
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ucme20

Download by: [University of California, San Diego] Date: 27 February 2016, At: 02:43

International Journal for Computational Methods in
Engineering Science and Mechanics

ISSN: 1550-2287 (Print) 1550-2295 (Online) Journal homepage: http://www.tandfonline.com/loi/ucme20

Homogenization of Periodic Masonry using Self-
Consistent Scheme and Finite Element Method

Nitin Kumar, Harish Lambadi, Manoj Pandey & Amirtham Rajagopal

To cite this article: Nitin Kumar, Harish Lambadi, Manoj Pandey & Amirtham Rajagopal
(2016): Homogenization of Periodic Masonry using Self-Consistent Scheme and Finite Element
Method, International Journal for Computational Methods in Engineering Science and
Mechanics, DOI: 10.1080/15502287.2015.1137091

To link to this article:  http://dx.doi.org/10.1080/15502287.2015.1137091

Accepted author version posted online: 28
Jan 2016.

Submit your article to this journal 

Article views: 7

View related articles 

View Crossmark data



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
1 

Homogenization of Periodic Masonry using Self-Consistent Scheme and Finite Element Method 

 

Nitin Kumar
1
, Harish Lambadi

2
, Manoj Pandey

3
, and Amirtham Rajagopal

4
 

1
Department of Civil Engineering, Louisiana State University, USA. 

2
Department of Applied Mechanics, Indian Institute of Technology Madras, India. 

3
Department of Mechanical Engineering, Indian Institute of Technology Madras, India. 

4
Department of Civil Engineering, Indian Institute of Technology Hyderabad, India. 

 (Received     , Revised     , Accepted     ) 

 

Abstract. Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in 

a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging 

task.  In this study, the homogenization theory for periodic media is implemented in a very generic manner 

to derive the anisotropic global behaviour of the masonry, through rigorous application of the 

homogenization theory in one step and through a full three dimensional behavior. We have considered the 

periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that 

represent the microstructure of the masonry wall exactly are considered for calibration and numerical 

application of the theory. 
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1. Introduction 

 

Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in 

a periodic manner. In particular, the inhomogeneity is due to the different mechanical properties 

of its constituents namely the mortar and the brick. The anisotropy is due to the different 

masonry patterns, since the mechanical response is affected by the geometrical arrangement of 

the constituents. Understanding the in-plane load deformation characteristics is important for 

designing and retrofitting of masonry structures. The homogenization theory for periodic media 

allows determining global behavior of the masonry to be obtained from the behavior of its 

constituents. 

The most detailed approach would be to make a discrete model by considering each brick and 

mortar joint in the masonry where linear and nonlinear material behavior of brick and mortar 

joint can be considered. Such an approach would be computationally expensive. The present 

study is on the composite behavior of masonry, in terms of determining averaged microscopic 

stress and strains so that the material can be assumed effectively as a homogeneous elastic 

continuum. Pande et al. (1989), Maier et al. (1991) and Pietruszczak and Niu (1992) introduced 

stepwise techniques for estimating the effective elastic properties of masonry. In these case 

studies the masonry was assumed to be a layered material.  The homogenization procedure was 

performed in several steps with the head joints and bed joints being introduced successively. 

Such a methodology introduces several errors and the results generally depend on the order of 

the successive steps (Geymonat et al. (1987)).  Also in these multi-step procedures, the 

geometrical arrangement is not fully taken into account, in the sense that, different bond patterns 
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may lead to exactly the same result. For instance, running bond and stack bond would result in 

same homogenized properties. Moreover in some of these works the thickness of the masonry is 

not taken in to account and masonry is considered to be infinitely thin two dimensional media 

under plane stress assumptions being valid (Maier et al. (1991)).  

Anthoine (1995), Urbanski et al. (1995) have applied the homogenization theory for periodic 

media rigorously to the basic cell of masonry to carry out a single step homogenization, with 

adequate boundary conditions and also considering exact geometry. As exact solutions are not 

possible, a semi analytical approach based on finite element method was used to obtain 

numerical solutions. A rigorous application of the homogenization theory for the non-linear 

behavior of the complex masonry basic cell implies solving the problem for all possible 

macroscopic loading histories, since the superposition principle does not apply anymore. Thus, 

for the complete determination of the homogenized constitutive law would require an infinite 

number of computations.  There has also been other computationally very intensive works on 

use of asymptotic homogenization methods with finite element method (see Cecchi and Rizzi 

(2001)). 

Many studies has been conducted on the homogenization of the masonry in recent years, Chang 

Yan (2003) conducted a study on a unified modeling approach for homogenization (forward) and 

de-homogenization (backward), applicable to unidirectional composite systems. Emphasis is 

placed on the uniqueness between the forward and the backward modeling processes. Mistler et 

al. (2007) focuses on the generalization of the homogenization procedure of the out-of-plane 

behavior of masonry, in such a way that the in-plane and out-of-plane characteristics of the 

homogeneous equivalent plate can be derived in one step. Zucchini and Lourenco (2007) 
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contributes to the understanding of masonry under compression, using a novel non-linear 

homogenization tool that includes the possibility of tensile and compressive progressive damage, 

both in the unit and mortar. Gitman et al. (2007) investigated the representative volume element 

for different stages of the material response, including pre- and post-peak loading regimes.  

Gang Wang et al. (2007) introduced the effective elastic stiffness for periodic masonry structures 

via Eigen strain homogenization. Klusemann et al. (2010) a made a comparative study on the 

homogenization methods for multi-phase elastic composites based on Eshelby theory (Eshelby 

(1975) and Eshelby (1957)) and Mori Tanaka theory (Mori and Tanaka (1973)). The work was 

based on evaluation of elastic properties methodology proposed by Nemat – Nasser et al. (1982) 

for periodically distributed inclusions for spherical and cylindrical geometries.  Elio Sacco 

(2009) presented a nonlinear homogenization procedure for periodic masonry, in which linear 

elastic constitutive relationship is considered for the blocks, while a new special nonlinear 

constitutive law is proposed for the mortar joints. This work has been extended by Daniela 

Addessi et al. (2010) to Cosserat model for periodic masonry, which accounts for the absolute 

size of the constituents and is derived by a rational homogenization procedure based on the 

transformation field analysis. A nonlinear homogenization technique to solve masonry structures 

problems is proposed by Quinteros et al. (2012) and describes the behaviour of brittle materials 

subjected to tension–compression cyclic loads based on the introduction of two damage variables 

and it assumes that the damage is due to the beginning and growth of cracks only in the mortar 

joints. Recently Norris et al. (2012) have proposed analytical formulation of three-dimensional 

dynamic homogenization for periodic elastic systems. Milani et al (2015) have estimated the in-

plane failure surfaces for masonry with joints of finite thickness by a method of cells type 
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approach. . Stefannou et al. (2015) provided a methodology for the estimation of overall strength 

of an in plane loaded masonry wall by accounting the failure of its bricks. A. Rekik et al. (2015) 

presented compressive behavior of Magnesia-Carbon mortar less joint using digital image 

correlation method. E. Reccia et al. (2014) proposed a procedure for evaluation of nonlinear 

behavior of masonry arch bridges. The 3D behavior of Venice trans lagoon masonry arch bridge 

subjected to train loads and pile foundation settlement is investigated. Alessandri et al. (2014) 

presented the advanced finite element homogenization strategy for failure analysis of double 

curvature masonry elements. D. Hu et al. (2013) using FE homogenization analysis established 

micro mechanics models of masonry basic cell to obtain homogenized Young’s modulus and 

Poisson ratio. Travalusci et al. (2014) presented mechanical behavior of brick masonry through 

equivalent continua. G. Milani et al. (2013) presented a methodology using homogenization 

approach for the evaluation of out of plane strength for quasi periodic masonry. Milani et al. 

(2013) proposed aa simplified kinematic procedure to obtain in plane elastic moduli and 

macroscopic masonry strength domains in the case of Herringbone masonry. Yuan et al. (2013) 

presented Fourier based incremental homogenization of coupled unilateral damage plasticity 

model for masonry structures.  Chettah et al. (2013) used transformation yield analysis for the 

multi scale analysis of cracking localization in masonry. G. Milani et al. (2013) presented a 

simple numerical model with second order effects for out of plane loaded masonry walls. 

Lucciano et al. (1997) presented micro mechanical approach in order to define the properties of a 

periodic masonry material. A. Gabor et al. (2006) presented a new finite element modelling 

approach for the analysis of behavior of unreinforced and FRP strengthened masonry walls 

subjected to a predominant shear load. R. Lucciano et al. (1998) introduced variational principles 
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for the overall properties of composite materials with periodic micro structures. Alfano et al. 

(2006) presented a new method to combine interface damage and friction in a cohesive zone 

model.  Marfia et al. (2001) developed a micromechanical investigation for the evaluation of 

the overall properties of the masonry material reinforced by innovative composite material. 

Sacco et al. (2012) presented a micro mechanical model which is able to couple damage 

evolution, the non-penetration conditions and the friction effect. Toti et al. (2013) presented 

modelling of detachment mechanisms of fiber reinforced polymers from quasi brittle materials.  

Fouchal et al. (2009) modelled the mechanical behavior of interfaces in masonry structures. 

Characteristics of the materials and interfaces are determined experimentally. Rekik et al. (2010) 

proposed a methodology for the identification of the representative crack length evolution in a 

multi-level interface model for quasi brittle masonry. Rekik et al. (2012) presented a 

homogenization method using asymptotic techniques and finite element method for the interface 

modelling in damaged masonry. Nasedkin (2015) et al have made a nonlinear homogenization 

procedure for the finite element analysis. 

The main objective of this study is to derive the global behavior of the masonry, through rigorous 

application of the homogenization theory in one step and through a full three dimensional 

behavior.  In this work, we propose to implement a one-step micromechanical homogenization 

technique based on the periodic Eigen strain method to model masonry structures. In this method 

the periodicity of the variables is imposed by Fourier series. The microstructural details of the 

bricks and mortar can be accurately described. Using a strain energy approach the effective 

properties of the masonry are derived. For validation, two different periodic unit cells models are 

considered and elastic properties are determined for a stress or strain prescribed analysis using 
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finite element method. The paper is organized as follows: Section 2 gives an overview of 

homogenization theory of periodic media. Section 3 gives the details of equivalent Eigen strain 

approach. Section 4 discusses the finite element implementation together with the results and 

discussion. In Section 5 summary and conclusions are presented. 

2. Homogenization theory for periodic media 

The theory of homogenization allows global behavior of the periodic media to be derived from 

the behavior of its constituents. In this section theory of homogenization is presented in a very 

generic way for the three dimensions by using basic mechanics and mathematics. Since the 

theory will be applied to the masonry, a half brick thick wall is considered for the analysis.  

2.1 Description of periodicity 

Consider a portion 𝛀 of a masonry wall (see in Fig. 1). It is a two dimensional periodic 

composite continuum, in which brick and mortar are arranged in the running bond. This 

periodicity can be characterized by a frame of reference (𝛼1,𝛼2, 𝛼3), where𝛼1, 𝛼2 and 𝛼3 are 

independent vectors of a basic cell Ω̂ such that property of masonry can be expressed in terms 

of the independent variables. The basic cell is considered such that the masonry domain can be 

generated by repeating the cells in 𝑒1 and 𝑒2 direction. Since finite element calculations are to 

be performed on the cell, it is preferred to choose cell with least volume and with symmetries. 

The choice of the cell depends on the arrangement of the brick and mortar for the masonry. For 

the half brick thick wall, a simplest basic cell is made up of one brick surrounded by half mortar 

joint, the masonry property in periodic direction can be express as 𝛼1𝛽1 + 𝛼2𝛽2, where 𝛼1, 𝛼2 

having the zero component of the 𝑒3;whereas 𝛼3 have only 𝑒3 i.e. thickness of basic cell Ω̂ 
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where 𝛽1 and 𝛽2 are integers. The reference frame for the half brick wall may be written as 𝛼1 = 2𝑙𝑒1                                            (1) 𝛼2 = 𝑑𝑙𝑒1 +  2𝑒2                                     (2) 𝛼3 = 2𝑤𝑒3                                           (3) 

where 2𝑙 is equal to the length of the brick plus the thickness of the head joint, 2𝑤 is thickness 

of masonry, 2 is equal to the height of the brick plus the thickness of the bed joint and d is the 

overlapping. 𝑑 = 0, gives stack bond and 𝑑 = 1 gives running bond. For the more complex 

geometry, masonry would require larger basic cell, i.e. cell involving more than one brick. 

In the boundary surface of the three-dimensional basic cell, two different regions may be 

separated (Fig. 1) as ∂Ω̂𝑖 which is internal to the wall (interfaces with adjacent cells) and ∂Ω̂𝒆 

which is external (lateral faces). ∂Ω̂𝑖 can be divided into three pairs of identical sides (due to 

periodicity in 𝑒1 and𝑒2) corresponding to each other through a translation along𝛼1, 𝛼2 or 𝛼1 − 𝛼2 (opposite sides), where two pairs (only𝛼1, 𝛼2) are of identical sides in the case of stack 

bond pattern. As there is no periodicity in 𝑒3 direction thus the two lateral faces of ∂Ω̂𝒆 are just 

opposite sides of the cell. 

Now, suppose the portion 𝛀  of masonry is subjected to a globally (macroscopically) 

homogeneous stress state (see in Fig. 2). A stress state is said to be globally or macroscopically 

homogeneous over a domain 𝛀 if all basic cells within 𝛀 undergo the same loading conditions. 

This can be achieved by applying biaxial principal stress state to the domain. A cell lying nears 

the boundary 𝜕𝛀 of the specimen is not subjected to the same loading as one lying in the centre. 

However, on account of the Saint-Venant principle, all cells lying far enough from the boundary 
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are subjected to the same loading conditions and therefore deform in the same way. In particular, 

two joined cells must still fit together in their common deformed state. Means that, condition (i) 

stress compatibility and condition (ii) strain compatibility must be satisfied on the internal 

boundary ∂Ω̂𝑖, whereas the external boundaries ∂Ω̂𝒆 remain stress free. 

If we are passing from a cell to the next cell, which is identical to first one, this means passing 

from a side to the opposite one in the same cell Ω̂, then the condition (i) becomes stress vectors 𝛔. 𝐧 are opposite on opposite sides of  ∂Ω̂𝑖 because external normal n are also opposite. Such a 

stress field 𝝈 is said to be periodic on  ∂Ω̂𝑖, whereas the external normal n and the stress vector 𝛔. 𝐧 are said to be anti-periodic on  ∂Ω̂𝑖. For the condition (ii), it is necessary that opposite sides 

can be superimposed in their deformed states without separation or overlapping. The 

displacement fields on two opposite sides must be a rigid displacement. Any strain periodic 

displacement field 𝑢 can be written in the following way 

𝑢𝑖(𝑥1, 𝑥2, 𝑥3) =  𝛿𝑖𝑗𝐸𝑗𝑘𝛿𝑘𝑙𝑥𝑙 + 𝑢𝑖𝑝(𝑥1, 𝑥2, 𝑥3)                     (4) 

where 𝑬 is a symmetric second-order tensor for the strain; 𝛿𝑖𝑗 is the Kronecker delta; 𝑢𝑝 is a 

periodic displacement field and 𝑥1, 𝑥2, 𝑥3 are the spatial parameters. In particular, the anti-

symmetric part of 𝑬 corresponds to a rigid rotation of the cell. And thus only the symmetric part 

of 𝑬 is considered (rigid displacements are disregarded) with the intuitive definition of the 

average of a quantity on the cell. The average of strain can be written as  

𝜀�̅�𝑗(𝑢) =  1|Ω̂| ∫ 𝜀𝑖𝑗(𝑢) 𝑑Ω̂|Ω̂|                      (5) 

where |Ω̂| stands for the volume of the basic cell. Similarly, for consistency of the equation- 
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with the stress. The average of the stress on the cell should be given by  

𝜎𝑖𝑗 = 1|Ω̂| ∫ 𝜎𝑖𝑗 𝑑Ω̂|Ω̂|                           (6) 

2.2 Homogenization 

Let us still consider the problem of a masonry specimen subjected to a macroscopically 

homogeneous stress state 𝚺. The above conditions (conditions (i) and (ii) in the Section 2.1) 

make it possible to study the problem within a single cell (unit cell) of the domain rather than on 

the whole domain. In order to find 𝝈 and 𝒖 everywhere in a cell, equilibrium conditions and 

constitutive relationships must be added so that the problem can be solved. The required equation 

can be written as  

div𝝈 = 0 𝑜𝑛 Ω̂ (No body forces)                           (7) 𝛔 = F(𝛆(𝐮)) (Complete constitutive law)              (8) 𝛔. 𝐧 = 𝟎 on ∂Ω̂𝑒             (9)                              �̅� =  𝚺    Where 𝚺 is given, for stress controlled loading      (10)                           

where the constitutive law F(𝛆(𝐮)) is a periodic function of the spatial variable 𝐱, and describes 

the behaviour of the different materials in the composite cell. A problem similar to Eq. (10) is 

obtained when replacing the stress controlled loading by a strain controlled one 

�̅� =  𝑬    Where 𝑬 is a given value for displacement and is controlled during loading   (11)              

In both cases, the resolution of Eqs. (10) and (11) are sometimes termed localization because the 

local (microscopic) fields 𝛔 and 𝛆(𝐮) are determined from the global (macroscopic) 

quantities 𝚺 or 𝑬. The averaging procedure relating these quantities can be written as 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
, 
S

an
 D

ie
g
o
] 

at
 0

2
:4

3
 2

7
 F

eb
ru

ar
y
 2

0
1
6
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
11 

𝝈: 𝜺(𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ = �̅�: �̅�(𝑢) =  𝚺: 𝑬                                         (12)     

where [⁻] defines the average of the quantity over the unit cell. Once we get 𝛔 and 𝒖, then the 

missing macroscopic quantity 𝚺 or 𝑬 can be determined through the average relation given in 

Eq. (12). Homogenization theory can only be applied when the loads are homogeneous in nature 

or the variation of the loads from one unit cell to another is very small. In practice, this is 

satisfied, if the size of the unit cell is very small in comparison to the structure and thus any two 

adjacent cells, will have almost the same position, and will therefore undergo almost the same 

loading.  

 

3. Computational Homogenization 

For the periodic masonry structure, a unit cell that represents a unit of periodicity in the 

horizontal and vertical directions is considered. The unit cell (Ω̂)  is a microstructured 

composite. Unlike the representative volume element (RVE) where in the inclusion distribution 

can only be accounted for in a statistically uniform manner, in case of a unit cell the 

microstructure can be described exactly and is shown in Fig. 3, it can be as per periodic unit cell 

1 or periodic unit cell 2 and it contains one complete brick unit and mortar joints between the 

bricks. The bricks are considered to be inclusions (L) and the mortar is treated as a matrix (𝑀). 

We denotes 𝑪L  and 𝑪𝑀  as the stiffness of inclusion and matrix, 𝑺L  and 𝑺𝑀  denotes the 

compliance of inclusion and matrix. 

3.1 Constitutive relation for unit cell 

Let a displacement field u0 be prescribed on the boundary of the periodic unit cell. The 
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displacement field induces a constant strain field E in a homogeneous material, i.e. 

u0 = x ∙ E                 (13) 

Because of the presence of the inclusions, the total strain ε within the unit cell is the addition of 

the constant strain ε0 prescribed and a disturbance strain field ε𝑑(x), which is unknown at 

present and to be determined later. Assuming both inclusions and matrix are linearly elastic, the 

total stress in inhomogeneous unit cell is a superposition of a homogenous state and a perturbed 

state as shown in Fig. 3 and is given by   

σ(x) = { 𝑪𝐿: [ε0 + ε𝑑(x)],   x∈𝐿𝑪𝑀: [ε0 + ε𝑑(x)],   x∈M            (14) 

To equivalently account for the presence of the second phase (inclusion), an equivalent Eigen 

strain field ε𝑖𝑗∗ , is introduced, which would produce a compatible deformation field without 

generating stresses. The stress consistency condition requires that  

𝜎𝑖𝑗(x) = { 𝐶𝑖𝑗𝑘𝑙L [εkl0 + εkld (x)] = 𝐶𝑖𝑗𝑘𝑙𝑀 [εkl0 + εkld (x) − εkl∗ (x)],   x ∈ 𝐿𝐶𝑖𝑗𝑘𝑙𝑀 [εkl0 + εkld (x)],                                                      x ∈ 𝑀    (15) 

Note that the Eigen strain is only prescribed on the inclusion in Eq. (15). We can extend the 

definition of the Eigen strain to the whole unit cell Ω̂ as 

ε𝑖𝑗∗ (x) = { ε𝑖𝑗∗ (x),    x ∈ L0,            x ∈ 𝑀                (16) 

So Eq. (27) can be rewritten in a unified fashion over Ω̂ 
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𝜎𝑖𝑗(x) = 𝐶𝑖𝑗𝑘𝑙𝑀 [ε𝑘𝑙0 + ε𝑘𝑙𝑑 (x) − ε𝑘𝑙∗ (x)]            x ∈ Ω̂        (17) 

Assuming no body force, the stresses satisfy the following equilibrium condition 

𝜎𝑖𝑗,𝑗(x) = 𝐶𝑖𝑗𝑘𝑙𝑀 [ε𝑘𝑙0 + ε𝑘𝑙𝑑 (x) − ε𝑘𝑙∗ (x)] ,𝑗         x ∈ Ω̂       (18) 

3.2 Eshelby self-consistent approach 

The periodic Eigen strain formulation (Nemat- Nasser et al. 1982) which is based on Ehselby’s 

Eigen strain method (Eshelby (1975) and Eshelby (1957)) for solids with periodic structures is 

has been adopted by Wang et al (2007) to obtain the disturbance strain and displacements. Since 

masonry has a periodic structure, the disturbance displacement field and Eigen strain field are 

also periodic. These periodic fields using the Fourier series as given in Wang et al. (2007) and 

find the equivalent properties...  Following Wang et al (2007), the disturbance strain field can be 

written as 

𝜀𝑖𝑗𝑑 = ∑ 𝑓L ∙ 𝑔0𝜉∈∧′ (𝜉)𝑔0(−𝜉)𝑔𝑖𝑗𝑚𝑛(𝜉)𝜀𝑚𝑛∗ = 𝐷𝑖𝑗𝑚𝑛L 𝜀𝑚𝑛∗   (19) 

and the Eshelby tensor for periodic unit cell is determined as  

𝐷𝑖𝑗𝑚𝑛𝐿 = ∑ 𝑓L ∙ 𝑔0𝜉∈∧′ (𝜉)𝑔0(−𝜉)𝑔𝑖𝑗𝑚𝑛(𝜉)    (20) 

Which plays the same role as the Eshelby tensor for an inclusion in an infinite space (Eshelby 

(1957) and Eshelby (1975)). However the tensor we obtained is for the unit cell, which is finite 

in size. The tensor conveys the microstructure details of the matrix and inclusion within the unit 

cell and it is represented by an infinite series.  
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The effective stiffness of the masonry can be obtained as given in Wang et al (2007) as  

𝑪ℎ𝑜𝑚 = 𝑪𝑀: [𝟏(4𝑆) − 𝑓𝐿(𝑨𝐿 − 𝑫𝐿)−1]           (21) 

Where 𝟏(4𝑆) fourth order identity tensor; and 𝑓L is the volume fraction of inclusions. 

Similarly, the effective compliance is exactly the inverse of the above. 

𝑺ℎ𝑜𝑚 = 𝑺𝑀: [𝟏(4𝑆) − 𝑓L(𝑨L − 𝑫𝐿)−1]                 (22) 

3.4 Example for the periodic Eigen strain model. 

For validation of the above Eigen strain model we consider a test example. Here in the brick and 

mortar are assumed to be isotropic. The Young’s modulus of the brick (𝐸𝑏) and the Poisson 

ratio (𝛾𝑏) are 11,500 Mpa and 0.15, respectively. The ratio of the Young’s moduli of the brick 

over the mortar 𝐸𝑏 𝐸𝑚⁄  ranges from 1 to 12 and Poisson ratio for the mortar (𝛾𝑚) is 0.23. The 

brick dimensions are 225mm (length)  50mm (height). As it is seen from Fig 4 the mortar 

stiffness and thickness greatly influence the overall properties of masonry. The values 

asymptotically decrease with increase in thickness of mortar. A comparison of the results is made 

with those obtained from finite element method. The results obtained from Unit cell 2 (as 

described in next section) are compared with the Eigen strain model and are found to match 

closely with the analytical results. 

4. Finite element Analysis for determining the homogenous properties 

In particular, the two unit cells are taken from a periodic basic cell extracted from a 

single leaf masonry wall in running bond, as shown in the Fig. 5. The assigned dimensions to 
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both the unit cell is such that volume fraction of the mortar and brick remains same. Brick and 

mortar are assumed to be isotropic: the Young’s moduli and Poisson ratios are 2 x 105
 MPa and 

0.15 for the brick, 2 x 10
4
 MPa and 0.15 for the mortar respectively. The brick dimensions are 

210 x 50 x 100 mm (length x height x thickness). Head and bed mortar joints are 10 mm. 

The study of elastic response of the model is done, for a generic loading condition as linear 

combination of the elastic responses for six elementary loading conditions. Both stress-

prescribed and displacement-prescribed analyses have been carried out in the present work. The 

finite element model which has been used in numerical analysis is given below in Fig. 4. 8 noded 

linear brick element with reduced integration is used for the simulation. The structured mesh was 

obtained by taking into account a maximum element size of 0.5 cm. thus the unit cell 1 and unit 

cell 2 have 5280 and 21120 elements respectively. 

4.1 Stress prescribed analysis 

In the stress-prescribed analysis, the overall compliance tensor is to be obtained by means of 

six numerical analysis i.e. XX-compression, YY-compression, ZZ-compression, XY-shear, 

XZ-shear, and YZ-shear. Periodic boundary conditions for all the six numerical analysis are 

applied as per the Section 2.2. An anisotropic mechanical behaviour is considered, thus stress 

strain relationship can be written in the following form 

[  
   
𝜀1̅𝜀2̅𝜀3̅𝜀4̅𝜀5̅𝜀6̅]  

    =   
[  
   
 𝑆1̅1 𝑆1̅2 𝑆1̅3 𝑆1̅4 𝑆1̅5 𝑆1̅6𝑆2̅1 𝑆2̅2 𝑆2̅3 𝑆2̅4 𝑆2̅5 𝑆2̅6𝑆3̅1 𝑆3̅2 𝑆3̅3 𝑆3̅4 𝑆3̅5 𝑆3̅6𝑆4̅1 𝑆4̅2 𝑆4̅3 𝑆4̅4 𝑆4̅5 𝑆4̅6𝑆5̅1 𝑆5̅2 𝑆5̅3 𝑆5̅4 𝑆5̅5 𝑆5̅6𝑆6̅1 𝑆6̅2 𝑆6̅3 𝑆6̅4 𝑆6̅5 𝑆6̅6]  

   
 
.
[  
   
𝜎1𝜎2𝜎3𝜎4𝜎5𝜎6]  

                       (23) 
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Where the superscript [⁻] means that the above written quantities refer to the average values 

within the considered unit cell. 

Compliance tensor is obtain by applying the six loading conditions one at a time, only a single 

column of the compliance tensor is obtain by applying one loading condition out of the six. By 

applying the average theorem to the unit cell and using the Eqs. (5)- (6), the following relation is 

obtained for the Compliance tensor and the average stress value in the unit cell 

𝑆�̅�𝑗 = �̅�𝑖�̅�𝑗                                         (24) 

𝜎𝑖 = 1|Ω̂| ∫ 𝜎𝑖 𝑑Ω̂|Ω̂| = 𝚺             (25) 

Where i, j =1, 2, 3, 4, 5, 6; and |Ω̂| stands for the volume of the unit cell and 𝚺 is the 

generic stress-prescribed component. The average value of strain within the unit cell is 

obtained as 

𝜀�̅� = ∑ �̅�𝑖(𝑒)𝑛𝑛𝑒=1             (26)  

Where n = number of elements in the unit cell (uniformly discretized); 𝜀�̅�(𝑒) = the average 

value of 𝑖𝑡ℎ strain component for generic element. The average value of stress within the unit 

cell is obtained as 

𝜎𝑗 = ∑ �̅�𝑗(𝑒)𝑛𝑛𝑒=1                   (27)  

Where 𝜎𝑗(𝑒) = the average value of 𝑗𝑡ℎ strain component for generic element. Hence, all six 

stress states are applied one by one to both the unit cell and the single columns of Compliance 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
, 
S

an
 D

ie
g
o
] 

at
 0

2
:4

3
 2

7
 F

eb
ru

ar
y
 2

0
1
6
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
17 

tensor is obtained by using the Eq. (51) and the corresponding coefficient of Compliance 

tensor are given below 

 

a) Unit Cell 1 

𝑆�̅�𝑗 = 10−6
[  
   8.37 −1.17 −0.99 0 0 0−1.17 13.01 −1.08 0 0 0−0.99 −1.08 7.16 0 0 00 0 0 15.88 0 00 0 0 0 8.17 00 0 0 0 0 15.9]  

    
 

b) Unit Cell 2 

𝑆�̅�𝑗 = 10−6
[  
   7.97 −1.11 −0.96 0 0 0−1.11 12.78 −1.06 0 0 0−0.96 −1.06 7.11 0 0 00 0 0 15.82 0 00 0 0 0 8.65 00 0 0 0 0 14.82]  

    
 

4.2 Displacement prescribed Analysis 

In the displacement-prescribed analysis, the aim is to find out stiffness tensor by means of six 

numerical analysis i.e. XX-compression, YY-compression, ZZ-compression, XY-shear, XZ-

shear, and YZ-shear. Periodic boundary conditions for the six numerical analysis are applied. 

An anisotropic mechanical behaviour is considered, thus stress strain relationship can be 

written in the following form 
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[  
   
𝜎1𝜎2𝜎3𝜎4𝜎5𝜎6]  

    =
[  
   
 𝐶1̅1 𝐶1̅2 𝐶1̅3 𝐶1̅4 𝐶1̅5 𝐶1̅6𝐶2̅1 𝐶2̅2 𝐶2̅3 𝐶2̅4 𝐶2̅5 𝐶2̅6𝐶3̅1 𝐶3̅2 𝐶3̅3 𝐶3̅4 𝐶3̅5 𝐶3̅6𝐶4̅2 𝐶4̅2 𝐶4̅3 𝐶4̅4 𝐶4̅5 𝐶4̅6𝐶5̅2 𝐶5̅2 𝐶5̅3 𝐶5̅4 𝐶5̅5 𝐶5̅6𝐶6̅2 𝐶6̅2 𝐶6̅3 𝐶6̅4 𝐶6̅5 𝐶6̅6]  

   
 
.
[  
   
𝜀1̅𝜀2̅𝜀3̅𝜀4̅𝜀5̅𝜀6̅]  

                 (28) 

Where the superscript [⁻] means that the above written quantities refer to the average values 

within the unit cell. Stiffness tensor is obtain by applying the six loading conditions one at a 

time, only a single column of the Stiffness tensor is obtain by applying one loading condition 

out of the six. By applying the average theorem to the unit cell and using the Eqs. (5)- (6), the 

following relation is obtained for the average strain value in the unit cell 

𝜀�̅� = 1|Ω̂| ∫ 𝜀𝑖 𝑑Ω̂|Ω̂| = 𝑬            (29) 

Where i =1, 2, 3, 4, 5, 6; and |Ω̂| stands for the volume of the unit cell and 𝑬 is the generic 

strain component, such that  𝜀�̅�. 𝑥 = 𝑢𝑖0 , Where 𝑢𝑖0  is a prescribed displacement on the 

boundary of the unit cell. The average theorem yields the following relation to obtain the 

stiffness tensor 

𝐶�̅�𝑗 = �̅�𝑖�̅�𝑗                (30) 

Where i, j =1, 2, 3, 4, 5, 6. The average value of stress within the unit cell is obtained as 

 

𝜎𝑖 = ∑ �̅�𝑖(𝑒)𝑛𝑛𝑒=1             (31)  
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Where n = number of element in the basic cell (uniformly discretized), 𝜎𝑖(𝑒) = the average 

value of 𝑖𝑡ℎ strain component for generic element. The average value of strain within the unit 

cell volume is obtained as: 

𝜀�̅� = ∑ �̅�𝑗(𝑒)𝑛𝑛𝑒=1              (32)  

Where 𝜀�̅�(𝑒) = the average value of 𝑗𝑡ℎ strain component for generic element. Hence, all six 

displacement states are applied one by one to both the unit cell and the single columns of 

Compliance tensor is obtained by using the Eq. (57) and the corresponding coefficient of 

Compliance tensor are given below 

a) Unit cell 1 

𝐶�̅�𝑗 = 106
[  
   0.14 0.01 0.02 0 0 00.01 0.08 0.01 0 0 00.02 0.01 0.17 0 0 00 0 0 0.07 0 00 0 0 0 0.14 00 0 0 0 0 0.07]  

    
b) Unit cell 2 

𝐶�̅�𝑗 = 106
[  
   0.14 0.01 0.02 0 0 00.01 0.08 0.01 0 0 00.02 0.01 0.17 0 0 00 0 0 0.07 0 00 0 0 0 0.13 00 0 0 0 0 0.07]  

    
 

4.3 Results and discussion 

To study the effects of mortar moduli on the homogenized equivalent material 

properties of the unit cells, various stiffness ratios are considered for the analysis. This allows 
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assessing the nonlinear behavior of the model for various ratios. The material properties of the 

unit are kept constant and the properties of the mortar are varied. In particular, for the unit, the 

Young’s modulus Eb is taken as 20GPa and the Poisson’s ratio is taken as 0.15. For the 

mortar, the Young’s modulus is varied to yield a ratio of Eb Em⁄  value ranging from 1 to 

1000. A graph has been plotted for different stiffness ratios between mortar and unit, to study 

the effects of mortar moduli on the homogenized equivalent material properties of the unit 

cells.  The results are shown in Fig. 6, Fig. 7 and Fig. 8 for a stress prescribed analysis and in 

Fig. 9 and Fig. 10 for a displacement prescribed analysis. 

To study the effect of different configurations of unit cells, two different basic cells of same 

masonry having the same volume of its constituent are considered for the analysis. By 

comparing the stiffness and compliances matrices of two basic cells it is observed that the 

values are all most similar and indicate that the unit cell approach can exactly represent the 

microstructure and similar equivalent properties are obtained in both cases. Moreover, the plot 

for stress and displacement prescribed analysis are also observed to be similar in both the 

cases. In particular it is observed that the equivalent material properties such as Young’s 

modulus, shear modulus and Poisson’s ratio decrease with increase in the ratio of Young’s 

modulus of unit and mortar (i.e. with decrease in Young’s modulus of mortar). 

It is observed that the equivalent Young’s modulus  𝐸𝑥 , 𝐸𝑦  of masonry decreases 

asymptotically and reaches a constant state with increase in the ratio of Young’s modulus of 

unit and mortar. The equivalent Young’s modulus 𝐸𝑧 (for out of plane direction) reduces 

rapidly till the stiffness ratio of 10 and subsequently becomes almost a constant. It is also 
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observed that the shear modulus of the masonry also decreases with increase in the ratio of 

shear moduli and reaches a constant value. The rate of shear modulus 𝐺𝑦𝑧 deceases when 

mortar strength gets exhausted and the softening rate of equivalent shear modulus 𝐺𝑦𝑧 is 

governed by the softening of shear modulus of the unit only. Finally, a similar behaviour is 

observed for the Poisson’s ratio, that equivalent Passion’s ratio also decreases with increase in 

the ratio of moduli of brick and mortar.  

5. Conclusions 

The homogenization theory for periodic media has been applied in a rigorous way for 

deriving the elastic characteristics of masonry that is in one step. In particular, the real 

geometry has been taken into account (bond pattern and finite thickness of the wall). The 

microstructural details of the bricks and mortar can be accurately described. Using a strain 

energy approach the effective properties of the masonry are derived. For validation two 

different periodic unit cells models are considered and elastic properties are determined for a 

stress or strain prescribed analysis using Finite element method. A one-step micromechanical 

homogenization technique based on the periodic Eigen strain method to model masonry 

structures available from literature has been implemented and the results are compared with 

finite element solution. The analytical solutions match very well with the numerical solution. 
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Fig. 1 Half brick thick masonry wall in running bond with frame of reference (left) and  

corresponding three dimension basic cell (right) 
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Fig. 2 Half brick thick masonry wall subjected to macroscopically homogeneous stress state 𝚺 
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Fig. 3 Chosen micro mechanical models indicating the Homogeneous and Perturbed State 

  

= + 

Masonry 
Unit cell 1 

Unit cell 2 

Homogeneous 

State 

Perturbed 

State 

𝐶𝑀  

𝐶𝑀  
𝐶𝑀  

𝐶𝑀  𝜀∗(𝑥) 

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
, 
S

an
 D

ie
g
o
] 

at
 0

2
:4

3
 2

7
 F

eb
ru

ar
y
 2

0
1
6
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Ratio between components of effective masonry properties and unit brick properties. 
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Fig. 5 Finite element model of the representative volume element (a) Unit cell 1 (b) Unit cell 2 
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(a) Unit cell 1 

 

 

 

 

 

 

 

(b) Unit cell 2 

Fig. 6. Variation of normalized Young’s Modulus with modular ratio (Stress prescribed 

analysis homogenized value for different stiffness ratios) a) for Unit cell 1 b) for unit cell 2. 
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(a)Unit cell 1 

 

 

 

 

 

 

 

(b)Unit cell 2 

Fig. 7. Variation of normalized Shear Modulus with modular ratio (Stress prescribed analysis 

homogenized value for different stiffness ratios) a) for Unit cell 1 b) for unit cell 2. 
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(a)Unit cell 1 

 

 

 

 

 

 

 

(b)Unit cell 2 

Fig. 8. Variation of normalized Poisons ratio with modular ratio (Stress prescribed analysis 

homogenized value for different stiffness ratios) a) for Unit cell 1 b) for unit cell 2. 
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(a) Unit Cell 1 

 

 

 

 

 

 

 

(b) Unit Cell 2 

Fig.9. Variation of normalized Young’s Modulus with modular ratio (Displacement 

prescribed analysis homogenized value for different stiffness ratios) a) for Unit cell 1 b) 

for Unit cell 2 
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(a) Unit Cell 1 

 

 

 

 

 

 

 

(b) Unit Cell 2 

Fig.10. Variation of normalized Shear Modulus with modular ratio ( Displacement 

prescribed analysis homogenized value for different stiffness ratios) a) for Unit cell 1 b) 

for unit cell 2. 
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