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Abstract—The problem of designing good Space-Time Block
Codes (STBCs) with low maximum-likelihood (ML) decoding
complexity has gathered much attention in the literature. All the
known low ML decoding complexity techniques utilize the same
approach of exploiting either the multigroup decodable or the
fast-decodable (conditionally multigroup decodable) structure of
a code. We refer to this well known technique of decoding STBCs
as Conditional ML (CML) decoding. In this paper we introduce a
new framework to construct ML decoders for STBCs based on
the Generalized Distributive Law (GDL) and the Factor-graph
based Sum-Product Algorithm. We say that an STBC is fast GDL
decodable if the order of GDL decoding complexity of the code
is strictly less than Mλ, where λ is the number of independent
symbols in the STBC, and M is the constellation size. We give
sufficient conditions for an STBC to admit fast GDL decoding,
and show that both multigroup and conditionally multigroup
decodable codes are fast GDL decodable. For any STBC, whether
fast GDL decodable or not, we show that the GDL decoding
complexity is strictly less than the CML decoding complexity. For
instance, for any STBC obtained from Cyclic Division Algebras
which is not multigroup or conditionally multigroup decodable,
the GDL decoder provides about 12 times reduction in complexity
compared to the CML decoder. Similarly, for the Golden code,
which is conditionally multigroup decodable, the GDL decoder
is only half as complex as the CML decoder.

I. INTRODUCTION

THE complexity with which a Space-Time Block Code

(STBC) can be maximum-likelihood (ML) decoded is an

important parameter from an implementation point of view.

Consequently, the problem of designing codes with high rate

and good error performance that admit low complexity ML

decoding is of much interest in the literature. This problem

was first attacked by constructing multigroup decodable codes

which have the property that the information symbols of the

code can be partitioned into several groups, and each group

of symbols can be ML decoded independent of other symbol

groups. Examples include the Orthogonal Designs [1]–[3]

and the higher rate multigroup decodable STBCs constructed

in [4]–[15]. In [16], it was shown that a new class of STBCs

called fast-decodable or conditionally multigroup decodable

codes allow reduced complexity decoding as well. These codes

contain a lower rate multigroup decodable STBC as a subcode,

and this property is leveraged to decode such STBCs with low
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complexity. Examples of fast-decodable codes available in the

literature include [17]–[24], the Silver code [25], [26] and the

Golden Code [27]–[29], [18]. All known low complexity ML

decoders have the same unified approach of exploiting either

the multigroup decodability or the conditional multigroup

decodability of a code. This method is well known and widely

used in the literature, and we will refer to it as Conditional

ML (CML) decoding.

The Generalized Distributive Law [30] and its equivalent,

factor graph based approach, known as the Sum-Product

Algorithm [31] are message-passing algorithms that efficiently

solve a class of computation problems called Marginalize

a Product Function (MPF) problems. The Generalized Dis-

tributive Law (GDL) includes as special cases the Viterbi’s

algorithm [32], the BCJR algorithm [33], the Fast-Fourier

Transform [34], the Turbo [35] and LDPC decoding algo-

rithms [36], [37]. In this paper, we first identify that the ML

decoding problem of any STBC is equivalent to the problem

of minimizing a multivariate, second degree real polynomial,

where the variables assume values from a finite signal set.

Using this observation we show that the ML decoding of any

STBC is an MPF problem, and hence, the GDL is a natural

choice for constructing low complexity ML decoders. The

contribution and organization of this paper are as follows.

• We introduce a new, GDL based framework to design ML

decoders for STBCs (Section III and Section IV-A). Since

the GDL is computationally efficient, this new framework

provides a rich scope for designing low complexity ML

decoders.

• We show that the GDL decoding complexity of any

code is strictly less than its CML decoding complexity

(Theorems 2 and 3, Section V-B). As an application of

our results, we show that for any STBC obtained from

Cyclic Division Algebras [38] which is not multigroup

or conditionally multigroup decodable, the GDL decoder

is approximately 12 times less complex than the CML

decoder. In case of the Golden code, which is condition-

ally multigroup decodable, the GDL decoder is roughly

half as complex as the CML decoder (Example G.4, Sec-

tion V-C). The GDL can lead to reductions in the order

of decoding complexity as well, when compared to the

CML decoder. We give explicit examples of two classes

of STBCs, the Toeplitz codes [39] and the Overlapped

Alamouti Codes [40], where the GDL decoder has a lower

complexity order than the CML decoder (Section V-B).

• We give sufficient conditions for a code to be fast GDL

decodable i.e., to admit low complexity GDL decod-
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ing, and show that both multigroup and conditionally

multigroup decodable codes are amenable to fast GDL

decoding (Section IV-B). Using the new GDL framework

we also provide tools to readily identify multigroup and

conditionally multigroup decodable codes (Section IV-B).

• When the information symbols of a code are encoded

using a PAM signal set, we show that the GDL algorithm

can exploit the structure of PAM to lead to further

reduction in decoding complexity (Section V-C).

A brief review of the GDL is given in Section II, and the

paper is concluded in Section VI.

Notations - Throughout the paper, matrices (vectors) are

denoted by bold, uppercase (lowercase) letters. The Hermitian

and Frobenius norm of a matrix X are denoted by X
H and

||X|| respectively. For a square matrix X, tr(X) denotes the

trace of X. Unless used as a subscript or to denote indices,

j represents
√
−1. The set of all real and complex numbers

are denoted by R and C, respectively. The m×m sized null

matrix is denoted by Om. For any set I, its complement in

the corresponding universal set is denoted by Ic.
II. A BRIEF REVIEW OF THE GENERALIZED

DISTRIBUTIVE LAW

In Section III we show that the ML decoding of STBCs is

an instance of a particular class of MPF problems: the MPF

problems on the min-sum semiring over the real numbers R.

We now recall the definition of this class of computational

problems, their GDL solution and some properties of the GDL

which we use in the later sections.

A. MPF problems on the min-sum semiring over R

Consider the union of the set of real numbers R and the

element infinity, ∞. With multiplication defined on this set as

the sum of two elements, and addition defined as the operation

of taking the minimum, we get the min-sum semiring over

R. The elements ∞ and 0 are the additive and multiplicative

identities respectively. The class of MPF problems defined on

this semiring are as follows [30]. Let x1, . . . ,xN be variables

that take values independently from finite sets A1, . . . ,AN

respectively. For any I = {i1, . . . , i|I|} ⊂ {1, . . . , N} with

i1 < i2 < · · · < i|I|, denote by AI the set Ai1 × · · · × Ai|I|
,

and denote by xI the variable list (xi1 , . . . ,xi|I|
). Let

S = {I1, dots, IL} be a set of L subsets of {1, . . . , N}, and

for each ℓ = 1, . . . , L, let αℓ : AIℓ
→ R be a given function

i.e., a table of values. Define functions β : A{1,...,N} → R and

βℓ : AIℓ
→ R, ℓ = 1, . . . , L, as follows:

β(x1, . . . ,xN ) =

L
∑

ℓ=1

αℓ(xIℓ
) and (1)

βℓ(xIℓ
) = min

xIc
ℓ
∈AIc

ℓ

β(x1, . . . ,xN ), (2)

where
∑

denotes addition of real numbers, and Icℓ is the

complement of Iℓ in {1, . . . , N}. The MPF problem on the

min-sum semiring over R is to compute the table of values

of the function βℓ for one or more ℓ = 1, . . . , L, given the

functions α1, . . . , αL. The function β is called the global

kernel and the function βℓ is called the xIℓ
-marginalization

of β or the objective function at Iℓ.

B. The Generalized Distributive Law

The GDL is a message-passing algorithm that operates on a

simple tree (an undirected, unweighted, connected1 graph with

no loops, cycles or multiple edges) G = (V , E). Each vertex

v ∈ V is associated with a function αv : AIv
→ R, for some

Iv ⊂ {1, . . . , N}. The function αv is called the local kernel

at v, and the variable list xIv
is called the local domain at v.

The tree G can be used to solve the MPF problem given in (2)

using the GDL if it satisfies the following three conditions:

C.1 for each ℓ = 1, . . . , L, there exists a v ∈ V such that

Iℓ = Iv ,

C.2 the global kernel β =
∑L

ℓ=1 αℓ =
∑

v∈V αv , and

C.3 the tree G satisfies the junction tree condition, i.e., for

each n = 1, . . . , N , the subgraph of G consisting of those

vertices whose local domains contain xn together with

the edges connecting these vertices is connected.

A tree G that satisfies all the three conditions above is said

to be a junction tree for the given MPF problem. In general

there is no unique junction tree for an MPF problem, and

different junction trees may lead to GDL algorithms with

varying complexities of implementation. Various methods to

construct/transform junction trees are given in [30], [31].

For any two neighboring vertices u and v, the directed

message from u to v is a table of values of a function

µu,v : AIu∩Iv
→ R. To send a message to v, the vertex u

forms the sum of its local kernel with the messages that it

has received from all its neighbors other than v, and then

marginalizes this sum with respect to the variables common

to u and v, i.e.,

µu,v(xIu∩Iv
) = min

xIu\Iv









αu(xIu
) +

∑

w adj u
w 6=v

µw,u(xIw∩Iu
)









,

where w adj u denotes that the vertices w and u are neighbors.

The state of the vertex u is a table of values of a function

σu : AIu
→ R. Initially σu is set to be equal to the local kernel

at u. During the GDL algorithm it is updated as the sum of

the local kernel at u with the messages that u has received

from all its neighbors, i.e.,

σu(xIu
) = αu(xIu

) +
∑

w adj u

µw,u(xIw∩Iu
).

In order to solve the all-vertex problem, i.e., to compute

the xIv
-marginalization of β for every v ∈ V , every vertex

is made to send a message to a neighbor when for the first

time it receives messages from all its other neighbors. So the

messages begin at the leaves of the junction tree, proceed

inwards into the tree and then travel back outwards. At the

end of this message-passing schedule, each vertex computes its

state, which is guaranteed to be equal to the objective function

at that vertex [30]. The objective function βℓ given in (2) is

thus equal to the state of any vertex v with Iv = Iℓ. To solve a

single-vertex problem, i.e., to compute the xIv
-marginalization

of β for a given vertex v, all the edges of the junction tree

1A graph is said to be connected if there exists a path between every pair
of nodes.
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are directed towards the root v. Every vertex except v sends

exactly one message to its neighbor along the unique path to

v when it has received messages from all its other neighbors.

The state at v is computed once v receives messages from all

its neighbors, and this equals the objective function at v.

The total number of additions and pairwise comparisons (for

implementing min) in the case of single-vertex problem for

any root vertex v is equal to

C(G) =
∑

u∈V

du|AIu
| −

∑

(w,u)∈E

|AIw∩Iu
|

=
∑

(w,u)∈E

(

|AIw
|+ |AIu

| − |AIw∩Iu
|
)

, (3)

where du is the degree of the vertex u. The all-vertex GDL

schedule can be implemented with complexity of at the most

4C(G). The complexity order for both single and all-vertex

problems is thus maxu∈V |AIu
|.

The messages passed during the GDL schedule can be

characterized precisely using the local kernels of G. In both

the single and the all-vertex GDL schedules, the directed

message from a vertex u to its neighbor v is the xIu∩Iv
-

marginalization of the sum of the local kernels of all the

vertices descending from u [31]. More formally, consider the

two disjoint trees Gu\v and Gv\u obtained from G by removing

the edge (u, v) ∈ E , such that Gu\v contains the vertex u and

Gv\u contains v. Then we have

µu,v(xIu∩Iv
) = min

x(Iu∩Iv)c

∑

w∈Gu\v

αw(xIw
).

The GDL algorithm capitalizes on the ‘factorization’ of β,

as given in (1), into L functions whose domains are smaller

than that of β itself, and hence are less complex to work with

compared to β. During the message-passing, partial sums of

these ‘smaller’ functions are calculated, and these are used

efficiently to compute the various xIℓ
-marginalizations of β.

III. THE GDL DECODING OF SPACE-TIME BLOCK CODES

In this section, we first introduce the notion of encoding

groups in STBCs obtained from linear designs, and then using

this concept, formulate the ML decoding of such STBCs as

an MPF problem over the min-sum semiring over R. We then

propose a junction tree to decode any STBC obtained from

linear designs using the GDL message-passing algorithm.

A. Channel model, designs and encoding groups

We consider the block fading MIMO channel with full

channel state information (CSI) at the receiver and no CSI

at the transmitter. For an nt × nr MIMO transmission, we

have

Y = HX+N, (4)

where X ∈ Cnt×T is the codeword matrix transmitted over

T channel uses, N ∈ Cnr×T is a complex white Gaussian

noise matrix whose entries are i.i.d. with zero mean and unit

variance, and H ∈ Cnr×nt is the channel matrix with arbitrary

probability distribution. An STBC C is a finite set of nt × T
complex matrices. We consider codes that are obtained from

designs S =
∑K

i=1 siAi, where s1, . . . , sK are real variables

or information symbols and Ai ∈ Cnt×T are the weight or

linear dispersion matrices [12], [41]. The rate of the resulting

code is K
2T complex symbols per channel use. Commonly in

the literature the real variables {si} are combined pairwise,

and the design is represented in terms of the resulting complex

information symbols. Examples include matrix designs whose

individual entries are complex linear combinations of complex

variables and their conjugates.

Let the symbols {s1, . . . , sK} be partitioned into N subsets,

called encoding groups, such that the symbols in different en-

coding groups are encoded independently and all the symbols

in each encoding group are encoded jointly. For n = 1, . . . , N ,

let xn be the vector consisting of the information symbols

belonging to the nth encoding group, and let xn be encoded

using a finite set An ⊂ Rλn , where λn is the number of real

symbols in the nth encoding group. The STBC obtained from

the design S and the signal sets A1, . . . ,AN is

C =

{

K
∑

i=1

siAi

∣

∣

∣

∣

xn ∈ An, n = 1, . . . , N

}

.

Example T.1: Consider the Toeplitz code [39] for nt = 2
antennas and T = 10 time slots. The number of real symbols

K = 18 and the design S =

[

s1 + js2 s3 + js4 s5 + js6 · · · s17 + js18 0
0 s1 + js2 s3 + js4 · · · s15 + js16 s17 + js18

]

.

Let the complex symbols s2n−1 + js2n, n = 1, . . . , 9,

be encoded using a HEX constellation [42] AHEX ⊂ R2.

This STBC has N = 9 encoding groups and the vectors xn,

n = 1, . . . , 9, are given by xn =
[

s2n−1 s2n
]T

. The number

of symbols per each encoding group is λn = 2 and the finite

sets An = AHEX for n = 1, . . . , 9.

A subset of real information symbols {s1, . . . , sK} that

are encoded together using an arbitrary joint signal set must

be decoded jointly by an ML decoder. The encoding groups

x1, . . . ,xN are the fundamental units of information variables

that any ML decoder will operate on. For a given STBC the

choice of the weight matrices {Ai}, encoding groups {xn}
and the signal sets {An} may not be unique. As illustrated in

the following example, a careful choice of the weight matrices

and signal sets can reduce the number of real symbols per

encoding group. This reduction in encoding complexity may

get reflected as a reduction in the ML decoding complexity at

the receiver.

Example G.1: Consider the Dayal-Varanasi version of the

Golden Code [28]:

S1 =

[

s1 + js2 γ(s5 + js6)
γ(s7 + js8) s3 + js4

]

,

where γ =
√−j and the symbol vectors

[

s1 + js2 s3 + js4
]T

and
[

s5 + js6 s7 + js8
]T

are

encoded independently using a constellation from the rotated
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lattice RZ[j]2 with

R =

[

c s
−s c

]

, c = cos

(

tan−1(2)

2

)

and

s = sin

(

tan−1(2)

2

)

.

A naive choice for the symbol groups is

x1 =
[

s1 s2 s3 s4
]T
, x2 =

[

s5 s6 s7 s8
]T
.

The corresponding weight matrices are

A1 =

[

1 0
0 0

]

,A2 =

[

j 0
0 0

]

,A3 =

[

0 0
0 1

]

,

A4 =

[

0 0
0 j

]

,A5 =

[

0 γ
0 0

]

,A6 =

[

0 jγ
0 0

]

,

A7 =

[

0 0
γ 0

]

and A8 =

[

0 0
jγ 0

]

.

It is shown in Example G.4 of Section V-C that this choice of

encoding groups leads to GDL based decoders with complex-

ity equal to that of brute-force ML decoding. A better choice

of weight matrices and encoding groups can be obtained by a

simple linear transformation of the symbols {si}. The resulting

design S2 is given in (5) at the top of the next page. The

symbols {si} of this new design are encoded independently

of each other using a PAM constellation. Both S1 and S2

give the same STBC though they are encoded using different

sets of weight matrices and constellations. The number of

encoding groups in S2 is 8, and each symbol si forms an

encoding group by itself, i.e., xn = [sn], n = 1, . . . , 8. The

corresponding weight matrices are

A1 =

[

c 0
0 −s

]

,A2 =

[

jc 0
0 −js

]

,A3 =

[

s 0
0 c

]

,

A4 =

[

js 0
0 jc

]

,A5 =

[

0 γc
−γs 0

]

,A6 =

[

0 jγc
−jγs 0

]

,

A7 =

[

0 γs
γc 0

]

and A8 =

[

0 jγs
jγc 0

]

.

This choice of encoding groups leads to reduced com-

plexity ML decoding as will be shown in Exam-

ple G.4.

B. The GDL Decoding of STBCs

Given the nr × T received matrix Y in (4), the ML de-

coder finds the set of variables {s1, . . . , sK} that minimizes

||Y −H
∑K

i=1 siAi||2. The ML decoding problem is to find

argmin tr

(

(Y −
K
∑

i=1

siHAi)(Y
H −

K
∑

i=1

siA
H
i H

H)

)

= argmin tr(YY
H ) +

K
∑

i=1

sitr(−HAiY
H −YA

H
i H

H)

+

K
∑

i=1

s2i tr(HAiA
H
i H

H)

+

K
∑

i=1

∑

j>i

sisjtr(H(AiA
H
j +AjA

H
i )HH)

= argmin f(s1, . . . , sK),

where tr(·) is the trace of a square matrix, and

f(s1, . . . , sK) =

K
∑

i=1

(siξi + s2i ξi,i) +
∑

j>i

sisjξi,j ,

ξi = tr(−HAiY
H −YA

H
i H

H),

ξi,j = tr(H(AiA
H
j +AjA

H
i )HH) for j > i, and

ξi,i = tr(HAiA
H
i H

H).

Since the matrices HAiY
H +YA

H
i H

H , HAiA
H
i H

H and

H(AiA
H
j +AjA

H
i )HH are Hermitian, the coefficients ξi,

ξi,i, ξi,j are all real.

The function f(s1, . . . , sK) is a second degree polynomial

over R. We now partition the terms of this polynomial accord-

ing to the encoding groups {xn}. The terms in f that consist

of variables only from the nth encoding group are summed

together into the function αn(xn). For n < m, those terms in

f that contain exactly one variable each from the nth and the

mth encoding groups are summed together to get the function

αn,m (xn,xm). For n = 1, . . . , N , let ψ(n) denote the set of

indices of those real symbols si that are in the nth encoding

group xn. Then for n = 1, . . . , N , we have

αn(xn) =
∑

i∈ψ(n)

(

siξi + s2i ξi,i
)

+
∑

j>i
i,j∈ψ(n)

sisjξi,j ,

and for all 1 ≤ n < m ≤ N we have

αn,m(xn,xm) =
∑

i∈ψ(n)
j∈ψ(m)

sisjξi,j . (6)

Define

β(x1, . . . ,xN ) =
N
∑

n=1

αn(xn) +
∑

m>n

αn,m(xn,xm). (7)

By definition, β(x1, . . . ,xN ) = f(s1, . . . , sK) and the ML

solution is (x̂1, . . . , x̂N ) = argminβ(x1, . . . ,xN ). If the ML

solution is unique then for each n = 1, . . . , N , we have

x̂n = argminβn(xn) where

βn(xn) = min
x{n}c∈A{n}c

β(x1, . . . ,xN ). (8)

The definition of β in (7) provides a natural ‘factorization’

of the global kernel in terms of the functions αn and αn,m
whose domains are much smaller than that of β, and hence
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S2 =

[

s1c+ s3s+ js2c+ js4s γ(s5c+ s7s+ js6c+ js8s)
γ(−s5s+ s7c− js6s+ js8c) −s1s+ s3c− js2s+ js4c

]

(5)

are easier to compute. From (2) and (8), we see that the ML

decoding of an STBC is an MPF problem, and hence it can be

solved using the GDL which efficiently processes the partial

sums of αn, αn,m to compute the xn-marginalizations of β.

The ML solution for xn can be obtained by first computing

the xn-marginalization of the global kernel β in (8) and then

finding the argument xn that minimizes βn.

When the ML solution is not unique an arbitration is

required after solving the MPF problem. To illustrate this,

consider the case N = 2 and say both (x̂1, x̂2) = (a1, a2)
and (x̂1, x̂2) = (b1,b2) are ML solutions. On solving the

MPF problem (8) we would obtain a table of values for

the functions β1(x1) and β2(x2). However, both a1 and

a2 minimize β1, and both b1 and b2 minimize β2. Thus

we only know that the ML solutions belong to the set

{(a1, a2), (a1,b2), (b1, a2), (b1,b2)}. In order to obtain the

ML solutions, the ML metric ||Y −HX||2 for each of these

tuples should be calculated. The following lemma says that

for an i.i.d. Rayleigh fading channel the ML solution of an

STBC is unique with probability 1, and hence this arbitration

step can be safely ignored.

Lemma 1: Let C be any STBC, and let the entries of the

channel matrix H be i.i.d. complex Gaussian random variables

with zero mean and unit variance. Then with probability 1 the

ML solution for the transmitted codeword for the channel (4)

is unique.

Proof: Let X1 and X2 be two distinct codewords. We

will first show that with probability (w.p.) 1 HX1 6= HX2,

and then show that given HX1 6= HX2 the probability that

both X1 and X2 are ML solutions is 0. Since X1 6= X2, there

exists a column of (X1 −X2) which is non-zero. Suppose the

jth column of (X1 −X2) is non-zero, the (1, j)th entry of the

matrix H(X1 −X2) is a complex Gaussian random variable

with zero mean and non-zero variance. Then the (1, j)th entry

of H(X1 −X2) is non-zero w.p. 1 and hence HX1 6= HX2

w.p. 1.

Now suppose X0 is the transmitted codeword and H is

such that HX1 6= HX2. Let vec(·) denote the vectorization

of a matrix. Then vec (H(X0 −X1)) 6= vec (H(X0 −X2)).
Both X1 and X2 will be ML solutions only if the

nrT -dimensional white Gaussian noise vector vec(N) be-

longs to the the set of points in CnrT that are equidis-

tant from vec (H(X0 −X1)) and vec (H(X0 −X2)). Since

vec (H(X0 −X1)) 6= vec (H(X0 −X2)), this set is a coset

of an (nrT − 1)-dimensional subspace of CnrT and the prob-

ability that vec(N) belongs to this hyperplane is 0. This

completes the proof.

A junction tree to solve the MPF problem (8) is shown in

Fig. 1. The tree can be viewed as consisting of three sections.

At the center of the tree is the core consisting of only the

(x1, . . . ,xN ) vertex. The core is surrounded by tier 1: a layer

of (xn,xm) vertices, each of which is connected to the core

vertex by a single edge. Outermost is tier 2: a layer of xn

1 2 N
x , x , . . . , x 

x  x

x

 x

1 2

x1 1x  x
3

x  x1

2x  x
3

2

2x  x

N

4

x  x
2 N3

x   x
4

3

x   x

x

N N−1

N

. . .

.

.
.

..
.

Fig. 1. A junction tree to decode an arbitrary STBC.

1 2 N
x , x , . . . , x 

x  x

x

1 2
2x  x

3

2

2x  x4

x  x
2 N

. . . x  x2 5

Fig. 2. Subtree formed by the vertices that contain x2.

vertices, each of which is connected to a vertex from tier 1

by a single edge. The local kernel at the core is set identically

equal to zero, the local kernels at the (xn,xm) and xn vertices

are set to αn,m and αn respectively. This tree satisfies all the

three conditions C.1-C.3 (given in Section II-B) for it to be a

junction tree for the MPF problem of ML decoding the STBC

C. Conditions C.1 and C.2 are easy to check. To illustrate

the satisfiability of C.3 (the junction tree condition), Fig. 2

shows the subtree formed by the vertices whose local domains

contain the symbol x2. Clearly this subtree is a connected

graph.

IV. FAST GDL DECODABLE SPACE-TIME BLOCK CODES

The junction tree of Fig. 1 has complexity order

max
v∈V

|AIv
| = |AI{1,...,N}

| = |C|,

which is equal to the complexity order of brute-force ML

decoding. There exist codes whose weight matrices {Ai} are

such that the function αn,m is identically equal to zero for all

channel realizations H for certain pairs (n,m). In such cases

a number of ‘factors’ in the MPF formulation in (7) can be
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dropped, and this can lead to junction trees whose order of

complexity is less than |C|.
Definition 1: If an STBC C admits GDL decoding with

complexity order less than |C| then we say that it is fast GDL

decodable.

A number of properties of the GDL decoding of an STBC

can be readily inferred from what are known as the moral

graph of an STBC and the core of a junction tree. In the

following subsection we introduce these notions, and in Sec-

tion IV-B we give some results on the fast GDL decodability

of STBCs based on these concepts.

A. The Moral Graph and the Core

The local kernels αn,m(xn,xm) arise from the cross terms

sisjξi,j (6), where ξi,j = tr(H(AiA
H
j +AjA

H
i )HH). It is

well known [9]–[11] that a necessary and sufficient condition

for ξi,j = 0 for any channel realization H is that Ai and Aj

be Hurwitz-Radon orthogonal, i.e., AiA
H
j +AjA

H
i = Ont

.

We say that two variables xn and xm interfere with each

other if there exists a symbol si in the encoding group

xn and a symbol sj in the encoding group xm such that

AiA
H
j +AjA

H
i 6= Ont

. If no such symbols si, sj exist we

say that xn and xm are non-interfering. The local kernel

αn,m(xn,xm) is identically zero (and hence can be removed

in the MPF formulation) for all channel realizations if and

only if xn and xm are non-interfering. The moral graph [30]

of the MPF formulation of ML decoding an STBC is a simple2

graph whose vertices are the variables xn, n = 1, . . . , N , and

in which an edge exists between two vertices if and only if

the two corresponding variables are interfering.

In the MPF formulation in (7) the kernels αn(xn) arise

from the terms ξisi and ξi,is
2
i . Recall that ξi,i = ||HAi||2F

and hence is non-zero with probability 1. Thus, the kernels

αn, n = 1, . . . , N , are almost always non-zero and can not

be removed from the MPF formulation. On the other hand, as

we saw in the previous paragraph, some of the cross terms

αn,m can be made identically zero. This information about

the cross terms is embedded in the moral graph of the code.

Thus, all the information required to construct a junction tree

for a code is contained in its moral graph. We now show how

the problem of constructing a junction tree can be reduced to

the construction of what we refer to as the core. Let T be a

simple tree such that each vertex v of T is associated with a

variable list xIv
(for some Iv ⊂ {1, . . . , N}) and the kernel

αv(x mathcalIv ) = 0.

Definition 2: The tree T is said to be a core for the STBC

C if (i) it satisfies the junction tree condition (condition C.3 of

Section II-B), and (ii) for every pair of neighboring vertices

(xn,xm) in the moral graph, there exists a vertex v of T such

that {xn,xm} ⊆ xIv
.

Given a core T , a junction tree for the STBC can be

constructed as follows. For every pair (xn,xm) of neighboring

vertices in the moral graph, choose a vertex v of T such that

{xn,xm} ⊆ xIv
. If Iv = {n,m} then set the local kernel

at v to αn,m, else attach a vertex (xn,xm) with local kernel

2A graph is said to be simple if it is undirected, unweighted with no loops
or multiple edges.

x x

x x

1 2

3 4

x
5

Fig. 3. Moral graph of Example 1.

x x x

x x x

1 2 3

2 3 4

Fig. 4. The core of Example 1.

αn,m to v using a single edge. The set of (xn,xm) vertices

thus added to T form tier 1. Now, for each n = 1, . . . , N ,

find a vertex of tier 1 that contains the variable xn and attach

the vertex (xn) with the local kernel αn to that vertex using

a single edge. If there exists no tier 1 vertex that contains

xn then connect the (xn) vertex with local kernel αn to any

vertex of tier 1 using a single edge. The set of (xn) vertices

thus added form tier 2. It is straightforward to show that the

graph thus obtained is a junction tree for the STBC C.

Example 1: Consider a code with N = 5
encoding groups and moral graph as shown in

Fig. 3. There are five pairs of interfering symbols

{(x1,x2), (x1,x3), (x2,x3), (x2,x4), (x3,x4)}. A core

for this code is shown in Fig. 4. The core together with the

tier 1 vertices is shown in Fig. 5. Note that the (x2,x3) vertex

of tier 1 could have been connected to the bottom vertex

of the core as well. The complete junction tree is shown in

Fig. 6. The vertex (x5) has been connected to an arbitrarily

chosen tier 1 vertex. The complexity order of this junction

tree is max{|A{1,2,3}|, |A{2,3,4}|} < |C|, and hence this code

is fast GDL decodable.

Given the moral graph of an STBC, the problem of con-

structing a junction tree is equivalent to the problem of

constructing a core. There is no unique core for a given

STBC/moral graph, and different cores can lead to junction

trees with different complexities. For instance, the graph

with the single vertex (x1,x2, . . . ,xN ) can always be used

as a core irrespective of the structure of the moral graph

(see Fig. 1). However this would lead to junction trees with

complexity order |A{1,...,N}| = |C|, which is equal to the order

of brute-force ML decoding complexity.

When the moral graph is not edgeless, i.e., when there is

at least one pair of interfering symbols, the complexity order

of the junction tree is determined by the core vertices. Since

every pair of interfering vertices must be contained within

some ‘larger’ vertex of the core, the vertex v of the junction

tree with the largest |AIv
| belongs to the core. Thus, given

an STBC/moral graph, the problem of finding an efficient ML

decoder is equivalent to one of constructing a core with the

least complexity.



7

x x x

x x x

x x x x

x x

x x

x x

1 2 3

2 3 4

1 2

2 3

1

2 4 3 4

3

Fig. 5. The core T of Example 1 with tier 1 vertices.
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x x x
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2 3 4

1 2

2 3

1

2 4 3 4
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x x

x x
x

1

2

3

4
5

Fig. 6. The junction tree of Example 1.

When the moral graph is edgeless, i.e., when none of the

symbols are interfering with each other, any tree G with N
vertices can be transformed into a junction tree by labeling the

N vertices with the local domains (xn) and the local kernels

αn, n = 1, . . . , N respectively. Since there are no cross terms

αn,m in the MPF formulation, the ML metric

f(s1, . . . , sK) =

N
∑

n=1

αn(xn) = β.

Since every variable xn appears in exactly one of the vertices

of G, the tree G satisfies the junction tree condition as well.

Hence G is a junction tree for the given STBC. The complexity

order of this junction tree is maxNn=1 |An| < |C|. Thus, STBCs

with edgeless moral graphs are fast GDL decodable.

Example 2: All Orthogonal Designs [1] have edgeless

moral graphs. For example, consider the Alamouti Code

[

s1 + js2 −s3 + js4
s3 + js4 s1 − js2

]

,

where the real symbols s1, . . . , s4 are encoded independently

using a PAM constellation. This code has N = 4 encoding

groups xn = [sn], n = 1, . . . , 4. The moral graph, see Fig. 7,

is edgeless. A junction tree for the Alamouti code is shown

in Fig. 8.

x x

x x

1 2

3 4

Fig. 7. Moral graph of the Alamouti Code.

x x

x x

1 2

3 4

Fig. 8. A junction tree for the Alamouti Code.

B. Fast GDL Decodable STBCs

We now give a sufficient condition for a code to admit fast

GDL decoding.

Lemma 2: A code admits fast GDL decoding if its moral

graph is not complete3.

Proof: We prove the claim by constructing a core for such

a code C with complexity order less than |C|. Since the moral

graph is not complete, there exist a pair of variables, say x1

and x2, that are not connected by an edge in the moral graph.

Consider the tree shown in Fig. 9. There are (N − 1) variables

in either of the vertices of this tree. It is straightforward to

show that this tree satisfies both the conditions of Definition 2

to be a core for the given STBC. The order of GDL decoding

complexity with this core is

max{|A{1,3,4,...,N}|, |A{2,3,...,N}|} < |A{1,2,3,...,N}| = |C|,
and hence this code is fast GDL decodable.

Example T.2: Continuing with Example T.1, the moral

graph of the 2× 10 Toeplitz code is given in Fig 10. The

moral graph is not complete and hence this code admits fast

GDL decoding.

Example G.2: We now continue with Example G.1. First

consider the naive choice of encoding groups with just two

symbol groups. Since A1A
H
5 +A5A

H
1 6= O2, the two symbol

groups interfere and hence the moral graph is complete.

Now consider the second choice of weight matrices and

encoding groups with 8 symbol groups. The moral graph,

shown in Fig. 11, is not complete and hence with this

choice of weight matrices the Golden code admits fast GDL

decoding.

Multigroup Decodable STBCs: Let G be a junction tree

for an STBC C, and let there be (g − 1) edges (uk, vk),
k = 1, . . . , (g − 1), of G such that Iuk

∩ Ivk = φ, the empty

set. Let G1, . . . ,Gg , be the g disjoint subtrees of G obtained

by removing these (g − 1) edges. Also, denote by x(Gk) the

union of the set of variables that appear in the local domains

of Gk.

Theorem 1: For G, G1, . . . ,Gg described as above, we have:

1) x(G1), . . . ,x(Gg) is a partition of {x1, . . . ,xN},

3A simple graph is said to be complete if every pair of distinct vertices is
connected by an edge.
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x  x  x . . .  x x  x  x . . .  x
1 3 4 N 4 N2 3

Fig. 9. The core used in the proof of Lemma 2.

x x x x1 2 3
9

. . .

Fig. 10. Moral graph of the Toeplitz code in Example T.1.

2) for k = 1, . . . , g, the tree Gk satisfies the junction tree

condition, and

3) for each k = 1, . . . , g, the ML solution of x(Gk)
can be obtained by running the GDL message-passing

algorithm on Gk.

Proof: The proof is given in Appendix A.

We say that G1, . . . ,Gg is a partition of the junction tree

G, and that the STBC is GDL decodable using these g
independent junction trees. Each subtree Gk is composed only

of a specific subset x(Gk) of variables, hence for any vertex

vk of Gk we have Ivk ( {1, . . . , N}. Thus, the complexity

order of G is

max
v∈G

|AIv
| = max

k∈{1,...,g}
max
vk∈G

|AIvk
| < |C|.

Thus, codes whose junction trees can be partitioned into two

or more subtrees are fast GDL decodable.

Example 3: Consider the junction tree of Example 1 shown

in Fig. 6. Among the 11 edges of this tree, the edge

(u, v) between the nodes (x2,x4) and (x5) is the only one

such that Iu ∩ Iv = φ. Thus, in this case g = 2 and the

two subtrees are shown in Fig. 12. The sets of variables

x(G1) = {x1,x2,x3,x4} and x(G2) = {x5}. The ML solu-

tions of x(G1) and x(G2) can be obtained by running the

GDL independently on G1 and G2 respectively. Note that the

corresponding moral graph, shown in Fig. 3, is a disjoint union

of g = 2 subgraphs. Further, the first subgraph is composed

of variables from the set x(G1) and the second from the set

x(G2).
Example 4: All the three edges of the junction tree of

the Alamouti code, shown in Fig. 8, satisfy the condi-

tion Iu ∩ Iv = φ. In this case g = 4, and the kth subtree

Gk consists of a single vertex (xk) with the local kernel

αk(xk). Note that the moral graph of this code, shown in

Fig. 7, is disjoint union of g = 4 subgraphs, and the kth

subgraph of the moral graph is composed of variables from

x(Gk).
We will see in Lemmas 3 and 4 that the property of a

junction tree to be partitioned into several smaller junction

trees is related to multigroup decodability of a code, and as

illustrated in the previous two examples, this property can be

readily inferred from the moral graph. An STBC is said to

be multigroup or g-group decodable [9]–[11] if {x1, . . . ,xN}
can be partitioned into g subsets such that each subset of

symbols can be ML decoded independently of other subsets.

If the code generated by the kth group of symbols is Ck, then

the kth symbol group is ML decoded by the CML algorithm

x x x

x x x x

x
1 3 2 4

5 7 6 8

Fig. 11. Moral graph of the Golden Code.

x x x

x x x

x x x x

x x

x x

x x

1 2 3

2 3 4

1 2

2 3

1

2 4 3 4

3

x x

x
x

1

2

3

4

x
5

Fig. 12. The subtrees G1 and G2 of Example 3.

independent of other symbol groups as

arg min
Xk∈Ck

||Y −HXk||2F .

Thus, in order to decode C, the g subcodes C1, . . . , Cg are

decoded independently by the CML decoder. A necessary and

sufficient condition for g-group decodability is that the weight

matrices of the variables belonging to different subsets be

Hurwitz-Radon orthogonal [9]–[11]. In terms of the GDL for-

mulation, this translates to the variables belonging to different

subsets being non-interfering.

Lemma 3: An STBC is g-group decodable if and only if its

moral graph is a disjoint union of g subgraphs.

Proof: The proof is straight forward.

Using this lemma we see that any code with the moral graph

of Fig. 3 is 2-group decodable, and that the Alamouti code is

4-group decodable.

Lemma 4: An STBC can be GDL decoded using a disjoint

of union g junction trees if and only if it is g-group decodable.

Proof: Suppose an STBC has a junction tree that can

be be partitioned into g subtrees G1, . . . ,Gg . From Theo-

rem 1, x(G1), . . . ,x(Gg) form a partition of the variables

{x1, . . . ,xN}. Consider any two variables xn and xm be-

longing to distinct partitions. From Theorem 1, there exists

no vertex in G whose local domain contains both xn and xm.

Thus, the global kernel does not involve the function αn,m, and

hence xn and xm are non-interfering. We have thus shown that

the variables belonging to the g subsets x(G1), . . . ,x(Gg) are

mutually non-interfering. Hence, the moral graph is a disjoint

union of g-subgraphs, and from Lemma 3, the code is g-group

decodable.
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Suppose an STBC is g-group decodable. Then from

Lemma 3, its moral graph is a disjoint union of g subgraphs.

For k = 1, . . . , g, let Γk ⊂ {1, . . . , N} be the set of indices of

the variables in the kth disjoint subgraph of the moral graph.

One can then construct the kth disjoint subtree Gk of the

junction tree G similar to the construction in Section III-B (see

Fig. 1). The central node of Gk consists of all the variables

xn, n ∈ Γk. The domains (xn,xm) and xn, for n,m ∈ Γk
are then attached in two tiers, similar to the tree in Fig. 1.

The junction tree G is obtained by arbitrarily connecting these

g subtrees using (g − 1) edges. It is straightforward to see

that the resulting tree is a junction tree for the code, and

that G1, . . . ,Gg form a partition of G. Hence from Theorem 1,

the code can be GDL decoded using a partition of g disjoint

junction trees.

When a code is g-group decodable, the kth subcode is

generated by the variables associated with the kth disjoint

subgraph of the moral graph. A junction tree partition for this

code can be obtained by constructing g junction trees, one

each for the g subgraphs of the moral graph.

Fast-Decodable STBCs: An STBC is said to be fast-

decodable [16] or conditionally g-group decodable [24] if

there exists a subset Γ ( {1, . . . , N}, such that the code

generated by the variables xn, n ∈ Γ is g-group decodable.

The CML decoding algorithm to decode such a code proceeds

as follows. For each of the |AΓc | values that the variables

xΓc jointly assume, the conditionally optimal values of the

remaining variables xn, n ∈ Γ can be found out via g-

group decoding. Note that each of these g subcodes can

themselves be fast-decodable (such codes are said to be fast-

group-decodable [43]). From among these |AΓc | values of

x{1,...,N}, the realization of x{1,...,N} that minimizes the ML

metric ||Y − HX||2F is found out in a brute-force way. Let

the g subcodes correspond to the variables with index sets

Γ1, . . . ,Γg and let the complexity order of decoding the kth

subcode using CML be Ok. For each k = 1, . . . , g, the

complexity order Ok ≤ |AΓk
|. The complexity order of the

CML algorithm is then

|AΓc | max
k∈{1,...,g}

Ok ≤ |AΓc | max
k∈{1,...,g}

|AΓk
| < |C|.

Lemma 5: An STBC is conditionally g-group decodable if

and only if there exists a Γ ( {1, . . . , N} such that the moral

graph of the reduced set of variables {xn|n ∈ Γ} is a disjoint

union of g subgraphs.

Proof: Follows immediately from Lemma 3.

From Lemmas 2 and 5 we see that conditionally g-group

ML decodable codes admit fast GDL decoding.

Example T.3: Consider the Toeplitz code of Example T.2.

With Γ = {1, . . . , 9} \ {5} we see that the moral graph gen-

erated by xΓ is a disjoint union of 2 subgraphs (see Fig. 13).

The first subgraph consists of the symbols x1, . . . ,x4 and the

second subgraph consists of x6, . . . ,x9. Hence this code is

conditionally 2-group decodable. Note that the code generated

by the variables x1, . . . ,x4 is itself conditionally 2-group de-

codable where the two conditional groups are {x1} and {x4}.

Similarly the code generated by x6, . . . ,x9 is conditionally 2-

group decodable as well.

x x x

x x x x

1 2 3 x4

6 7 8 9

Fig. 13. Toeplitz code: Moral graph of the reduced set of variables xΓ.

x x x1 x43 2

Fig. 14. Golden code: Moral graph of the reduced set of variables xΓ.

Example G.3: Consider the moral graph of the Golden code

given in Fig. 11. For Γ = {1, 2, 3, 4}, the moral graph gener-

ated by the variables {x1, . . . ,x4}, shown in Fig 14, is a dis-

joint union of 2 subgraphs. The first subgraph consists of vari-

ables x1,x3 and the second subgraph consists of the variables

x2,x4. Thus the Golden code is conditionally 2-group decod-

able. This fast-decodability property of the Golden code was

first reported in [18], [29].

V. GDL IS FASTER THAN CONDITIONAL ML DECODING

In this section we show that the number of computations

involved in the GDL decoding of any STBC is less than that of

CML decoding. As a first step towards this, we show that ML

solutions can be obtained using only the single-vertex GDL

algorithm followed by a ‘traceback’, rather than the more com-

plex all-vertex GDL. This reduction is possible since we are

only interested in the argmin of the objective functions at the

various vertices, and not the objective functions themselves.

A. Traceback

Let G be any junction tree for the STBC C with the encoding

groups x1, . . . ,xN . We will now show that the ML solutions

of {xn} can be obtained by running the single-vertex GDL

with any vertex v0 as the root, followed by a traceback step.

This is similar to the Viterbi’s algorithm [32], where the actual

ML metric of only the last state of the trellis is calculated and

then the ML path is traced back to the first state.

Consider the single-vertex GDL message-passing schedule

with v0 as the root. Every vertex u 6= v sends a message to its

neighbor p(u) on the unique path from u to v0, when it has

received messages from all its other neighbors. While doing

so it computes its partial state

λu(xIu
) = αu(xIu

) +
∑

w adj u
w 6=p(u)

µw,u(xIw∩Iu
),

and sends the message µu,p(u) as

µu,p(u)(xIu∩Ip(u)
) = min

xIu\Ip(u)

λu(xIu
).

Note that this partial state λu is different from the state σu
of u at the end of the all-vertex GDL algorithm. These two
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functions are related as

σu(xIu
) = λu(xIu

) + µp(u),u(xIp(u)∩Iu
),

where µp(u),u is the message from p(u) to u during the all-

vertex GDL. However, the message µp(u),u is not generated

during the single-vertex schedule. At the end of the single-

vertex GDL, v0 calculates its state σv0 , which is equal to

the xIv0
-marginalization of β. The ML solution to xIv0

is

obtained as x̂Iv0
= argminσv0(xIv0

).
Let u be any vertex such that the ML solution of the

local domain of p(u), i.e., x̂Ip(u)
is known. Partition xIu

into

xA(u) = xIu\Ip(u)
and xB(u) = xIu∩Ip(u)

. Note that both λu
and σu are functions of both xA(u) and xB(u). Since the ML

solution at p(u) is known, the value x̂B(u) that minimizes

σu(xA(u)),xB(u)) is known. Thus, the ML solution of xA(u)

is

x̂A(u) = arg min
xA(u)

σu(xA(u), x̂B(u))

= arg min
xA(u)

λu(xA(u), x̂B(u)) + µp(u),u(x̂B(u))

= arg min
xA(u)

λu(xA(u), x̂B(u)).

Hence, the ML solution at u can be obtained merely from

λu and the ML solution at p(u). This is possible since we

are only interested in argmin σu rather than σu itself, and as

shown above, argminσu can be obtained from λu without

calculating σu explicitly. At the end of the single-vertex

schedule, the solution at v0 is first found, followed by all its

neighbors, and then the neighbors of these vertices, and so on,

until the ML solution of all the variables xn, n = 1, . . . , N ,

are obtained. Since the all-vertex GDL is about four times as

complex as the single-vertex GDL, this traceback algorithm

provides a considerable reduction in complexity.

Example 5: The direction of messages for the single-vertex

GDL problem on the subgraph G1 of Example 3 with root

at the vertex (x1,x3) is shown in Fig. 15. In this ex-

ample, p(b) = p(c) = a, p(d) = p(e) = p(g) = c, p(f) = e,
p(h) = p(i) = g, p(u) = h and p(v) = i. At the end of the

GDL schedule the state at the vertex a is equal to the

(x1,x3)-marginalization of the global kernel. The optimal

(x̂1, x̂3) is found out from σa using (|A1||A3| − 1) pairwise

comparisons. Since p(c) = a, using the knowledge of x̂1, x̂3

and λc, the value of x̂2 can then be found out. This step

involves (|A2| − 1) comparisons. Finally, given x̂2, x̂3 and

λg the value of x̂4 can be obtained using (|A4| − 1) com-

parisons. If |A1| = · · · = |A4| = q, then finding the optimal

xn, n = 1, . . . , 4, using the single-vertex GDL and traceback

involves 7q3 + 4q2 + 2q − 3 operations. On the other hand,

using the all-vertex GDL would cost 28q3 + 12q2 + 4q − 1
operations. Comparing the leading order terms, we see that,

traceback has enabled us to reduce the complexity by about 4
times.

B. GDL is faster than Conditional ML decoding

Before stating the results of this subsection, we define

the GDL and conditional ML decoding complexities of an

STBC, denoted by CGDL(C) and CCML(C) respectively. The
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x x x x

x x

x x

x x

1 2 3
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1 2
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2 4 3 4
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e
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h i

u
v

Fig. 15. Direction of messages for the single-vertex GDL for root vertex a.

GDL algorithm varies with the choice of the weight matri-

ces, encoding groups and the junction tree. By CGDL(C) is

meant the minimum among the complexities (the number of

mathematical operations: multiplications, additions and com-

parisons) of all possible GDL algorithms that can be used to

solve the ML decoding problem of C. Similarly for the CML

algorithm there can be more than one choice of reduced set

of variables xΓ which generate a multigroup decodable code.

The complexity of conditional ML decoding then varies with

this choice. By CCML(C) is meant the minimum among all

possible conditional ML decoding complexities of code C. By

OGDL(C) and OCML(C) we denote the order of CGDL(C) and

CCML(C) in terms of the signal set/constellation size.

Order of decoding complexity:

We now show that the order of GDL complexity of any

code is upper bounded by the order its CML complexity.

Theorem 2: For any code C, OGDL(C) ≤ OCML(C).
Proof: Proof is given in Appendix B.

The following example shows that there exist codes for

which the GDL complexity order is strictly less. Thus the

CML decoding algorithm is in general suboptimal in terms of

reducing the ML decoding complexity.

Example T.4: The 2 × 10 Toeplitz code can be decoded

using the junction tree given in Fig. 16 at the top of the

next page. If the size of the complex HEX constellation used

to encode the variables xn =
[

s2n−1 s2n
]T

is M then the

complexity order of this junction tree is |A{n,n−1}| =M2.

The least complex CML algorithm proceeds as follows. The

variables {x1, . . . ,x4} and {x6, . . . ,x9} are independently

decoded after conditioning on x5. To decode {x1, . . . ,x4},

one first conditions on {x2,x3} and finds the conditionally

optimal values of x1 and x4 independently. The decoding

of {x6, . . . ,x9} proceeds in a similar way. Thus the CML

complexity order is M4. On the other hand, the brute-

force decoding complexity, |C| = M9. Hence, for this code

OGDL < OCML < |C|.
We now give two examples of families of STBCs for which

OGDL < OCML.
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x x   x x   x

x x x

1 1 2 2 3 3x   x
4 x   x8 9

2 x3 4 9

. ..

Fig. 16. Junction tree to decode the 2× 10 Toeplitz code

x x x x x

x x x x x x

x1 3 5 7 9 11

2 4 6 8 10 12

Fig. 17. The moral graph of the 4× 14 OAC.

1) Toeplitz Codes [39]: Consider a 2× T Toeplitz Code,

T ≥ 2. This code consists of K = 2(T − 1) real symbols. We

can construct a junction tree for this code similar to the one

in Example T.4. The chain in this junction tree would extend

till the (xT−2,xT−1) vertex. The complexity order of this

junction tree is still M2, irrespective of the value of T , where

M is the size of the complex constellation used to encode the

symbols xn. The best ordering for conditional ML decoding

this code is to first condition on the variable x⌊ T−1
2 ⌋. This

would result in two conditional ML decoding groups each

of which generates a ‘shorter’ Toeplitz code whose delay is

approximately T
2 . Thus the CML decoding complexity grows

with M and T as M log2 T . It is interesting that though there

is interference among the symbols, the GDL complexity is a

constant independent of the number of symbols encoded by the

code. These results can be extended to nt > 2. For any nt×T
Toeplitz code there exists a junction tree whose complexity

order is Mnt . The CML decoding complexity however grows

with the delay T .

2) Overlapped Alamouti Codes (OACs) [40]: These codes

are 2-group ML decodable and are available for all choices

of T ≥ nt ≥ 2. They can be GDL decoded with complexity

order M ⌊
nt+1

2 ⌋. The CML decoding complexity on the other

hand grows with the number of symbols or equivalently with

the delay T . For example, for nt = 4, the CML complexity

grows as M ⌈log2(
T
2 )⌉. As an example we construct a junction

tree for the 4× 14 OAC and show that its complexity order

less than the CML decoding complexity.

The 4× 14 OAC consists of 24 real symbols

s1, . . . , s24. Define the auxiliary variables z1, . . . , z12 as

zn = s2n−1 + js2n. The design in terms of these auxiliary

variables is given in (9) at the top of the next page. The

variables zn, n = 1, . . . , 12, are encoded independently using

a complex constellation of size M . Choose the encoding

groups as xn =
[

s2n−1 s2n
]T

for n = 1, . . . , 12. The moral

graph for the code is given in Fig. 17. The moral graph is

not complete and hence from Lemma 2, this code admits

fast GDL decoding. Since the moral graph is a disjoint

union of two subgraphs, from Lemma 3, this code is 2-group

x x   x x   x

x

1 1

x

. . .

x

x   x3

3

3 5

5

9 11

11

x x x

 

x   x x   x. . .x2 x   x2 4 4 10 126

4 6 12

Fig. 18. A junction tree partition to decode the 4× 14 OAC.

decodable. A junction tree partition to decode this code

is shown in Fig. 18. Note that this partition consists of 2
subtrees, each of which is a junction tree for the subcode

generated by the 2 ML decoding groups. The complexity

order of this junction tree partition is M2. When CML

decoding is used, the least achievable complexity order is

M3. We explain the CML decoding for the first ML decoding

group. The decoding of the second group is similar. On fixing

the value of x5, we get two conditional decoding groups. The

first group {x1,x3} is jointly decoded with complexity M2

for each value of x5. The second group, {x7,x9,x11}, is

again conditionally 2-group decoded with the two conditional

groups being {x7} and {x11}.

Exact decoding complexity:

Almost all STBCs of interest have the property that each

encoding group has the same number of real symbols, say

t, and the signal set size of all the groups are equal, i.e.,

|A1| = |A2| = · · · = |AN |. If the average number of infor-

mation bits carried by each real symbol is log2 q then the

signal set size |An| = qt. For example, when t = 2 the real

symbols {si} are encoded pairwise, and q2 is the size of

the complex constellation used to encode each xn. For the

sake of analytical tractability, and considering the widespread

prevalence STBCs of this type in the literature, we restrict our

analysis of the exact GDL and CML complexities to codes

wherein the number of real symbols in each encoding group

is the same and |An| = qt.
Let C be any code where all the symbols xn, n = 1, . . . , N ,

are mutually interfering. We will refer to such codes as being

fully-interfering. In Appendix C we compute the exact CML

and GDL complexities of such a fully-interfering STBC. The
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S =









z1 0 z3 −z∗2 z5 −z∗4 z7 −z∗6 z9 −z∗8 z11 −z∗10 0 −z∗12
0 z∗1 z2 z∗3 z4 z∗5 z6 z∗7 z8 z∗9 z10 z∗11 z12 0
0 −z∗2 z1 −z∗4 z3 −z∗6 z5 −z∗8 z7 −z∗10 z9 −z∗12 z11 0
z2 0 z4 z∗1 z6 z∗3 z8 z∗5 z10 z∗7 z12 z∗9 0 z∗11









. (9)

CML algorithm performs a brute-force minimization of the

ML metric over all qNt values of (s1, . . . , sNt). Its complexity

is

CCML(C) = qNt
(

3

(

Nt

2

)

+ 5Nt

)

− 1. (10)

To GDL decode this STBC, we use the junction tree of Fig. 1

in Section III-B. We employ a single-vertex GDL schedule

with the root at any one of the (xn,xm) vertices followed

by traceback (using the core vertex as the root will contribute

to the leading order term qNt, which is avoided here). The

complexity of this GDL decoder is given in (11) at the

top of the next page. Comparing the leading terms of (10)

and (11), we see that when the real symbols {si} are encoded

independently of each other i.e., when t = 1, the GDL is about

3 times less complex as the CML. When the symbols are

encoded pairwise using a complex constellation, i.e., when

t = 2, the GDL is approximately 12 times less complex than

the CML decoder. For example, for any STBC obtained

from Cyclic Division Algebras [38] that is not multigroup or

conditionally multigroup decodable, the GDL decoder gives

roughly a 12 times reduction in complexity compared to the

CML decoder.

Example 6: Consider the following 2 antenna code ob-

tained from a Cyclic Division Algebra [38]
[

s1 + js2 + γ(s3 + js4) δ (s5 + js6 − γ(s7 + js8))
s5 + js6 + γ(s7 + js8) s1 + js2 − γ(s3 + js4)

]

,

where γ = ej
2π
8 , and δ is any complex number which is

transcendental over the field Q(
√
γ). The complex symbols

s2n−1 + js2n, n = 1, . . . , 4, are encoded using the 8-PSK

signal set. For this code, there are N = 4 encoding groups,

xn =
[

s2n−1 s2n
]T

for n = 1, . . . , 4, t = 2 and q =
√
8. All

the four symbol groups are mutually interfering, and hence this

STBC is fully-interfering. From (10), the CML decoder for this

code involves 507, 903 mathematical operations. On the other

hand, using (11), we see that the GDL decoder involves only

26, 718 operations, which is about 19 times less than the CML

complexity.

Example 7: Consider the following Field Extension

code [38] for nt = 3 transmit antennas




s1 + js2 γ(s5 + js6) γ(s3 + js4)
s3 + js4 s1 + js2 γ(s5 + js6)
s5 + js6 s3 + js4 s1 + js2



 ,

where γ = ej
2π
6 and the complex symbols s2n−1 + js2n,

n = 1, . . . , 3 are encoded using the 8-PSK signal set. This

code has N = 3 encoding groups, xn =
[

s2n−1 s2n
]T

for n = 1, . . . , 3, t = 2 and q =
√
8. This STBC is fully-

interfering, and the CML and the GDL decoders for

this code involve 38, 399 and 2, 758 operations respec-

tively. Thus the GDL decoder provides a complexity re-

duction of the factor of 14 compared to the CML

decoder.

The number of computations involved in the GDL decoder

is less than that of the CML decoder not just for fully-

interfering codes, but for any STBC.

Theorem 3: Let C be any STBC such that the number of

real symbols per each encoding group of C is same, and the

signal set size for each of the encoding groups is equal. Then

CGDL(C) < CCML(C).
Proof: Proof is given in Appendix D.

From Theorem 2 and Example T.4, we see that the GDL

algorithm can provide improvements over CML decoders in

terms of the order of ML decoding complexity as well.

C. Reduction in complexity with PAM signal sets

When a real symbol is encoded using a PAM signal set,

the optimal value of that variable, conditioned on the values

of other information symbols, can be found by scaling and

hard-limiting. This technique has been widely used in the

literature [18], [20], [26], [29], and can lead to gains in the

order of the CML decoding complexity. In this subsection we

show that such a reduction in complexity is possible with GDL

as well.

We will now describe how a variable xn0 , n0 ∈ {1, . . . , N},

(not necessarily a PAM encoded single real symbol) can be

removed from the GDL formulation. The global metric β can

be split into terms involving xn0 and terms not involving xn0

as

β = αn0(xn0) +
∑

m∈N (n0)

αn0,m(xn0 ,xm)

+
∑

n6=n0

αn(xn) +
∑

n<m
n,m 6=n0

αn,m(xn,xm),

where N (n0) is the set of indices of those variables that are

neighbors of xn0 in the moral graph of the code. Define the

functions

hn0(xN (n0)) = min
xn0

αn0(xn0 ) +
∑

m∈N (n0)

αn0,m(xn0 ,xm),

β′(x{n0}c) = min
xn0

β(x1, . . . ,xN ).

Then we have β′(x{n0}c) =

hn0(xN (n0)) +
∑

n6=n0

αn(xn) +
∑

n<m
n,m 6=n0

αn,m(xn,xm),

and the ML solution for xn, n 6= n0,

x̂{n0}c = argminβ′(x{n0}c).

Given the function hn0(xN (n0)), the ML decoding of C is

equivalent to minimizing β′. This minimization can be solved
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CGDL(C) = qNt
(

N

2

)

+ q(N−2)t + q2t
[(

N

2

)

(2t− 1) +N + 1

]

+ qt
[(

N

2

)

(2t2 − t) +N(t2 + 3t)

]

− 2. (11)

using the GDL. If the function hn0 can be computed with

sufficiently low complexity, using β′ rather than β to ML

decode C can lead to gains in the decoding complexity.

As we show now, when xn0 is a q-ary PAM encoded single

real symbol, hn0 can be computed with reduced complexity

using scaling and hard-limiting. For each xN (n0) ∈ An0 ,

hn0 = min
xn0









ξn0,n0x
2
n0

+









ξn0 +
∑

m∈N (n0)
i∈ψ(m)

ξn0,isi









xn0









= min
xn0

ξn0,n0

[

(

xn0 −
ζ

2ξn0,n0

)2

− ζ2

4ξ2n0,n0

]

,

where ζ = ξn0 +
∑

m∈N (n0)

∑

i∈ψ(m) ξn0,isi. The optimal

value x̂n0 that minimizes hn0 for a given value of xN (n0) can

be found by the scaling and hard-limiting step given in (12)

at the top of the next page, where rnd(·) is the nearest integer

function. This step has a constant complexity independent of

q. The value of hn0 can then be calculated as

hn0(xN (n0)) = ξn0,n0

[

(

x̂n0 −
ζ

2ξn0,n0

)2

− ζ2

4ξ2n0,n0

]

.

(13)

We now use GDL to compute hn0 itself. From (13), we see

that the function hn0 depends on xN (n0) only through

ζ = ξn0,n0 +

p
∑

j=1

ωmj
(xmj

), where,

N = {m1, . . . ,mp} and ωmj
(xmj

) =
∑

i∈ψ(mj)
ξn0,isi. Now

consider the junction tree for this problem shown in Fig. 19,

where the local kernel at the central vertex is ξn0,n0 , and the

local kernel at the vertex (xmj
) is ωmj

. It is straightforward

to show that ζ is equal to the state of the central vertex of

Fig. 19 at the end of the single-vertex GDL schedule rooted at

this node. Using the table of values of ζ thus obtained, one can

then compute hn0 using (12) and (13). Thus, the function hn0

can be computed with order of complexity |AN (n0)| instead

of the brute-force complexity order q|AN (n0)|.
If G = (V , E) is a junction tree for β, and G′(V ′, E ′) is a

junction tree for β′, such that

max
v′∈G′

|AIv′
| < max

v∈G
|AIv

| and

|AN (n0)| < max
v∈G

|AIv
|,

then ML decoding the code using the junction tree G′ provides

an improvement in the complexity order compared to using the

junction tree G.

Lemma 6: If the core T of G has only one vertex containing

the variable xn0 , then the tree T ′ obtained by removing xn0

from this vertex of T is a core for the GDL minimization of

β′.

, , . . ,xmpxm21mx

xm1

xm2

xm3

xmj

xmp . ..

.

.

.

Fig. 19. A junction tree to compute ζ .

Proof: We will show that T ′ satisfies both the conditions

of Definition 2 for minimizing β′. Since T satisfies the

junction tree condition for all the variables xn, n = 1, . . . , N ,

the tree T ′, obtained by removing the only occurrence of xn0 ,

satisfies the junction tree condition for xn0 , n 6= n0. For every

n,m 6= n0 there exists a v ∈ V such that {n,m} ⊆ Iv , and

hence there exists a v′ ∈ V ′ such that {n,m} ⊆ Iv′ . Suppose

v0 ∈ V is the only vertex of G that contains xn0 . Because T
is a core for the minimization of β, N (n0) ⊆ Iv0 and hence,

this vertex in T ′ contains the argument of hn0 as a subset

of its local domain. Therefore, T ′ can be used as a core for

minimizing beta′.
This technique of removing a PAM encoded variable can

be generalized to any set R ⊆ {1, . . . , N} of variables that

satisfies the condition given in Lemma 7 below. In this case,

the variables xn, n ∈ R, are removed one by one from

the GDL formulation, in an arbitrary order, using the same

technique as above.

Lemma 7: The PAM encoded set of variables xR can be

removed from the GDL formulation using scaling and hard-

limiting if and only if the subgraph of the moral graph

generated by these variables is edgeless.

Proof: Let R = {n1, . . . , n|R|}, and let the chosen

order of removal be n1, n2, . . . , n|R|. The variable xn1 can

be removed using the technique described in this subsection,

irrespective of the choice of n2, . . . , n|R|. Suppose there exists

an nr ∈ R, such that nr ∈ N (n1). Then, while removing xnr
,

one is faced with the minimization of the function

hn1(xN (n1)) + αnr
(xnr

) +
∑

m∈N (nr)

αnr ,m(xn0 ,xm)

over the variable xnr
. However, hn1 is not a quadratic function

of xnr
, and hence minimization of the above expression

via completion of squares, scaling and hard-limiting is not

possible. On the other hand, when nr /∈ N (n1), this step of

minimizing hn1 does not arise during the removal of xnr
from

the GDL formulation, and hence xnr
can be removed using

scaling and hard-limiting.

For example, when a conditionally g-group decodable code

is to be decoded, one PAM encoded symbol from each of the
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x̂n0 = min

{

max

{

rnd

(

q − 1

2
− ζ

2ξn0,n0

)

, 0

}

, q − 1

}

− q − 1

2
. (12)

x   x   x   x   x   x1 3 5 6 7 8 x   x   x   x   x   x 876542x   x   x   x5 6 7 8

Fig. 20. A junction tree core T to decode the Golden Code.

3 5 6 7 8    x   x   x   x   x x   x   x   x
5 6 7 8

    x   x   x   x   x4 5 6 7 8

Fig. 21. A junction tree core T ′ for the Golden code that exploits the
structure of PAM signal set.

g conditional groups can be removed via scaling and hard-

limiting.

Example G.4: Consider the junction tree core T for the

Golden code shown in Fig. 20. From Lemma 7 and the

moral graph of the Golden code given in Fig. 11, we see

that the variables x1 and x2 can be removed using scaling

and hard-limiting. Using Lemma 6 we get the junction tree

core T ′ = (V ′, E ′) shown in Fig. 21. Since |N1| = |N2| = 5,

the functions h1 and h2 can be computed with complexity

order q5, where q is the size of the PAM signal set used to

encode the information symbols. Also, maxv′∈V′ |AIv′
| = q5,

and hence the single-vertex GDL schedule and traceback can

be implemented with order of complexity q5. Hence, the order

of complexity for GDL decoding of the Golden code using

T ′ is q5, whereas the complexity order of using T is q6. The

removal of the variables x1 and x2 has enabled the reduction

of the GDL complexity order from q6 to q5. The total number

of mathematical operations involved in the GDL decoding of

the Golden code using T ′ is 42q5 + 6q4 + 21q2 + 52q − 5.

The CML decoder [18], [29], on the other hand, involves

76q5 + 43q4 − 1 operations. Comparing the leading order

terms, we see that the GDL decoder is about 1.8 times as

fast as the CML decoder. For instance, when q = 2 or 4
(corresponding to the rates 4 and 8 bits per channel use), the

GDL decoder gives a complexity reduction of 1.9 compared

to the CML decoding algorithm.

On the other hand, consider the naive choice of symbol

groups

x1 =
[

s1 s2 s3 s4
]T
, x2 =

[

s5 s6 s7 s8
]T
,

given in Example G.1. The signal set size for each of these

two symbol groups is q4. Since the two symbol groups

are interfering, any choice of junction tree G̃ = (Ṽ , Ẽ) must

involve a vertex v0 that contains both the variables x1,x2. The

GDL single-vertex decoding complexity has the complexity

order maxṽ∈Ṽ q
4|Iṽ| ≥ q8, which is equal to the order of brute-

force ML decoding complexity.

VI. CONCLUSION

The CML decoding algorithm minimizes the ML metric

β(x1, . . . ,xN ) via removing a subset of variables from the

problem formulation by minimizing β for each instantia-

tion of this subset of variables. This subset of variables is

chosen in such a way that the reduced problem, obtained

after their removal from β, splits into multiple, independent,

less complex minimization problems. The GDL, on the other

hand, computes various partial sums and marginalizations of

β involving the ‘smaller’, less complex functions αn, αn,m,

and utilizes these intermediate functions to efficiently arrive

at the ML solution. In this paper, we have introduced this

GDL based ML decoding framework, and shown that the

GDL decoder is superior to the CML decoder in terms of

complexity. The results of this paper have brought to light the

following relevant problems that need to be addressed.

• Proving the optimality or otherwise of GDL based de-

coders in minimizing the complexity of ML decoding an

STBC.

• Given an STBC C, finding the optimal choice of weight

matrices, encoding groups and signal sets, which will

minimize the GDL decoding complexity of the code.

• Constructing codes with better rate-decoding complexity

tradeoff than that of the known codes using the GDL

decoders.

• Both GDL and CML decoding algorithms depend on

the Hurwitz-Radon orthogonality of weight matrices to

obtain low complexity ML decoders. Is there any other

algebraic property of a code that can be exploited to de-

sign low complexity ML decoders? Can it lead to further

improvement in the rate-decoding complexity tradeoff?
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APPENDIX A

PROOF OF THEOREM 1

First we will show that x(G1), . . . ,x(Gg) is a partition of

{x1, . . . ,xN}. It is clear that ∪gk=1x(Gk) = {x1, . . . ,xN}.

Enough to show that for any ℓ 6= k, x(Gℓ) ∩ x(Gk) = φ.

Suppose this is not true. There exists a variable xn that

appears in the local domains of at least one of the vertices

in each of Gℓ and Gk. Since G satisfies the junction tree

condition, the local domains of all the vertices on the unique

path between these two vertices in G contain the variable xn.

Further, this unique path contains at least one of the edges

(uk, vk), k = 1, . . . , (g − 1). Thus, there exists a k such that

Iuk
∩ Ivk ⊇ {n}, and hence Iuk

∩ Ivk 6= φ, a contradiction.

Thus x(G1), . . . ,x(Gg) is a partition of {x1, . . . ,xN}.

We will now show that for each k = 1, . . . , g, the tree Gk
satisfies the junction tree condition. Let xn be any variable
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from the set x(Gk). From the first result of this theorem,

xn appears in the local domains of the vertices of Gk only.

Thus the subgraph of G formed by vertices containing xn is a

subgraph of Gk . Since G satisfies the junction tree condition,

this subgraph is a connected graph. Hence Gk satisfies the

junction tree condition.

We will now prove the last part of the theorem. Since

x(G1), . . . ,x(Gg) is a partition of {x1, . . . ,xN}, none of the

local domains of G involve any cross terms between x(Gℓ)
and x(Gk) for any ℓ 6= k. Therefore the global kernel β can

be written as

β(x1, . . . ,xN ) = f1(x (G1))+ f2(x (G2))+ · · ·+ fg(x (Gg)) ,

where, for ℓ = 1, . . . , g, fℓ(x (Gℓ)) is the sum of the local

kernels of all the vertices of Gℓ. Let v be any vertex of G
and let it belong to the kth subtree of G. Let σv be the state

of the vertex v after running the GDL all-vertex message-

passing algorithm on G, and σ′
v be the state of the vertex

after running the GDL all-vertex message-passing algorithm

on Gk only. From the discussion in Section II-B, σv is the

xIv
-marginalization of β, and σ′

v is the xIv
-marginalization

of fk. We have

σv(xIv
) = min

xIc
v

β = min
xIc

v

g
∑

ℓ=1

fℓ(x (Gℓ)) .

Since each of f1, . . . , fg is a function of disjoint sets of

variables, the min and the summation in the above equa-

tion can be interchanged. Observing that for all ℓ 6= k,

xIc
v
∩ x(Gℓ) = x(Gℓ), we have

σv(xIv
) =

g
∑

ℓ=1

min
xIc

v
∩x(Gℓ)

fℓ (x(Gℓ))

= min
xIc

v
∩x(Gk)

fk (x(Gk)) +
∑

ℓ 6=k

min
x(Gℓ)

fℓ (x(Gℓ))

= σ′
v(xIv

) +
∑

ℓ 6=k

aℓ,

where aℓ denotes the real number minx(Gℓ) fℓ (x(Gℓ)). Thus,

for any vertex v of G, the functions σv and σ′
v differ only by

a scalar. Therefore the solution to xIv
obtained from σ′

v is

argminσ′
v(xIv

) = argmin



σv(xIv
)−

∑

ℓ 6=k

aℓ





= argminσv(xIv
),

which is the solution obtained from σv , and

hence is the ML solution. This completes the

proof.

APPENDIX B

PROOF OF THEOREM 2

In order to prove this theorem we categorize all STBCs

into three classes: (i) multigroup decodable, (ii) conditionally

multigroup decodable, and (iii) codes in which all the symbols

are mutually interfering, which we will call fully-interfering

STBCs. For g-group decodable codes the CML decoder splits

x x x1 3
2

Fig. 22. Moral graph of the smallest conditionally multigroup decodable
code.

x  x
1 3x

1
x

3
x  x

2 3
x

2

Fig. 23. A junction tree for the smallest conditionally multigroup decodable
code.

into g independent CML decoders, one for each of the g sub-

codes. Note that each subcode itself can be either conditionally

multigroup decodable or fully-interfering. For multigroup and

conditionally multigroup decodable codes OCML < |C|. For

fully-interfering codes CML reduces to brute-force decoding

and hence OCML = |C|.
For each of the three classes of codes we now show that

OGDL ≤ OCML. For a fully-interfering STBC the junction tree

in Section III-B can be used. The complexity of this GDL

decoder is of the order of |C| = OCML(C). Since this decoder

is only one instance of (possibly) several GDL algorithms for

ML decoding this code, we have OGDL(C) ≤ OCML(C).
Now consider a g-group decodable code. The complexity

of a CML decoder is sum of the CML complexities of the g
subcodes. As explained in Section IV-B, this code can be GDL

decoded using a disjoint union of g junction trees, one tree

corresponding to each of the g subcodes. Thus, the complexity

of GDL decoding is sum of the complexities of GDL decoding

each of the g subcodes. Since the subcodes can be either

conditionally multigroup decodable or fully-interfering, we

only need to show that the theorem is true for conditionally

multigroup decodable codes and fully-interfering codes in

order to prove the theorem for g-group decodable codes. We

have already proved the result for fully-interfering codes. In

the remaining part of the proof we show that OGDL ≤ OCML

for all conditionally multigroup decodable codes.

The proof for conditionally multigroup decodable codes is

via induction on N , the number of encoding groups of the

STBC. The smallest N for which such a code exists is 3
and its corresponding moral graph is shown in Fig. 22. The

conditional ML decoder for this code operates with Γ = {1, 2}
and its complexity order is |A3|max{|A1|, |A2|}. To decode

this code using GDL we can use the junction tree given in

Fig. 23. The complexity order of this junction tree equals

|A3|max{|A1|, |A2|} = OCML(C). Thus we have shown that

OGDL ≤ OCML for N = 3.

We now prove the induction step. Assume that the theorem

is true for all conditionally multigroup decodable codes for

which the number of encoding groups is less than N . We will

now show that the result is true when the number of encoding

groups is N as well. Consider a CML decoder with complexity

order OCML(C) for a code C with N variables. Suppose this

decoder uses Γ ( {1, . . . , N}. Let the subcode generated by

xΓ be g-group decodable, i.e., let C be conditionally g-group

decodable for this choice of Γ. If the g conditional groups are

Γ1, . . . ,Γg, then the complexity order of this CML decoder is
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Fig. 24. The tree T in the proof of Theorem 2.

OCML(C) = |AΓc |maxgk=1 OCML(Ck), where Ck is the subcode

generated by the variables {xn|n ∈ Γk}. To complete the

proof of this theorem it is enough to construct a junction tree

for this code whose complexity order is at the most OCML(C).
For k = 1, . . . , g, the code Ck is either fully-interfering

or conditionally multigroup decodable, and the number of

encoding groups in Ck is less than N . Then there exists a GDL

decoder for Ck whose complexity order is upper bounded by

OCML(Ck). Let Tk denote the junction tree core for this GDL

decoder. Construct a tree T ′
k from Tk by appending the variable

list xΓc to the local domain of every vertex of Tk. We now

construct a core T using T ′
1, . . . , T

′
g and one additional vertex

with local domain xΓc . For every k = 1, . . . , g, arbitrarily

choose a vertex of T ′
k and connect it to the xΓc vertex using

a single edge.

It is straight forward to prove that T is a valid junction tree

core for ML decoding of the STBC C. For every vertex in T ′
k

the local domain size is upper bounded by |AΓc |OGDL(Ck).
Therefore,

OGDL(C) ≤
g

max
k=1

|AΓc | OGDL(Ck)

≤ g
max
k=1

|AΓc | OCML(Ck) = OCML(C).

This completes the proof.

APPENDIX C

THE CML AND GDL DECODING COMPLEXITIES OF

FULLY-INTERFERING STBCS

The CML algorithm for a fully-interfering code reduces to

a brute-force search

(ŝ1, . . . , ŝNt) = argmin f(s1, . . . , sNt)

= argmin
Nt
∑

i=1

(

siξi + s2i ξi,i
)

+
∑

i<j

sisjξi,j .

For each of the qNt values that (s1, . . . , sNt) jointly assume,

there are Nt terms of type siξi + s2i ξi,i to be computed, and

each such term involves 4 operations. There are
(

Nt
2

)

terms of

the type sisjξi,j and each term involves 2 operations. Taking

into account the process of summing up these individual terms,

the total number of operations in computing f for a given

(s1, . . . , sNt) is 3
(

Nt
2

)

+ 5Nt− 1. Finding argmin of the

resulting qNt values of f takes further (qNt − 1) operations.

Thus, the CML decoding complexity is

CCML(C) = qNt
(

3

(

Nt

2

)

+ 5Nt

)

− 1.

The GDL decoding of C involves three steps: computing

the kernels αn, αn,m, running the GDL message-passing

algorithm, and finally the traceback. We use the junction tree

of Fig. 1 to decode this STBC. There are N kernels of the

type αn(xn). Using the distributive law, αn can be expressed

in terms of {si} as

αn(xn) =
∑

i∈ψ(n)

si (ξi + siξi,i) +
∑

i∈ψ(n)

si









∑

j∈ψ(n)
j>i

sjξi,j









,

where ψ(n) is the set of indices of {si} that belong to

the nth encoding group. The computation of αn using the

above expression involves qt(t2 + 3t) operations. There are
(

N
2

)

kernels of the type αn,m. Again, with the help of the

distributive law, we rewrite αn,m as

αn,m(xn,xm) =
∑

i∈ψ(n)

si





∑

j∈ψ(m)

sjξi,j



 . (14)

The tqt values of the term
∑

j∈ψ(m) sjξi,j , one for each pair of

(i,xm) are precomputed, and then these values are used in (14)

to compute αn,m. This two step method provides complexity

reduction compared to the direct computation of αn,m, and can

be implemented with q2t(2t− 1) + qt(2t2 − t) operations.

Using (3), we see that implementing the GDL message-passing

schedule takes up qNt
(

N
2

)

+ q2tN operations. Note that the

highest order term appearing so far is qNt. The root vertex

for the single-vertex GDL and traceback must therefore be

chosen in such a way that the complexity of this last step

does not contribute to the qNt term. Choosing any vertex of

the type (xn,xm) will satisfy this requirement as it leads to a

traceback complexity of q(N−2)t + q2t − 2. Summing up the

individual terms, we have the expression for CGDL(C) given

in (11).

APPENDIX D

PROOF OF THEOREM 3

The proof of Theorem 3 is similar to the proof of Theorem 2

given in Appendix B. Here too, we consider three cases:

(i) multigroup decodable codes, (ii) conditionally multigroup

decodable codes, and (iii) fully interfering codes. From the

discussion in Appendix B, we see that it is enough to prove

the theorem for fully-interfering codes and conditionally multi-

group decodable codes. In Appendix C we have derived the

GDL and CML complexities of fully-interfering codes, and the

comparison of their leading order terms shows that for such

codes CGDL(C) < CCML(C).
We now prove the result for conditionally multigroup de-

codable codes by induction on N . The smallest such code

involves N = 3 encoding groups, and its moral graph is shown

in Fig. 22. The CML decoder minimizes

β = α3(x3)+α1,3(x1,x3)+α2,3(x2,x3)+α1(x1)+α2(x2),

by conditioning on x3. For each of the qt values of a3 ∈ A3,

the CML decoder computes the scalar α3(a3) and the func-

tions α1,3(x1, a3), α2,3(x2, a3). It then independently mini-

mizes α1,3(x1, a3) + α1(x1) and α2,3(x2, a3) + α2(x2), and

finds the conditionally optimal values x̂1(a3) and x̂2(a3).
From the qt resulting values of β(x̂1(x3), x̂2(x3),x3), the
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optimal solution is obtained. The complexity of this algorithm

can be shown to be

q2t
(

3t2 + 7t
)

+ qt
(

4t2 + 3

(

t

2

)

+ 5t

)

− 1.

The GDL decoder can be implemented on the junction tree

shown in Fig. 23. The GDL complexity involves the cost of

computing the kernels αn, n = 1, 2, 3, α1,3 and α2,3, running

the single-vertex GDL schedule with root vertex (x3), and the

traceback to find the optimal solution. The complexity of this

algorithm is

q2t (4t+ 2) + qt
(

7t2 + 7t+ 3
)

− 3.

Comparing the leading terms, we see that the GDL is less

complex than the CML decoder. Hence the theorem is true

for N = 3.

Now consider any conditionally multigroup decodable code

with N ≥ 4 encoding groups, and assume that the theorem is

true for all codes with number of encoding groups less than N .

Assume that the variables corresponding to Γ ( {1, . . . , N}
are g-group decodable conditioned on the variable list xΓc . If

the g conditional groups are Γ1, . . . ,Γg, the ML metric β can

be expressed as
∑

n∈Γc

αn +
∑

n,m∈Γc

n<m

αn,m+

g
∑

k=1







∑

n∈Γk

m∈Γc

αn,m +
∑

n∈Γk

αn +
∑

n,m∈Γk
n<m

αn,m






.

The CML decoder proceeds as follows. For each of the q|Γ
c|t

values (an|n ∈ Γc) ∈ AΓc that the variable list xΓc jointly

assumes, the CML decoder computes the scalar
∑

n∈Γc

αn(an) +
∑

n,m∈Γc

n<m

αn,m(an, am),

and the functions αn,m(xn, am) for each n ∈ Γ and m ∈ Γc.
It then minimizes the metric

g
∑

k=1









∑

n∈Γk
m∈Γ

c

αn,m(xn, am) +
∑

n∈Γk

αn(xn) +
∑

n,m∈Γk
n<m

αn,m(xn,xm)









by multigroup decoding. Minimizing each of the terms corre-

sponding to k = 1, . . . , g in the above equation is equivalent

to decoding the code Ck generated by xΓk
by its own CML

decoder, and hence each of these terms can be minimized with

complexity CCML(Ck). Thus, corresponding to each aΓc ∈ AΓc

we have a list x̂n(aΓc), n ∈ Γ of conditionally-optimal so-

lutions. Finally, from the q|Γ
c|t values of β(x̂Γ(xΓc),xΓc),

the optimal tuple (x̂Γ(xΓc),xΓc) is chosen. The number of

operations involved in this algorithm is given in (15) at the

top of the next page. Note that the contribution to the leading

order term of CCML(C) comes from q|Γ
c|t
∑g

k=1 CCML(Ck).
Let G1, . . . , Gg be the junction trees for C1, . . . , Cg with

minimal decoding complexities. Since the number of encoding

groups in each of the codes Ck is less than N , the result of this

theorem is true for these codes, i.e., CGDL(Ck) < CCML(Ck), for

Fig. 25. The tree T in the proof of Theorem 3.

k = 1, . . . , g. We now construct a junction tree for C using

G1, . . . , Gg . For each k = 1, . . . , g, append the variable list

xΓc to each of the vertices of Gk and set all the local kernels

to zero. From this resulting tree G′
k arbitrarily choose a vertex

of type (xn,xΓc), n ∈ Γk and connect it to an exterior (xΓc)
vertex by a single edge, as shown in Fig. 25. Set the local

kernel at (xΓc) to zero as well. We now use this tree as the

core for the STBC C. For each n,m ∈ Γk, assign the kernel

αn,m to the vertex (xn,xm,xΓc) of G′
k . For every n ∈ Γk,

assign the kernel αn to the vertex (xn,xΓc) of G′
k . For each

pair n ∈ Γk and m ∈ Γc, attach a new vertex (xn,xm) with

kernel αn,m to the vertex (xn,xΓc) of G′
k by a single edge.

Attach all the vertices of the type (xn,xm), n,m ∈ Γc, with

kernel αn,m, and all the vertices (xn), n ∈ Γc, with kernel αn,

to the (xΓc) vertex using single edges. It is straightforward to

show that this resulting tree G = (V , E) is a junction tree for

C.

If each of the codes Ck, k = 1, . . . , g, consists of just

one encoding group each, then every Gk will consist of

just one vertex, and a direct calculation of the number

operations involved in GDL decoding using G shows that

CGDL(C) < CCML(C). If otherwise, then there exists at least

one component Gk with two or more encoding groups. Define

s = maxv∈V |Iv|. Since there is at least one pair of inter-

fering symbols in Γ, we have s ≥ 2 + |Γc|. Let S be the

set of ‘largest’ vertices in G, i.e., S = {v ∈ V| |Iv| = s}.

Now consider the contribution of each of the three steps:

computation of kernels αn & αn,m, running the single-vertex

GDL schedule with root (xΓc), and traceback, to the leading

term of CGDL(C). The kernels can be computed with the

order of complexity q2t. The complexity of the GDL single-

vertex schedule is of the order of qst, and the traceback

implementation requires a complexity order less than qst.
Since s ≥ 2 + |Γc|, the only contribution to the leading order

term comes from the GDL single-vertex schedule. Recall that

CGDL(C) =
∑

(u,v)∈E (|AIu
|+ |AIv

| − |AIu∩Iv
|). The con-

tribution to the leading order term of CGDL(C) comes from

the set of all the edges in E that are incident on the vertices

belonging to S. Clearly, every v ∈ S belongs to one of the

G′
k, corresponding to a subcode with two or more encoding

groups. From the construction of G, we see that the degree

and the edges associated with any vertex from S in G are

same as the degree and the edges associated with that vertex

in the corresponding junction tree Gk. It is exactly this set of

edges in each Gk that contribute to the leading order terms of

CGDL(Ck). Since G is only one of the many possible junction

trees for C, we have CGDL(C) ≤ q|Γ
c|t
∑g

k=1 CGDL(Ck), up to

the leading order term. From (15) and the assumption made for

induction that CGDL(Ck) < CCML(Ck), k = 1, . . . , g, we have
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CCML(C) = q
|Γc|t

(

g
∑

k=1

CCML(Ck) + 3

(

|Γc|t

2

)

+ 5|Γc|t+ 2Nt+ g

)

− 1. (15)

CGDL(C) ≤ q|Γ
c|t

g
∑

k=1

CGDL(Ck)

< q|Γ
c|t

g
∑

k=1

CCML(Ck) ≤ CCML(C).

This completes the proof.
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