = τPε̇ , we find two independent equations for D and T










L2+T
L2 T −2ΛeD = 0

−L2+T
L2 D+Λe(D+T )+3Λe = 0

(32)

which can be rearranged to give us a cubic equation for D as a function of Λe. Such equation is

most conveniently written as a quadratic equation in Λe:

2L2DΛ2
e +
[

−4D2 +(L2 −D−3)(D+3)
]

Λe +
2D3

L2
− (L2 −D−3)D = 0 (33)

with associated solutions

(Λe)+,− =
−P2 ±

√

P2
2 −4P1P3

2P1
(34)

where






















P1 = 2DL2

P2 =−4D2 +(L2 −D−3)(D+3)

P3 =
2D3

L2 − (L2 −D−3)D.

(35)

The elongational viscosity

ηe =
ηP

τP

D
ε̇

(36)

can be computed by numerically inverting equations (34-35) and paying attention to a proper

selection of the sign in equation (34). For small D the solution is given by (Λe)+, as (Λe)− is

negative and divergent. The asymptotic expansion for small D is indeed given by

(Λe)+ =
−P2 +

√

P2
2 −4P1P3

2P1
≈

D
3
+O(D2) (37)

showing that the elongational viscosity approaches a constant value at low elongation rates, which

is three times the corresponding zero-shear-rate viscosity. However the radicand of equation (34)

is zero when D = L2 −3. In such a point, in order to preserve the continuity of the derivative of

Λe, we need to consider (Λe)− as a solution. Consistently, for large D, we find

(Λe)− =
−P2 −

√

P2
2 −4P1P3

2P1
≈

D
2L2

+O

(

1

D

)

. (38)

We therefore find the following asymptotic expansion for the elongational viscosity

ηe

ηP
=

1

τP

D
ε̇
=











3 ε̇ ≪ 1

2L2 ε̇ ≫ 1

(39)
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FIG. 2: We plot the dimensionless elongational viscosity as a function of the dimensionless elongation

rate Λe = τPε̇. Symbols are the results of the LBM-FD numerical simulations with different imposed

elongational rates, different τP and different L2 (see text for details). All the numerical simulations collapse

on different master curves, dependently on the value of L2: L2 = 10 (squares), L2 = 102 (circles) and

L2 = 104 (triangles). The lines are the theoretical predictions based on equations (34) and (35).

witnessing a divergence of the elongational viscosity in the Oldroyd-B limit (L2 ≫ 1). In figure

2 we present numerical simulations to benchmark these results. The numerical simulations have

been carried out in a three dimensional cubic domain with edge H consisting of H×H×H = 20×

20×20 cells. Periodic conditions are applied in all directions. The elongational rate is changed in

the range 10−6 ≤ ε̇ ≤ 10−2 lbu and the polymer relaxation time in the range 103 ≤ τP ≤ 105 lbu, for

three values of the finite extensibility parameter, L2 = 10,102,104, and fixed ηP = 0.0 lbu. Again,

the values of the conformation tensor are taken when the simulation has reached a steady state.

When reporting the quantity D/Λe, i.e. the elongational viscosity scaled by the polymer viscosity,

as a function of the dimensionless elongational rate Λe, all the numerical simulations collapse

on different master curves, dependently on the value of L2. This behaviour is consistent with

the theoretical predictions obtained from equations (34) and (35). For small Λe the elongational

viscosity is just three times the polymer viscosity, while at large Λe we approach another constant

value dependent on the finite extensibility parameter L2 (see equation (39)).
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C. Small amplitude Oscillatory Shearing

By promoting the shear variable considered in section (III A) to a time-dependent variable,

ux = γ̇(t)y, uy = 0, uz = 0, we can analyze the behaviour of the polymer field under time-dependent

loads. We will then analyze the limit of small amplitudes, i.e. L ≫ 1. In this limit Z = 1 and we

are left with the following time-dependent equation











σP,xx −1 σP,xy 0

σP,yx σP,yy −1 0

0 0 σP,zz−1











+ τP











∂
∂ t











σP,xx σP,xy 0

σP,yx σP,yy 0

0 0 σP,zz











− γ̇(t)











2σP,yx σP,yy 0

σP,yy 0 0

0 0 0





















= 0.

(40)

For large t, the equations for the first normal stress difference N and polymer shear stress S defined

in section (III A) are therefore











N + τP∂tN = 2τPγ̇(t)S

S+ τP∂tS = τPγ̇(t).
(41)

Assuming γ̇(t) = γ̇(0) cos(ωt) = ℜ (γ̇(0)e−iωt), we find that the stresses needed to maintain the

motion will also be of oscillatory nature

S = ℜ (S(0)e−iωt) = ℜ (γ̇(0)η ∗e−iωt) = γ̇(0)η ′ cos(ωt)− γ̇(0)η ′′ sin(ωt)

where η ∗ = η ′− iη ′′ is the complex viscosity whose components can be computed by taking S

and N as complex variables and considering the real and imaginary part of equation (41)

η ′(ω) =
τP

1+ω2τ 2
P

η ′′(ω) =
ωτ2

P

1+ω2τ 2
P

.

The dimensionless storage (G′(ω)) and loss (G′′(ω)) moduli [17] are given by

G′′(ω) = ωη′(ω) =
τPω

1+ω2τ 2
P

G′(ω) = ωη′′(ω) =
(ωτ)2

P

1+ω2τ 2
P

. (42)

In figure 3 we present numerical simulations to benchmark these results. The set-up for the numer-

ical simulations is similar to the one presented in section (III A), with three dimensional domains

consisting of 2×H ×2 cells, with variable wall-to-wall gap H. We then apply an oscillatory shear

flow ux = γ̇(t)y = 2Uw
H cos(ωt)y, uy = uz = 0, γ̇(t) = γ̇(0) cos(ωt) at the walls of the LBM simula-

tions and set zero feedback (ηP = 0 lbu) of the polymers into the fluid. The frequency ω is changed

in the range 10−6 ≤ω≤ 10−3 lbu and the polymer relaxation time in the range 103 ≤ τP ≤ 106 lbu,
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FIG. 3: We plot the dimensionless storage modulus (G′(ω), circles) and the dimensionless loss modulus

(G′′(ω), squares) versus the dimensionless frequency ωτP. Results are obtained from the LBM-FD nu-

merical simulations with L2 = 105 (Oldroyd-B limit); black lines show the theoretical prediction for the

Oldroyd-B model (see equation (42)).

for a given value of the finite extensibility parameter, L2 = 105, fixed ηP = 0.0 lbu and maximum

wall velocity Uw = 10−3 lbu. A word of caution is in order, as the assumed flow conditions re-

quire that the lattice Boltzmann time to establish a steady shear flow, τνS ∼
H2

νS
(with νS the solvent

kinematic viscosity), is much shorter than the period of the oscillations, i.e. τνSω ≪ 1, otherwise

the shear flow will be found in a transient regime. This condition is achieved by a proper tuning

of the solvent kinematic viscosity and the wall gap H in all the numerical simulations. As we can

see from figure 3, the dimensionless storage modulus (G′(ω)) and the dimensionless loss modulus

(G′′(ω)) are in very good agreement with the theoretical prediction of equation (42).

D. Stress relaxation after cessation of steady shear flow

We finally consider a situation with ux = γ̇(t)y, uy = 0, uz = 0 with γ̇(t) being constant for

t < t0, and γ̇(t) = 0 for t ≥ t0. The equations for t ≥ t0 are therefore

Z











σP,xx −1 σP,xy 0

σP,yx σP,yy−1 0

0 0 σP,zz −1











+ τP
∂
∂ t











σP,xx σP,xy 0

σP,yx σP,yy 0

0 0 σP,zz











− τP











σP,xx σP,xy 0

σP,yx σP,yy 0

0 0 σP,zz











Dt logZ = 0.

(43)
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We next write down the equations for the variables S = σP,xy and T = Tr(σP)−3











L2+T
L2 T + τP∂tT − τP(3+T ) ∂tT

(L2+T ) = 0

L2+T
L2 S+ τP∂tS− τPS ∂tT

(L2+T ) = 0.
(44)

The first of equations (44) can be solved to get a differential equation for T

∂t̃T
T

=
(L2 +T )2

L2(3−L2)
(45)

where t̃ = t/τP. The Oldroyd-B (L2 ≫ 1) limit simply implies an exponential decay T (t) =

T0e−(t−t0)/τP , where with the subscript 0 we indicate variables at time t̃ = t0/τP. For the gen-

eral case with finite extensibility parameter L2 in equation (45), T (t) cannot be written in terms of

elementary functions. However, by a proper manipulations of equations (44), it is always possible

to get an equation relating the shear stress to the trace of the stress during relaxation [17]

S(t)
S0

=

(

T (t)
T0

)(L2−3)/L2(

L2 +T (t)
L2 +T0

)1−(L2−3)/L2

. (46)

For completeness, we note that further manipulations [54, 55] of equations (44) allow to show

that the area under the stress-relaxation curve is closely related to the first normal stress-difference

before the cessation of the shear flow

N0(t < t0) = 2γ̇
∫ ∞

t0
Sdt = 2γ̇τP

∫ ∞

t0/τP

Sdt̃. (47)

In the left panel of figure 4 we plot the time evolution for both S(t) and T (t) versus the dimension-

less time (t/τP) in the process of an inception of shear flow with the approaching to the steady state

and subsequent cessation. The set-up for the numerical simulations is similar to the one presented

in section (III A), with three dimensional domains consisting of Lx ×H ×Lz = 2× 60× 2 cells.

The shear is set to 2Uw/H = 10−3 lbu at time t/τP = 0, with the polymer relaxation time τP = 104

lbu and finite extensibility parameter L2 = 4.1. The value of L2 is chosen to create a net distinction

between the time evolution of S(t) and T (t), that otherwise would be identical in the Oldroyd-B

limit (L2 ≫ 1, see also equation (46)). The feedback of the polymer into the fluid is set to zero. For

t/τP = 10 (that means t0 = 10τP in the above equations) the system is surely under the effect of a

steady shear flow. At that time, the shear is suddenly switched off and the system starts decaying.

The decay process is illustrated in the right panel of figure 4, where we compare the results of the

numerical simulations with the analytical predictions obtained from equations (45) and (46).
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FIG. 4: We plot the time evolution for the polymer shear stress S(t) (squares) and the excess trace

T (t) = Tr(σP)− 3 (circles) versus the dimensionless time (t/τP) during the inception of a shear flow and

subsequent cessation (see text for details). The shear starts at time t = 0 and for t/τP = 10 the system is

under the effect of a steady shear flow. At time t/τP = 10 the shear is suddenly switched off and the system

starts decaying. The decay process is better illustrated in the right panel where we compare the results of

the numerical simulations with the analytical predictions obtained from equations (45) and (46).

IV. BINARY MIXTURES WITH VISCOELASTIC PHASES

In this section we describe problems where both phase segregation and viscoelasticity are

present. First of all we switch on immiscibility: when G > Gc in equation (6), with Gc a crit-

ical value of the coupling constant, the binary mixture separates into two phases, each with a

majority of one of the two components and with the interface between the two phases described

as a thin layer of thickness ξ across which the fluid properties change smoothly. The values of the
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interface thickness and the mobility µ (see equation (4)) need to be larger than those suggested by

physical considerations in order to make the simulations affordable. They are empirically tuned in

order to match the analytical predictions of sharp-interface hydrodynamics (see later).

We will then apply our numerical approach to the characterization of deformation of droplets in

confined geometries, where the involved phases may possess a viscoelastic nature. This is a rele-

vant problem, for example, when determining the properties of emulsions microstructures [57, 58].

Emulsions play an important role in a huge variety of applications, including foods, cosmetics,

chemical and material processing [15]. Deformation, break-up and coalescence of droplets occur

during flow, and the control over these processes is imperative to synthesize the desired macro-

scopic behaviour of the emulsion. Most of the times, the synthesis of the emulsion takes place

in presence of confinement, and relevant constituents have commonly a viscoelastic -rather than

Newtonian- nature. The “single” drop problem has been considered to be the simplest model: in

the case of dilute emulsions with negligible droplets interactions, the dynamics of a single drop

indeed provides complete information about the emulsion behaviour. Single drop deformation has

been extensively studied and reviewed in the literature for the case of Newtonian [59–62] and also

non-Newtonian fluids [42, 43, 46, 63].

A. Effects of confinement on droplet deformation

In the classical problem studied by Taylor [59], a droplet with radius R, interfacial tension σAB,

and viscosity ηD is suspended in another immiscible fluid matrix with viscosity ηM under the

effect of a shear flow with intensity γ̇ (see left panel of figure 5). The various physical quantities

are grouped in two dimensionless numbers, the Capillary number

Ca =
γ̇RηM

σAB
(48)

giving a dimensionless measure of the balance between viscous and interfacial forces, and the

viscosity ratio λ = ηD/ηM, going from zero for vanishing values of the droplet viscosity (i.e. a

bubble) to infinity in the case of a solid particle. In order to quantify the deformation of the droplet,

we study the deformation parameter D = (a−b)/(a+b), where a and b are the droplet semi-axes

in the shear plane, and the orientation angle θ between the major semi-axis and the flow direction

(see also the left panel of figure 5). Taylor’s result, based on a small deformation perturbation
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analysis to first-order, relates the deformation parameter to the Capillary number Ca,

D =
(19λ +16)

(16λ +16)
Ca (49)

whereas the orientation angle is constant and equal to θ = π/4 to first order. Taylor’s analysis

was later extended by working out the perturbation analysis to second order in Ca, which leaves

unchanged the expression of the deformation parameter (49) and gives the O(Ca) correction to

the orientation angle [64, 65]. The effects of confinement have been theoretically addressed at

O(Ca) by Shapira and Haber [44, 66] based on Lorentz’s reflection method. They found that the

deformation parameter in a confined geometry can be obtained by the Taylor’s result through a

correction in the power of the ratio between the droplet radius at rest R and gap between the walls

H

D =
(19λ +16)

(16λ +16)

[

1+Csh
2.5λ +1

λ +1

(

R
H

)3
]

Ca (50)

where Csh is a tabulated numerical factor depending on the relative distance between the droplet

center and the wall (the value of Csh for droplets placed halfway between the plates is Csh =

5.6996).

LBM have already been used to model the droplet deformation problems [67–70]. Three-

dimensional numerical simulations of the classical Taylor’s problem [59] have been performed

by Xi & Duncan [67] using the “Shan-Chen” model [7, 8]. The single droplet problem was also

investigated by Van Der Sman & Van Der Graaf [68] using a “free energy” LBM. LBM modelling

of two phase flows is intrinsically a diffuse interface method and involves a finite thickness of the

interface between the two liquids and related free-energy model parameters. These model param-

eters are characterized by two dimensionless numbers: the Péclet (Pe) and Cahn numbers (Ch),

the Cahn number is the interface thickness normalized with the droplet radius, whereas the Péclet

number Pe is the ratio between the convective time scale and the interface diffusion. A recent com-

prehensive study by Komrakova et al. has investigated the influence of Pe, Ch and mesh resolution

on the accuracy and stability of the numerical simulations. Drops of moderate resolution (radius

less than 30 lattice units) require smaller interface thickness, while a thicker interface should be

used for highly resolved drops. Those parameters have to be within certain ranges to reproduce

the physical behavior [68, 69] of sharp-interface hydrodynamics [71]. Since our aim is to quantify

and explore the importance of viscoelasticity in our simulations, we choose the aforementioned

parameters in such a way that the Newtonian (sharp-interface) predictions for droplet orientation

and deformation are well reproduced. All the simulations described in the following sections refer
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to cases with polymer relaxation times ranging in the interval 0 ≤ τP ≤ 4000 lbu and finite ex-

tensibility 10 ≤ L2 ≤ 104. The numerical simulations have been carried out in three dimensional

domains with Lx ×H ×H = 288×128×128 lattice cells. The droplet radius R has been changed

in the range 30 ≤ R ≤ 40 lattice cells with fixed H to achieve different confinement ratios 2R/H.

Periodic conditions are applied in the stream-flow (x) and in the transverse-flow (z) directions.

The droplet is subjected to a linear shear flow ux = γ̇y, uy = uz = 0, with the shear introduced with

two opposite velocities in the stream-flow direction (ux(x,y = 0,z) = −ux(x,y = H,z) = Uw) at

the upper (y = H) and lower wall (y = 0). For the numerical simulations presented we have used

G = 1.5 lbu in (6) (the critical point is at Gc = 1.0 for the parameters chosen) and a total average

density of 2.1 lbu, corresponding to a surface tension σAB = 0.09 lbu and associated bulk densities

ρA = 2.0 lbu and ρB = 0.1 lbu in the A-rich region. Some numerical studies to test the sensitivity

with respect to a change in the resolution and model parameters used are reported in A.

In the right panel of figure 5 we report the steady state deformation parameter D for a Newtonian

droplet under steady shear as a function of the associated Capillary number Ca for two different

confinement ratios: 2R/H = 0.46 and 2R/H = 0.7. The viscosity ratio between the droplet phase

and the matrix phase is fixed to λ = ηD/ηM = ηA/ηB = 1, with the dynamic viscosities equal

to ηA = ηB = 1.74 lbu. The linearity of the deformation is captured by the numerical simula-

tions up to the largest Ca considered, but the numerical results overestimate Taylor’s prediction

(referred to as “Newtonian Unconfined”) being well approximated by the theoretical prediction of

Shapira & Haber for a confined droplet [44] (refereed to as “Newtonian confined”). Confinement

promotes larger deformation and wall effects act to stabilize the resulting elongated drop shapes

(which would be otherwise unstable in the unbounded case) by confining the drop within closed

streamlines [66]. For completeness, we also report a comparison with the steady state deforma-

tion prediction of a model proposed recently by Minale [45], describing the dynamics (and steady

states) of a droplet under the assumption that it deforms into an ellipsoid. This model belongs to

the family of “ellipsoidal” models [72], which were originally introduced to describe the dynam-

ics of a single Newtonian drop immersed in a matrix subjected to a generic flow field. The steady

state predictions of such models for small Ca are constructed in such a way to recover the exact

perturbative result, i.e. Taylor’s result for an unbounded droplet [73] or the Shapira & Haber result

for a confined droplet [45]. The prediction of these ellipsoidal models is hardly distinguishable

from the perturbative results [44] in these Newtonian cases, at least for the range of parameters

that we have used in the numerical simulations. Nevertheless, these models will be quite useful
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when discussing the influence of viscoelasticity on droplet deformation and orientation, as will be

done in the following sections.

B. Effects of Viscoelasticity on droplet deformation and orientation

In this section we look at the effects of viscoelasticity in droplet deformation and orientation.

We will separately address the importance of matrix viscoelasticity and droplet viscoelasticity, us-

ing the proposed methodology described in section II, and compare with some of the theoretical

predictions available in the literature [42, 43, 46]. Again, we work with unitary viscosity ratio,

defined in terms of the total (fluid+polymer) shear viscosity: λ = (ηA +ηP)/ηB = 1, in case of

droplet viscoelasticity; λ = ηA/(ηB +ηP) = 1, in case of matrix viscoelasticity. Viscoelastic ef-

fects show up in the droplet deformation and orientation in terms of two dimensionless parameters:

the Deborah number,

De =
N1R
2σAB

1

Ca2
(51)

where N1 is the first normal stress difference generated in simple shear flow [17], and the ratio

N2/N1 between the second and first normal stress difference [42]. Solving the constitutive equation

for steady shear (see section (III A)), the first normal stress difference for the FENE-P model

[17, 56] can be computed (see subsection (III A) and equation (30)), while N2/N1 = 0. In the

Oldroyd-B limit (L2 ≫ 1) we can use the asymptotic expansion of the hyperbolic functions and

we get N1 = 2ηPγ̇2τP so that

De =
τP

τem

ηP

ηM
(52)

showing that De is clearly dependent on the ratio between the polymer relaxation time τP and the

emulsion time τem = RηM
σAB

, the latter depending on the interface properties (i.e. surface tension).

For finite L2, however, we need to use the definition of De based on the first normal stress differ-

ence (see section (III A)). Benchmark tests for the viscoelastic effects will be proposed for both

shear-induced droplet deformation and orientation at small Ca, although the effects on droplet

orientation (especially in a case with matrix viscoelasticity) will be more pronounced. This is

because non-Newtonian effects on the drop steady state deformation show up at the second order

in Ca, while the orientation angle has a correction at first order in Ca [42, 63]. In particular, to

test both confinement and viscoelastic effects, we will also refer to the model proposed by Minale,

Caserta & Guido [46] for ellipsoidal droplets. Indeed, the aforementioned ellipsoidal models for

Newtonian fluids have been recently proposed also for non-Newtonian fluids. In particular, Minale
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FIG. 5: Left Panel: shear plane (z = H/2) view of the numerical set-up for the study of deformation

of confined droplets. A Newtonian droplet (Phase A) with radius R and shear viscosity ηA is placed in

between two parallel plates at distance H in a Newtonian matrix (Phase B) with shear viscosity ηB. We

then add a polymer phase with shear viscosity ηP in the droplet or matrix phase. We work with unitary

viscosity ratio, defined in terms of the total (fluid+polymer) shear viscosity: λ = (ηA + ηP)/ηB = 1, in

case of droplet viscoelasticity; λ = ηA/(ηB +ηP) = 1, in case of matrix viscoelasticity. A shear is applied

by moving the two plates in opposite directions with velocities ±Uw. Right panel: We report the steady

state deformation parameter D for a Newtonian droplet in a Newtonian matrix (ηP = 0.0 lbu) under steady

shear as a function of the associated Capillary number Ca. For small Ca the linearity of the deformation is

captured by the numerical simulations, but the numerical results overestimate Taylor’s prediction (referred

to as “Newtonian Unconfined”), being well approximated by the theoretical prediction of Shapira & Haber

for a confined droplet [44] (referred to as “Newtonian confined”). Two confinement ratios are considered:

2R/H = 0.46 and 2R/H = 0.7. We also report the theoretical predictions of the “ellipsoidal” models [45, 72]

(referred to as “Newtonian confined (E)”). For the “confined” theoretical prediction, larger deformations are

related to larger confinement ratio.
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[43] proposed an ellipsoidal model which recovers, in the small Ca-limit, the steady state theory

developed by Greco [42]. Minale, Caserta & Guido [46] generalized the work by Minale [43, 45]

to study the effects of confinement in non-Newtonian systems.

We start with the effect of droplet viscoelasticity. For a given confinement ratio, 2R/H = 0.46, in

figure 6 we report the steady state droplet deformation and orientation angle. We use the Oldroyd-

B model, by choosing a large value of L2 = 104, and consider two relaxation times in the polymer

equation (3), τP = 2000 lbu and τP = 4000 lbu, corresponding to Deborah numbers (based on

equation (52)) De = 1.42 and De = 2.84, respectively. The polymer viscosity is kept fixed to

ηP = 0.6933 lbu, corresponding to a polymer concentration of ηP/(ηA +ηP) = 0.4. The defor-

mation computed from the numerical simulations reveals a small effect of viscoelasticity, which is

consistent with the theoretical prediction of the model by Minale, Caserta & Guido [46] (referred

to as ”non-Newtonian confined (E)”). In particular, with respect to the Newtonian case, deforma-

tion is slightly inhibited by viscoelasticity and overestimates Greco’s prediction for an unconfined

non-Newtonian droplet [42] (referred to as “non-Newtonian unconfined”). As for the orientation,

we again see a small effect. These observations echo other experimental and numerical results

present in the literature on the effect of droplet viscoelasticity on deformation and orientation

[74–77].

We next look at the effect of matrix viscoelasticity, figures 7 and 8. In figure 7 we report the

steady state droplet deformation for two different confinement ratios: 2R/H = 0.46 (left panel) and

2R/H = 0.7 (right panel). Again, we choose a large value of L2 = 104, and consider a relaxation

time τP = 2000 lbu in the polymer equation (3), corresponding to different Deborah numbers, de-

pending on the droplet radius (see equation (52)): De = 1.42 for 2R/H = 0.46 and De = 1.06 for

2R/H = 0.7. The polymer viscosity is kept fixed to ηP = 0.6933 lbu, corresponding to a polymer

concentration of ηP/(ηP +ηB) = 0.4. In both cases, matrix viscoelasticity inhibits droplet defor-

mation with respect to the corresponding Newtonian cases. Also, the unconfined theory by Greco

[42] underestimates the deformation, and the mismatch is larger with the larger confinement ratio,

as one would have expected since the theory of Greco does not take into account confinement. The

model by Minale, Caserta & Guido [46] follows the numerical data with a mismatch emerging at

large Ca for the larger confinement ratio: most probably this is due to the fact that confinement

starts to act in promoting deformation with shapes departing from an ellipsoid [66]. A non trivial

interplay between confinement and viscoelasticity is also visible from figure 9, where we report

the steady state snapshots for the polymer feedback stress of equation (2) for the cases studied in
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figures 7 and 8. In figure 8 we report the orientation angle for the same cases studied in figure

7. The effect of viscoelasticity is now much more visible, if compared with the case of droplet

viscoelasticity reported in figure 6. We also analyze the effect of an increase of the relaxation time

τP in equation (3) for both the confinement ratios studied, which translates in a larger Deborah

number. The change in the orientation angle for the Newtonian cases is linear in Ca up to the

largest Ca considered, which is consistent with the linearity of the deformation discussed in figure

5. This generates a mismatch with the corresponding Ellipsoidal model predictions [45]: just to

give some quantitative numbers, for a Capillary number Ca = 0.35, there is a mismatch of 2−3◦

in the smaller confinement ratio, which becomes roughly doubled (i.e. 5−6◦) for the larger con-

finement ratio. The orientation angle in the non-Newtonian cases, instead, is better captured by

the ellipsoidal model by Minale, Caserta & Guido [46]. Overall, in both the Newtonian and non-

Newtonian cases, the mismatch between the numerical results and the prediction of the ellipsoidal

models is more pronounced at large confinement ratios (right panel of figure 8), an observation

that echoes the discussion done for the data of figure 7.

Finally, we want to address and test the importance of the finite extensibility parameter in the

polymer equation (3). For a given confinement ratio 2R/H = 0.46 and τP = 2000 lbu in equation

(3), we have repeated the numerical simulations described in the left panel of figure 7 for a finite

extensibility parameter L2 = 10. As L decreases, the polymer dumbell becomes less extensible and

the maximum level of stress attainable is reduced. There are some consequences. First, we cannot

rely on equation (52) to define the Deborah number, which strictly holds only in the large-L2 limit.

Second, at large shears, the model exhibits thinning effects, as predicted and verified in subsection

(III A), and the definition of the Capillary number (48) given in terms of the matrix viscosity has

to be changed to include such effects. Indeed, by using the definition of the Deborah number

given in equation (52) and a shear independent matrix viscosity in equation (48) in the theoretical

models, the agreement between the numerical results and the theory deteriorates (see left panel of

figure 10), whereas the large-L2 case was well in agreement. In the right panel of figure 10 we

report the same data, by changing: (i) the definition of Capillary in equation (48), based on the

thinning effects analyzed in subsection (III A); (ii) the definition of the Deborah number, which

is now computed according to equation (51), with the first normal stress difference given in (30).

As one can see the agreement gets better, especially at small Ca. For completeness, in figure

11, we report the steady state snapshots for the polymer feedback stress of equation (2) for the

cases studied in figure 10. Results reported in figure 10 are surely motivating for future theoretical
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studies. Indeed, it is by no means proved that the theoretical models used [46] can work for a shear-

dependent viscosity (which holds for the FENE-P). Figure 10 is giving (numerical) evidence that

the viscoelastic effects of the FENE-P model can also be embedded in such theoretical models;

however, before proceeding with further comparisons, we feel that a proper theoretical background

needs to be developed first.

V. CONCLUSIONS

We have proposed numerical simulations of viscoelastic fluids based on a hybrid algorithm

combining lattice-Boltzmann models (LBM) and Finite Differences (FD) schemes, the former

used to model the macroscopic hydrodynamic equations, and the latter used to model the kinetics

of polymers using the constitutive equations for finitely extensible non-linear elastic dumbells with

Peterlin’s closure (FENE-P). We have first benchmarked the numerical scheme with the character-

ization of the rheological properties of a dilute homogeneous solution under steady shear, steady

elongational flows, oscillatory flows and transient shear. We then continued to study the model in

presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM

description using the “Shan-Chen” interaction model [7, 8, 40]. We have characterized the effect

of viscoelasticity in droplet deformation under steady shear, by comparing the results of numerical

simulations with available theoretical models in the literature [42–47, 59]. Overall, the numerical

simulations well capture both the effects of confinement and viscoelasticity, thus exploring prob-

lems where the capabilities of LBM were never quantified before. Even if we focused on a unitary

total (Newtonian fluid+polymer) viscosity ratio, the numerical algorithm can simulate viscosity

ratios different from 1 as well, although we think that the latter cannot easily be pushed much

below 0.1 and much above 10. Based on the total shear viscosity, we actually show in this paper

that there is a good matching between the analytical solutions and the numerical results for those

cases where the viscosity ratio between the two Newtonian phases is between 0.66 and 1.6, while

keeping the total (Newtonian fluid+Polymer) viscosity ratio equal to 1. We think the good match-

ing is possible only because the “bare” Newtonian solution is recovered, therefore lending support

to the validity of the algorithm in simulating viscosity ratios different from 1. As an upgrade of

complexity, it would be extremely interesting to study time-dependent situations [75, 78], other

flows in confined geometries [79, 80] and problems where droplet break-up is involved [81, 82].

Complementing these kind of experimental results with the help of numerical simulations would
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be of extreme interest. Simulations provide easy access to quantities such as drop deformation and

orientation as well as the velocity flow field, pressure field, and polymers feedback stresses, inside

and outside the droplet. They can be therefore useful to perform in-silico comparative studies, at

changing the model parameters, to shed lights on the complex properties of viscoelastic flows in

confined geometries.
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Appendix A: Sensitivity with respect to a change in the resolution and model parameters used

The convergence towards the sharp-interface limit of hydrodynamics is one of the crucial is-

sues in diffuse interface models [68, 69, 71, 83, 84]. In the present work, the resolution used,

the interface thickness, the mobility were all empirically tuned in order to match the analytical

predictions of sharp-interface (Newtonian) hydrodynamics. In this Appendix we provide evidence

that the chosen parameters lie in a range of values where the hydrodynamic solution is indeed

well recovered. The reference numerical data are those analyzed in the right panel of figure 5 for

2R/H = 0.46. The sensitivity with respect to a change in the resolution used is tested by keeping

all the parameters fixed, except the wall-to-wall gap H and the radius R, which are changed in the

ranges 64 ≤ H ≤ 176 lattice cells and 12 ≤ R ≤ 40 lattice cells, in such a way to keep fixed the

confinement ratio to 2R/H = 0.46. All the numerical simulations performed match very well with

the theoretical prediction of Shapira & Haber for a confined Newtonian droplet [44] (referred to

as “Newtonian confined”). Even the simulations with the smallest radius analyzed (R = 12 lattice

cells) are well in agreement with the theoretical predictions, a fact that is also acknowledged in

other publications using the “Shan-Chen” interaction model [35].

We next continue by performing numerical simulations to test the sensitivity with respect to

a change in the mobility µ (see (4)-(16)) and in the interface width. In both cases, again, the
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reference numerical data are those analyzed in the right panel of figure 5 for 2R/H = 0.46, cor-

responding to a mobility µ = 0.5 lbu and interface width approximately equal to 5 lattice cells.

In a series of numerical simulations, we change the mobility in the range 0.05 ≤ µ ≤ 1.0 lbu, by

keeping all the other parameters unchanged. Results are reported in the left panel of figure 13,

showing no remarkable sensitivity, at least as far as the deformation parameter is concerned. In

a second set of numerical simulations, we keep the mobility fixed to µ = 0.5 lbu and change the

interface width: the interaction parameter is changed in the range 1.3 ≤ G ≤ 1.7 lbu at fixed total

average density, resulting in surface tensions varying in the range 0.05 ≤ σAB ≤ 0.14 lbu. The

interface widths are changed in a range between 3 lattice cells and 8 lattice cells approximately

(wider interfaces are obtained with smaller G ). The associated bulk densities change in the range

1.9 ≤ ρA ≤ 2.15 lbu and 0.05 ≤ ρB ≤ 0.2 lbu in the A-rich region. For each value of G , we de-

fine the Capillary number according to (48), dependently on the value of the surface tension. The

results for the deformation parameter D as a function of the Capillary number are reported in the

right panel of figure 13, confirming that the parameters used in our study lie in a range where the

convergence towards the sharp-interface limit of hydrodynamics is well achieved.

We finally address the importance of the smoothing parameter ∆ for the viscoelastic properties

(19). We choose the data analyzed in the left panel of figure 8 for the Deborah number De = 1.42.

The smoothing parameter is changed in the range 0.01≤ ∆≤ 2 lattice cells and results are reported

in figure 14. As expected, for values of ∆ below 1 lattice cell, the results are all well in agreement

withe the reference theory of sharp-interface hydrodynamics. Deviations start to emerge when the

smoothing parameter is above a lattice cell.

Appendix B: Comparison with the Model by Onishi et. al.

In this Appendix we compare the results of our model with those of Onishi et al. [35]. The two

approaches are intrinsically different with regard to the modelling of the polymer dynamics: On-

ishi et al. use an approach based on the Fokker-Planck equation (simulated with LBM), whereas

we directly model the conformation tensor dynamics (with FD), which comes from a proper clo-

sure of the Fokker-Planck equation [17, 55]. Comparing the two theoretical formulations is outside

the scope of our paper, and surely addressed in many other dedicated works [17, 55]. The com-

parison between the two models can be fairly addressed, at least as far as it concerns the solvent

part of the model, which is done with LBM in both cases. We do not propose anything new in this
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direction, since we use the MRT, whose advantages with respect to the single time BGK relaxation

approximation (used by Onishi et al. [35]) are well known from the literature [85, 86]. These facts

said, from the information provided in the paper by Onishi et al. [35], we could run numerical

simulations to compare with the results there reported. We perform numerical simulations in three

dimensional domains with Lx ×H ×H = 128× 64× 64 lattice cells and droplet radius R = 12

lattice cells, which is the same resolution used by Onishi et al. in their paper [35]. Exactly as in

[35], we prepare four fluids with viscoelasticity in the matrix phase: the matrix viscosity is kept

the same, ηM = ηB +ηP = 2 lbu, but different viscoelastic properties are considered: ηP/ηM = 0

and De = 0.0 (run M1 in [35], the Newtonian case); ηP/ηM = 0.25 and De = 0.6 (run M2 in

[35]); β = ηP/ηM = 0.5 and De = 1.2 (run M3 in [35]); β = ηP/ηM = 0.5 and De = 2.4 (run

M4 in [35]). In all cases, the mobility in (16) is set to µ = 0.5 lbu. In figure 15, similarly to

figure 3 of Onishi et al. [35], we begin with the presentation of the temporal evolution of Taylor’s

deformation parameter and orientation angle obtained in runs M1-M4 for a fixed Capillary num-

ber Ca = 0.26. To be noted that the Deborah number De is denoted with p in [35]: we therefore

decided to use p to better (visually) establish a link with the results of [35]. In agreement with

[35], there is no remarkable difference in the approach to steady state, though overshoots are a

bit more pronounced in our case. Note that we have made time dimensionless with respect to the

droplet emulsion time τem = RηM
σAB

, whereas it is not clearly stated what is the characteristic time

scale used by the authors in [35]. In agreement with the theory, the deformation parameter only

slightly changes at changing the degree of viscoelasticity whereas the orientation angle is more

sensitive.

Next, we compare the steady state shape of the drops in the different matrices in order to in-

vestigate viscoelasticity effects. Figures 16 are the counterpart of figure 5 in [35]: they report the

steady state values of the deformation parameter and the orientation angle for different Capillary

numbers. Note that the resolution used is already enough to achieve convergence to the hydro-

dynamic limit (see figure 12). Indeed, in agreement with [35], the quantitative matching with the

theoretical prediction by Greco [42] is achieved.
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FIG. 6: We report the steady state deformation parameter D (left panel, see text for details) and the orienta-

tion angle (right panel) for a viscoelastic droplet in a Newtonian matrix under steady shear as a function of

the associated Capillary number Ca. The viscosity ratio between the droplet phase and the matrix phase is

kept fixed to λ = ηD/ηM = 1, the confinement ratio is 2R/H = 0.46. We consider two relaxation times in

the polymer equation (3), τP = 2000 lbu and τP = 4000 lbu, corresponding to Deborah numbers (based on

equation (52)) De = 1.42 and De = 2.84 respectively. The polymer viscosity is kept fixed to ηP = 0.6933

lbu, corresponding to a polymer concentration of ηP/(ηP +ηB) = 0.4. With respect to the Newtonian case,

deformation is inhibited by viscoelasticity and the numerical results overestimate Greco’s prediction for an

unconfined non-Newtonian droplet [42] (referred to as “non-Newtonian unconfined”). As for the orienta-

tion, we hardly see any effect. We also report the theoretical predictions of the “ellipsoidal” models [45, 46]

for both Newtonian [45] and non-Newtonian [46] cases (referred to as “Newtonian confined (E)” and “non-

Newtonian confined (E)”). For the non-Newtonian theoretical prediction, smaller angles are related to larger

Deborah number.
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FIG. 7: We report the steady state deformation parameter D (see text for details) for a Newtonian droplet in a

viscoelastic matrix under steady shear as a function of the Capillary number Ca. The viscosity ratio between

the droplet phase and the matrix phase is kept fixed to λ = ηD/ηM = 1. Two different confinement ratios

are considered: 2R/H = 0.46 (left panel) and 2R/H = 0.7 (right panel). Again, as already done for the data

of figure 6, we choose a large value of the finite extensibility parameter L2 = 104, and consider a relaxation

time in the polymer equation (3) τP = 2000 lbu. The corresponding Deborah numbers depend on the droplet

radius, based on equation (52): De = 1.42 for 2R/H = 0.46 and De = 1.06 for 2R/H = 0.7. The polymer

viscosity is kept fixed to ηP = 0.6933 lbu, corresponding to a polymer concentration of ηP/(ηP + ηB) =

0.4. The numerical results overestimate Greco’s prediction for an unconfined non-Newtonian droplet [42]

(referred to as “non-Newtonian unconfined”). We also report the prediction of “ellipsoidal” models [45, 46]

for both Newtonian [45] and non-Newtonian [46] cases (referred to as “Newtonian confined (E)” and “non-

Newtonian confined (E)”).
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FIG. 8: We report the steady state orientation angle for a Newtonian droplet in a viscoelastic matrix under

steady shear as a function of the Capillary number Ca. The viscosity ratio between the droplet phase

and the matrix phase is kept fixed to λ = ηD/ηM = 1. Two different confinement ratios are considered:

2R/H = 0.46 (left panel) and 2R/H = 0.7 (right panel). Data are the same as those of figure 7, plus some

other data obtained by increasing the relaxation time τP in equation (3). For a given Ca, the numerical

results overestimate Greco’s prediction for an unconfined non-Newtonian droplets [42] (referred to as “non-

Newtonian unconfined”). We also report the theoretical predictions of the “ellipsoidal” models [45, 46] for

both Newtonian and non-Newtonian cases (referred to as “Newtonian confined (E)” and “non-Newtonian

confined (E)”). For the non-Newtonian theoretical prediction, smaller angles are related to larger Deborah

number.
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(a) 2R/H=0.46, Ca= 0.17 , De=0.71 (b) 2R/H=0.7, Ca= 0.23 , De=0.53

(c) 2R/H=0.46, Ca= 0.17 , De=1.42 (d) 2R/H=0.7, Ca= 0.23 , De=1.06

(e) 2R/H=0.46, Ca= 0.17 , De=2.84 (f) 2R/H=0.7, Ca= 0.23 , De=2.13

FIG. 9: We report the steady state snapshots of the polymer feedback stress in equation (2) for the cases

studied in figures 7 and 8 in the plane z = H/2. Results are obtained for the same wall velocity, Uw =±0.02

lbu, the same finite extensibility parameter L2 = 104, and considering three different relaxation times in

the polymer equation (3), τP = 1000,2000,4000 lbu. The corresponding Deborah numbers depend on the

droplet radius, based on equation (52): De = 0.71,1.42,2.84 for 2R/H = 0.46 and De = 0.53,1.06,2.13 for

2R/H = 0.7.

.
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FIG. 10: Left Panel: we report the steady state orientation angle for a Newtonian droplet in a viscoelastic

matrix under steady shear as a function of the Capillary number Ca. For a given confinement ratio 2R/H =

0.46 and τP = 2000 lbu in equation (3), we have repeated the numerical simulations described in the left

panel of figure 7 for a finite extensibility parameter L2 = 10. We have used the definition of Deborah number

based on equation (52) and a shear independent matrix viscosity in equation (48) to compute Ca. These

choices are appropriate only in the Oldroyd-B limit (L2 ≫ 1), hence referred to as “Oldroyd-B definition”.

Right Panel: we report the same data of the left panel by changing the definition of Capillary number

in equation (48), based on the thinning effects analyzed in section (III), and changing the definition of

the Deborah number which is now computed according to equation (51). This is referred to as “FENE-P

definition”. For the non-Newtonian theoretical prediction, smaller angles are related to larger L2. Steady

state snapshots of the polymer feedback stress in equation (2) for some of these cases are reported in figure

11.
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(a) 2R/H=0.46, L2 = 104, τP = 2000 (b) 2R/H=0.46, L2 = 10, τP = 2000

FIG. 11: We report the steady state snapshots of the polymer feedback stress in equation (2) for the cases

studied in figure 10 in the plane z = H/2. Results are obtained for the same wall velocity, Uw = ±0.02

lbu, the same relaxation time τP = 2000 lbu in the polymer equation (3), and different finite extensibility

parameters L2 = 10 and L2 = 104. The corresponding Deborah numbers depend on the droplet radius, based

on equation (51). In both cases, the polymer viscosity is kept fixed to ηP = 0.6933 lbu, corresponding to

a polymer concentration of ηP/(ηP +ηB) = 0.4, but the case with L2 = 10 has thinning effects in regions

with large shears (see also section (III)).
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FIG. 12: We report the steady state deformation parameter D for a Newtonian droplet in a Newtonian matrix

under steady shear as a function of the associated Capillary number Ca. We start from the data reported

the right panel of figure 5 with 2R/H = 0.46. We vary the wall-to-wall gap H , by keeping the confinement

ratio fixed to 2R/H = 0.46. All the other parameters are kept fixed. The theoretical prediction of Shapira &

Haber for a confined Newtonian droplet [44] (referred to as “Newtonian confined”) is also reported.
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FIG. 13: We report the steady state deformation parameter D for a Newtonian droplet in a Newtonian matrix

under steady shear as a function of the associated Capillary number Ca. We start from the data reported the

right panel of figure 5 with 2R/H = 0.46. In a series of numerical simulations, we change the mobility µ in

(4)-(16) by keeping all the other parameters fixed (left panel). In another set of simulations, we change the

interaction parameter G in (6), thus obtaining various situations with different interface widths (right panel,

see also text for details). The theoretical prediction of Shapira & Haber for a confined Newtonian droplet

[44] (referred to as “Newtonian confined”) is also reported.
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FIG. 14: Sensitivity of the numerical results with respect to a change in the smoothing parameter ∆ for

the viscoelastic properties (19). We use the data analyzed in the left panel of figure 8 corresponding to

the Deborah number De = 1.42. We report the steady state orientation angle for a Newtonian droplet in

a viscoelastic matrix under steady shear as a function of the Capillary number Ca, and we change the

smoothing parameter ∆ for the viscoelastic properties (19) in the range 0.01 ≤ ∆ ≤ 2 lattice cells. We

also report the theoretical prediction of the “ellipsoidal” models [45, 46] (referred to as “non-Newtonian

confined (E)”).
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FIG. 15: Comparisons with the results of Onishi et al. [35] for the temporal evolution of Taylor’s deforma-

tion parameter and orientation angle at fixed Capillary number Ca = 0.26. Both viscoelastic and Newtonian

cases are considered (see text for details). To be noted that the Deborah number De is denoted with p in

[35]: we therefore decided to use p to better (visually) establish a link with the results of [35].
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FIG. 16: Comparisons with the results of Onishi et al. [35]. We plot the deformation parameter and the

orientation angle obtained at steady state for different Capillary numbers Ca. The numerical parameters are

chosen to be the same as those of Onishi et al. [35], see text for details. The solid lines and dashed lines are

drawn with the theoretical predictions. To be noted that the Deborah number De is denoted with p in [35]:

we therefore decided to use p to better (visually) establish a link with the results of [35].
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