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A numerical model is developed to analyse the interaction of artificial cilia with the
surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia
forces. The cilia are modelled using finite shell elements and the fluid is modelled
using a boundary element approach. The coupling between both models is performed
by imposing no-slip boundary conditions on the surface of the cilia. The performance
of the model is verified using various reference problems available in the literature.
The model is used to simulate the fluid flow due to magnetically actuated artificial
cilia. The results show that narrow and closely spaced cilia create the largest flow, that
metachronal waves along the width of the cilia create a significant flow in the direction
of the cilia width and that the recovery stroke in the case of the out-of-plane actuation
of the cilia strongly depends on the cilia width.

Key words: low-Reynolds-number flows, microfluidics, propulsion

1. Introduction

Lab-on-a-chip is a field that aims at performing chip-based biochemical assays
on small volumes of fluids. A typical lab-on-a-chip has different microchambers
for fluidic input, mixing, incubation and biochemical analysis. The test fluid has to
be passed through microchannels that connect different chambers. One of the main
challenges in the design of microfluidic/lab-on-a-chip systems is the propulsion of
fluids through these channels. Researchers have developed propulsion systems which
range from externally driven syringe pumps to internally operating electro-osmotic
pumps (Laser & Santiago 2004). Recently, much attention has been focused on
designing microfluidic propulsion systems by mimicking fluid propulsion mechanisms
available in nature (den Toonder et al. 2008; Fahrni, Prins & van IJzendoorn 2009;
Gauger, Downton & Stark 2009; van Oosten, Bastiaansen & Broer 2009). An example
of natural propulsion mechanisms is the expulsion of mucus from the lungs due to
hair-like structures, called cilia, that cover the inner layer of the mammalian trachea
(Fulford & Blake 1986). The cilia beat back and forth in an asymmetric manner
with an effective stroke and a recovery stroke. They propel a relatively larger volume
of fluid during the effective stroke when compared with the recovery stroke, and
therefore create a net fluid transport in the direction of the effective stroke. Using a
two-dimensional numerical model it was shown that thin magnetic films can mimic
the beat motion of natural cilia when subjected to a tuned external magnetic field
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FIGURE 1. Schematic description of the problem: a group of cilia in a semi-infinite fluid are
attached to a substrate and actuated using an external magnetic field.

(Khaderi et al. 2009). In a similar fashion, plate-like magnetic artificial cilia have also

been synthesized and integrated in microfluidic systems to manipulate fluids (Fahrni

et al. 2009; Belardi et al. 2011; Hussong et al. 2011; Khaderi et al. 2011a). The

two-dimensional analysis is valid for cilia widths that are larger than the cilia length

and channel height. However, the synthesized cilia are, in general, three-dimensional

structures and have a finite width (typically one fifth of their length) Khaderi et al.

(2011a), see figure 1. In these situations, the effect of the cilia width and the spacing

between the cilia along the width direction play an important role in determining

the fluid transported. In addition, in experimental systems the magnetic field can be

applied in three spatial directions. In order to model these effects we develop a

three-dimensional numerical model which can accurately describe the motion of the

cilia, the velocity field in the fluid and the magnetic field in the cilia, for the situation

of low Reynolds numbers.

To capture the deformation of the cilia, both the bending and membrane stiffnesses

(stiffness associated with the in-plane stretching of the cilia) have to be accurately

modelled. To do so, we adopt the approach proposed by Bathe & Ho (1981) and

model the bending of the cilia using discrete Kirchhoff triangles (DKTs), while

the membrane behaviour is accounted for using constant strain triangles (CSTs). To

improve the accuracy during in-plane bending, we add drilling degrees of freedom to

the CSTs (Allman 1984). The large deformation of the cilia is modelled by adopting

an updated Lagrangian procedure.

We assume that the inertia forces in the fluid are negligible. This enables us to

model the fluid using the Stokes equation, the solution of which can be written in

terms of a Green’s function. The Green’s function for the case of forces acting in a

semi-infinite fluid is provided by Blake (1971). The cilia are considered as internal

boundaries to the fluid, which exert a force on the fluid. The drag forces are treated

as a distribution of point forces on the cilia. Akin to the solid mechanics model, we

use triangular elements to discretize the internal fluid boundary. The drag forces are

assumed to vary linearly within each triangular element. Once the drag traction is
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known, the velocity field in the fluid and the velocity of the internal fluid boundary
(the cilia) can be obtained.

Many studies exist in the literature to model the interaction of slender bodies
with the surrounding fluid, such as the arbitrary Lagrangian–Eulerian (ALE) method
(Donea, Giuliani & Halleux 1982), fictitious domain method (van Loon, Anderson
& van de Vosse 2006) and immersed boundary method (Peskin 2002). Recently,
the extended finite-element method has also been used to perform fluid–structure
interaction (FSI) (Gerstenberger & Wall 2008, 2010). Although implementation of
these methods for three-dimensional problems is straightforward, the computational
cost is enormous due to the large number of degrees of freedom of the three-
dimensional fluid mesh. Therefore, coupling a boundary element model of the fluid
with a finite-element model of a slender structure provides attractive advantages.
Coupling of boundary elements and finite elements has been performed in the past
for the interaction of a solid with an ideal fluid (Chen, Hofstetter & Mang 1998;
Schneider 2008). In this work we couple the previously explained boundary element
formulation for the fluid with the shell element model of the cilia using no-slip
boundary conditions on the cilia (the velocity of the fluid boundary is equal to the
velocity of the solid shell structure). The coupling is performed in a monolithic
fashion. An approach similar to that taken here was used by Salsac, Biesel & Tallec
(2010), where the solid–fluid coupling is implemented in an explicit manner. The
developed model is used to study: (i) the effect of non-uniformity of the cilia width
on the cilia motion and the related flow; (ii) the effect of cilia width and spacing
on the fluid transported; and (iii) the effect of laeoplectic metachronal waves and
three-dimensional out-of-plane motion of the cilia.

The paper is organized as follows. In § 2 we discuss the solid mechanics model
followed by the fluid dynamics model and the FSI implementation. The method used
to calculate the magnetic fields is then discussed. The results are presented in § 3.
Several benchmark tests are included in the appendices B–E to verify the numerical
accuracy of the proposed model.

2. Formulation

2.1. Solid mechanics model

The cilia are modelled using shell elements based on the superposition of the
bending and membrane stiffness in the local coordinate axes of the shell element.
The membrane stiffness is based on constant strain triangles with drilling degrees of
freedom (Allman 1984), and the bending stiffness is based on the discrete Kirchhoff
triangular elements proposed by Batoz, Bathe & Ho (1980). We start with the
principle of virtual work containing the relevant energies, linearize it, and finally
adopt an updated Lagrangian framework to arrive at the final set of equations. The
resulting stiffness matrix includes the geometric nonlinearity, which accounts for
large deformations, but small strains. In the following, we briefly present the solid
mechanics model. The details are provided in appendix A.

Let the displacement of a point on the mid-surface be (u0, v0, w0). As we model the
cilia to be shell structures, the displacement of any point on the normal is

u = u0 + zβx, v = v0 − zβy, w = w0, (2.1)

where βx and βy are the rotations of the normal with respect to the x and y axes,
respectively. The internal virtual work is

δWint =

∫

V0

(σxδǫx + σyδǫy + 2σxyδǫxy) dV0, (2.2)
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where σx, σy and σxy are the components of the second Piola–Kichhoff stress tensor, ǫx,
ǫy and ǫxy are the components of the Green–Lagrange strain tensor and dV0 represents
an elemental volume in the undeformed configuration. The internal virtual work after
linearization and discretization can be written as (see (A 22))

δW t+1t
int = δPTFt

int + δPT(KM + KG)1P, (2.3)

where P is the global displacement vector, KM is the material stiffness matrix, KG is
the geometric stiffness matrix and Ft

int is the internal force vector at time t.
The external work at time t + 1t due to body forces and body moments can be

written as

δW t+1t
ext =

∫

V

(fxδu + fyδv + fzδw − Nxδβy + Nyδβx) dV, (2.4)

where fx, fy and fz are the body forces and Nx and Ny are the body moments. After
discretizing, the external virtual work can be written as (see (A 26))

δW t+1t
ext = δPTFt+1t

ext . (2.5)

2.2. Fluid dynamics model

To model the fluid we use the boundary element method. The cilia, which are
immersed in the fluid and fixed to a substrate, exert forces on the fluid. The velocity
uf at a point in the fluid r due to a point force exerted on the fluid by the cilia at a
position r′ can be obtained using Green’s function as

uf (r) = G(r, r′, d(r′))f (r′), (2.6)

with d(r′) being the distance of the point force from the substrate. The Green’s
function G(r, r′, d(r′)) for a point force f (r′) acting in a fluid near a no-slip boundary
is given by Blake (1971). We assume that this point force is distributed over the
boundary of the cilia S as a traction t f (r′), where r′ is a point on S. Now, the velocity
in the fluid can be written as

uf (r) =

∫

S

G(r, r′, d(r′))t f (r′) dS. (2.7)

The cilia surface is discretized using ‘nelm’ three-node triangular elements,

uf (r) =

nelm
∑

j=1

∫

Sj

G(r, rj, d(rj))t f (rj) dSj, (2.8)

where rj is a point in the triangular element and the tractions t f (rj) are assumed to be
varying linearly over the element,

t f (rj) = N [{tx
1 t

y

1 tz
1 0 0 0 tx

2 t
y

2 tz
2 0 0 0 tx

3 t
y

3 tz
3 0 0 0}

f

j
]

T
= NT

f
j , (2.9)

where tl
k is the traction at the kth node in the lth direction. As (2.8) is valid for all of

the nodes on the cilium (r = ri), we get

uf (ri) =

nelm
∑

j=1

∫

Sj

G(ri, rj, d(rj))t f (rj) dSj, (2.10a)

u
f
i =

nelm
∑

j=1

∫

GijN dSjT
f
j , (2.10b)
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with Gij = G(ri, rj, d(rj)). Equation (2.10) relates the velocity of the ith node to all
tractions exerted by the surface of the cilia on the fluid. The non-singular integrals
in (2.10) are evaluated using standard two-dimensional Gaussian quadrature and the
singular integrals are evaluated using the method of change of variables (Pozrikidis
2002, p. 120). Equation (2.10) is evaluated at all nodes on the cilia, and the obtained
equations are assembled in a matrix G, which relates the traction exerted by the cilia
on the fluid to its velocity, U f = GT f . Once the velocity of the surface is known, this
relation can be inverted to obtain the nodal tractions: T f = G

−1U f .

2.3. Solid–fluid coupling

The effect of fluid drag is incorporated as an external force to the solid mechanics
model, which provides an additional contribution to the external virtual work. The
external virtual work at time t + 1t on the jth shell element due to the fluid drag is

δW t+1t
fluid = −

∫

t
f
j · δu dS = −

∫

(δu · N) dST
f
j ≈ −δp

∫

N
T
N dST

f
j = −δpM

jT
f
j , (2.11)

where M
j =

∫

N
T
N dS, u is the displacement vector and p is the local nodal

displacement vector. After performing the standard finite-element assembly procedure
we get

δW t+1t
fluid = −δPMT f = −δPMG

−1U f . (2.12)

Using the no-slip boundary condition U f = A1P/1t, where A is a matrix that
eliminates the rotational degrees of freedom from the global displacement vector 1P,
equation (2.12) can be written as

δW t+1t
fluid = −δPMG

−1
A1P/1t, = −δPT

Kf 1P (2.13)

where Kf = MG
−1

A/1t is the stiffness contribution due to the presence of the fluid.
Equating the internal (2.3) and the external virtual work (the sum of (2.5) and

(2.13)), and invoking the arbitrariness of the virtual displacements, we get the final
equation of motion for the FSI problem:

(KM + KG + Kf )1P = Ft+1t
ext − Ft

int . (2.14)

After incorporating the appropriate boundary conditions, equation (2.14) is solved for
the displacement increment 1P.

2.4. Magneto-static model

The cilia are magnetic films which respond to an external magnetic field. The
magnetic response of the cilia is characterized by the magnetic susceptibility tensor
χ , through the constitutive relation M = χH , where M is the magnetization and H is
the magnetic field. The magnetic body couple acting on the cilia Nc is obtained from
the cross-product of the magnetization and the magnetic field intensity Nc = M × Bext ,
where M is the magnetization and Bext is the external magnetic field with a magnitude
Bext . The magnetization M has to be found by solving the Maxwell’s equations of
electromagnetism. However, we adopt a simpler approach and make use of the
fact that the cilia are slender enough to not perturb the external magnetic field
significantly; the magnetic field just outside the cilia is equal to the applied magnetic
field. The magnetic field inside the cilia can be determined from the electromagnetic
boundary conditions: Bz = Bext

z , Hx = Hext
x , Hy = Hext

y , where Hext = Bext/µ0, µ0 is the
permeability of free space and x, y and z refer to the local coordinate axes of the shell



308 S. N. Khaderi and P. R. Onck

element. Using the first boundary condition and the constitutive behaviour we can find
the field Hz inside the cilia as

Hz =
Bext

z − µ0(H
ext
x χxz + Hext

y χyz)

µ0(1 + χzz)
. (2.15)

Once the field in the cilia H is determined, the magnetization of the cilia (M = χH)

and the magnetic body couple (Nc) can be found, which are applied as external body

moments in (2.4). The only assumption made in this approach is that the magnetic

field outside the cilia is the external magnetic field, i.e. we neglect the magnetic field

caused by the magnetization of cilia.

3. Results

The three-dimensional model is verified through a number of benchmark problems

for the solid mechanics model, the fluid dynamics model, the FSI model and the

magneto-static model (see appendices B–E). In this section we use the magneto-

mechanical model to study the following aspects of super-paramagnetic (SPM)

artificial cilia: the effect of non-uniformity of the cilia width on the cilia motion

and flow, the effect of finite width of cilia and the spacing in the width direction on

the fluid transported and finally, the effect of laeoplectic metachronal waves and the

flow due to three-dimensional motion of cilia.

In the cases shown the length L of the cilia is 100 µm and the thickness h is 2 µm.

The elastic modulus of the cilia E is 1 MPa, the Poisson’s ratio ν = 0.0 and the fluid

viscosity µ is 1 mPa s. The magnetic susceptibilities of the cilia are χxx = 4.6 and

χyy = χzz = 0.8 (all other components are taken to be zero). We apply a magnetic field

of magnitude Bext = 20 mT, rotating about the y-axis with a frequency of 50 Hz. As

the cilia are SPM, the cilia complete one beat cycle in tbeat = 10 ms (Khaderi, den

Toonder & Onck 2011b). In the simulations, the fixed edges of the cilia are placed

0.1L above the no-slip boundary, to mimic the presence of the sacrificial layer used

during the manufacturing process (den Toonder et al. 2008; Fahrni et al. 2009).

For the magnetic artificial cilia studied in this paper the relevant forces are

the bending forces, viscous forces and magnetic forces. Following Khaderi et al.

(2009), these can be combined to form a set of two dimensionless parameters: the

magnetic number Mn = 12(B2
ext/µ0E) (L/h)2, the ratio of magnetic to elastic bending

forces, and the fluid number Fn = 12(µ/Etbeat) (L/h)3, the ratio of viscous to elastic

bending forces. For the values mentioned earlier the dimensionless parameters can be

estimated to be (Mn, Fn) = (9.55, 0.15). These dimensionless parameters signify that

the magnetic forces are larger and the viscous forces are smaller than the elastic

forces.

3.1. Motion of a cilium with non-uniform width

Experiments have shown that cilia of uniform width can be manufactured using

lithography techniques (Belardi et al. 2011). It is of interest to investigate what

shapes and cilia spacings create maximum fluid transport. To this end we first study

the motion of one cilium whose width decreases linearly from the fixed end to the

free end. To quantify the amount of non-uniformity (tapering) in the width, we define

the geometric parameter T = (b − b1)/b, where b and b1 are the widths of cilium at

the fixed and the free edges, respectively. The width of the cilium at the fixed edge is

taken to be L/10. When T is zero the cilium has uniform width; whereas the cilium
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FIGURE 2. (a) Displacement of the cilia tip for different tapering in the width. The inset at
the right shows the fluid flow (in microlitres per minute) for different values of tapering T ,
and the flow (normalized with L2(b1 + b)/2) as a function of the area swept (the area swept
by the free end of the cilium, normalized with L2) and the inset at the left shows the area
swept normalized with (L2) as a function of T . (b,c) Snapshots of the motion of the cilia in
the x–z plane at different time instances for T = 0 and 0.5, respectively. The arrows show the
direction of motion of the cilium, the dotted lines show the trajectory of the free end, the solid
lines represent the cilium during the effective stroke and the dashed lines during the recovery
stroke.

is triangular for a tapering T of unity. First, we find what value of T is required to

generate an asymmetric motion. The trajectory of the tip of the cilium for different

values of T is shown in figure 2(a). The area swept by the free end of the cilium

increases when the tapering T is increased (see the left inset of figure 2a). Snapshots

of the ciliary motion is shown in figure 2(a,c) for a T = 0 and 0.5, respectively.

The flow caused by the beating cilium is quantified by calculating the flux through

the y–z plane and x–z plane. The far field velocity at a point in the fluid due to the

nodal drag forces is given by (Blake 1972)

8πµu
f
i =

nnod
∑

j=1

12dj(ri − r′
i)(r1 − r′

1)(r3 − r′
3)

|r − r′|5
f

j

f 1

+
12dj(ri − r′

i)(r2 − r′
2)(r3 − r′

3)

|r − r′|5
f

j

f 2 + O

(

1

|r|3

)

(3.1)

where r is the position of a point in the fluid and r′ is the position of the node

j, dj is the distance between the node j and the no-slip plane, ‘nnod’ are the total

number of nodes, f
j

f k represents the components of the point forces acting on the fluid

at the jth node. In (3.1) Einstein’s summation convention is used for repeated indices
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with i taking the values 1, 2 and 3 which represent x, y and z directions, respectively;

while k in f
j

f k takes the values 1 and 2 which represent x and y directions, respectively.

The point forces can be obtained from Ff = Kf 1P/1t. The velocity flux in the x

and y directions (Qx and Qy) are calculated by integrating the velocity in the x and y

directions over the y–z and x–z planes, respectively:

Qx =

∫ ∞

0

∫ ∞

−∞

uf
x dy dz =

1

πµ

nnod
∑

j=1

djf
j

f x, (3.2a)

Qy =

∫ ∞

0

∫ ∞

−∞

uf
y dx dz =

1

πµ

nnod
∑

j=1

djf
j

f y. (3.2b)

This volume flux is integrated over the cycle to obtain the total volume flow during

one cycle.

The volume flow per cycle (in microlitres per minute) for different values of

tapering is shown in the right inset of figure 2(a). When the tapering is increased the

area swept increases, whereas the area of the cilium which drives the flow decreases.

Thus, the created flow is due to the competition between the swept area and the area

of the cilium that pushes the fluid. As a result we see an initial increase of the flow,

which reaches a maximum for a tapering T of 0.5, and then decreases. In the same

inset, the fluid flow (normalized with L2(b1 + b)/2) is plotted as a function of the area

swept (normalized with L2) in the x–z plane. It is to be noted that normalizing the fluid

flow with (b1 + b)/2 gives the area flow per unit average width of the cilia, which

on further normalization with L2 becomes the normalized area flow. Hence, similar to

the two-dimensional cases (Khaderi et al. 2009, 2010), the flow scales linearly with

the swept area. Simulations were also performed for negative values of tapering (not

shown), in which the width of the fixed end of a cilium is smaller than the free end.

We found that for increasing values of negative tapering, the generated flow continues

to decrease. For large values of negative tapering, the area swept by the tip of the cilia

vanishes (they only oscillate symmetrically), resulting in zero flow.

To gain insight on the fluid propulsion, we look at the position of fluid particles

which initially formed a plane parallel to the y–z plane for a cilium with a tapering T

of 0.5, see figure 3. (At every time instant, the displacement of the fluid particles

is calculated using their velocity (2.10). The new position is found by adding

the displacement to their current position.) During the effective stroke, the cilium

displaces the fluid particles in the negative x-direction (see figure 3a,c), after which

the fluid particles are dragged back during the recovery stroke (see figure 3d,f ). The

displacement of the fluid particles can be observed by comparing the position of the

particles in figure 3(a,f ). The additional information, which we obtain from the three-

dimensional model compared with the two-dimensional model, is the displacement of

the fluid particles that are not present in the plane of beat.

3.2. Effect of the cilia width and spacing

We now examine the effect of the width and the cilia spacing on the flow generated

by one row of cilia placed along the width. The geometry is shown in figure 4(a). We

take n cilia of width b at the fixed edge whose tapering T is 0.5. The spacing between

the cilia is p (the pitch), so that the total width occupied by the cilia row is np. For

the simulations we choose n = 4 and calculate the flow created as a function of the
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FIGURE 3. Snapshots of the motion of the cilium, beating in the x–z plane, at different
instances of time for a representative cycle: (a–c) the effective strokes and (d–f ) the recovery
strokes. The evolving surface represents contours of the x coordinates of fluid particles
which at time t = 0 were parallel to the y–z plane. During the effective stroke, the cilium
displaces the fluid particles in the negative x-direction, and during the recovery stroke, the
fluid particles are dragged back. The displacement of the fluid particles can be observed
by comparing the position of the particles in (a,f ): (a) Time = 0; (b) Time = 0.15 tref ; (c)
Time = 0.25 tref ; (d) Time = 0.325 tref ; (e) Time = 0.425 tref ; (f ) Time = 0.5 tref .
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FIGURE 4. (a) Parameters used to study the effect of cilia spacing p′ and width b for a given
tapering. (b,c) Flow as a function of width and the pitch of the cilia spacing for cilia having a
taper along the width.

spacing between the cilia p′ = p − b. The spacing p′ is varied from 0 (no spacing

between the cilia at their fixed edge) to 0.9L.

The horizontal lines in figure 4(b) represent four times the flow created by one

cilium for different widths b. In the cases considered the increase of flow does not

scale with the increase of the cilium width b. This suggests that the forces acting on



312 S. N. Khaderi and P. R. Onck

z

y

0

–0.08

–0.16

–0.24

–0.32

–0.40

(b)

(c)

(a)

FIGURE 5. Front view (y–z plane) of the cilia at t = tref /2 (see figure 3f ). The contours
correspond to the fluid velocity in the x-direction on a plane parallel to y–z plane at a distance
of 1.1L from the cilia fixed edge. The cilia influence a larger region of the fluid when the
spacing is large, thus creating a larger flow as the spacing is increased: (a) b = L/5, n = 1; (b)
b = L/5, p′ = 0, n = 4; (c) b = L/5, p′ = 0.9L, n = 4.

the fluid do not scale linearly with the cilia width b. Such a behaviour is also present

in the case of ellipsoids (Happel & Brenner 1986).

The flow as a function of the spacing p′ for various widths for n = 4 is also shown

in figure 4(b). The flow created by the cilia is larger when they are further apart. The

beating of a cilium imparts velocity to a small fluid region around it (see figure 5a).

When four cilia are used, the region influenced by the cilia strongly depends on their

spacing. When the spacing between them is small these regions overlap so that they

collectively influence only a small region of the fluid, see figure 5(b). The total fluid

region that can be influenced by the cilia increases as the spacing is increased (see

figure 5c), reaching a maximum for spacings when the cilia do not hydrodynamically

interact. In these cases, the flow converges to four times the flow caused by one cilium.

This can also be rationalized from a force point of view. When the cilia are spaced

closer together, they can move the fluid with less effort; this reduces the forces acting

on the fluid due to the cilia motion. Consequently, the flow generated is low. A similar

behaviour can also be seen in the case of two spheres which are translating at a given

velocity (Happel & Brenner 1986). The force exerted by the spheres on the fluid is

reduced when they are brought closer together.

A practically relevant question is: How much flow can the cilia generate per unit

width? This question can be answered by normalizing the flow in figure 4(b) with

the width of the cilia row (np). It can be seen that when the spacing p′ is very low

compared with the length L, the narrow cilia produce more flow; when the spacing is

comparable to the length, the broader cilia create a higher flow. Note that for a given

width, many narrow cilia spaced close together create the largest flow. Interestingly,
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FIGURE 6. Schematic diagram showing the arrangement of cilia, the direction of effective
and recovery strokes along with different kinds of metachronal waves.

this is the option chosen by nature. The natural cilia are hair-like structures that are

spaced very close together.

3.3. Effect of metachronal waves in the out-of-plane direction

We now analyse the flow when an array of cilia move out-of-phase in the direction

of their beat motion (antiplectic and symplectic metachrony) and in the direction

orthogonal to it (laeoplectic and dexioplectic metachrony) (Childress 1981). In

laeoplectic and dexioplectic metachrony, the effective stroke is to the left and right

of the direction of propagation of the metachronal wave (see figure 6). To perform

the simulations we choose five rows of cilia, with each row containing five cilia (see

figure 6). A row refers to the arrangement of cilia in the y-direction. The cilia have

a uniform width b = 0.1L and a tapering in the thickness, such that the thickness

of the cilia at the fixed end is 2 µm, which decreases linearly along the length to

a thickness of 1 µm at the free end. The cilia spacings are a = 1.1L (along the

length) and p = 0.2L (along the width). A rotating magnetic field with a magnitude

of 20 mT is applied to every cilium at a frequency of 50 Hz. The phase difference

in the magnetic field between adjacent cilia is varied from 1φx = −π/2 to π/2 in

the beat direction, and from 0 to 1φy = 2π/10 in the direction normal to beat plane.

The metachrony normal to the beat plane will create symmetric waves about 1φy = 0.

Hence, simulations are performed only for 1φy > 0. A zero phase difference in any

direction represents uniformly beating cilia in that direction, and a phase difference

of π/2 represents the situation when adjacent cilia are in antiphase (standing wave).

As the metachronal wave can also travel in a direction normal to the cilia beat, we

also analyse the flow in this direction. In the following, the flow in the plane of the

ciliary beat is referred to as primary flow and the flow normal to this plane is called

secondary flow. The primary and secondary flow (normalized with 5bL2) are plotted as

a function of the phase differences 1φx and 1φy in figure 7.

The flow is always larger for the cilia beating with antiplectic metachrony compared

with synchronously beating cilia (in accordance with Khaderi et al. (2011b)). In

the case of symplectic metachrony, the cilia obstruct the flow caused by their

neighbours during the effective stroke (as also seen in the two-dimensional case
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FIGURE 7. Primary and secondary flow created by cilia due to metachrony along
and normal to the beat direction, respectively. The primary flow is larger when
the cilia beat out of phase compared with synchronously beating cilia except for
−2π/10 < 1φx < 0 and 0 < 1φy < π/10. The secondary flow is created due to the
plate-like motion of the rows of cilia, which reaches a maximum when the cilia
motion between rows is antiphase and 1φy = π/10. AM, SM and LM represent
antiplectic, symplectic and laeoplectic metachrony, respectively. The velocity profiles for
the set of phase differences corresponding to A, B and C are shown in figure 8:
(a) primary flow; (b) secondary flow.

Gauger et al. (2009) and Khaderi et al. (2011b)). As a result, for antiplectic

metachrony the flow is larger and for symplectic metachrony the flow is smaller

than synchronously beating cilia, although the magnitude of increase is larger (for

antiplectic metachrony) than the decrease (for symplectic metachrony). The flow

obstruction is maximum for −0.2π < 1φx < 0, in such cases the flow created is

less than that created by synchronously beating cilia. In these cases, however, when

1φy > 0 the decrease is lower because of the relaxation of the obstruction of positive

flow. The flow exhibits a fluctuating behaviour only for the cases enclosed in the white

curve, outside this region (in the direction of the arrow) the flow is unidirectional.

The laeoplectic metachrony creates a significant secondary flow (see figure 7b). To

investigate the cause for the secondary flow, we look at the velocity created by two

rows of cilia in the y-direction at the instance where the third cilium in each row of

cilia is pointing towards the z-axis, see figure 8. In the cases (a,b) of figure 8, the

cilia are exhibiting the effective stroke and are moving to the left. For synchronously

beating cilia the velocity in the y-direction is symmetrically distributed (see figure 8a).

Such a velocity distribution creates no net flux in the y-direction. However, when the

cilia beat out of phase normal to the beat plane, the position of individual cilia leads

to an asymmetric distribution of the y-velocity (see figure 8b). This asymmetry in the

velocity profile is present at all y-positions and leads to a net flux in the y-direction.

The displacement of fluid particles initially near the rightmost row at different

time instances is shown in figures 9 and 10 for cilia beating synchronously

(1φy = 1φx = 0) and out of phase (1φy = π/10 and 1φx = 0), respectively. In the

case of synchronously beating cilia, the symmetric velocity distribution about the x–z

plane leads to a symmetric displacement of the particles throughout the cycle and
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FIGURE 8. (Colour online) Velocity field for two rows of cilia beating (a) in phase; (b) out
of phase in the y-direction and (c) out of phase in both the x- and y-directions. The contours
represent the velocity in y-direction on a plane parallel to the x–y plane at a distance of
0.5L from the substrate. The arrows represent the velocity in the x–y plane. The velocity
contours correspond to the set of phase differences marked by A, B and C in figure 7(b): (a)
1φx = 1φy = 0; (b) 1φx = 0, 1φy = π/10; (c) 1φx = π/2, 1φy = π/10.

leads to a net displacement only in the plane of the beat (x-direction). However, the

asymmetric velocity distribution in the case of laeoplectic metachrony leads to an

effective displacement of particles in the beat plane as well as in the y-direction,

thereby creating the secondary flow.
When the cilia move in antiphase in the beat plane (1φx ± π/2), the cilia in

the adjacent rows move opposite to each other leading to large secondary flows for
1φy = π/10 (see figure 7b). The velocity field at a particular instance is shown in
figure 8(c), where the left row of cilia are exhibiting the effective stroke and the
right row the recovery stroke. Such a motion of cilia creates a negative pressure
between them that sucks in the fluid whose velocity has a prominent component in the
y-direction (see figure 8c) and leads to a larger flux in the y-direction compared with
cilia beating synchronously in the beat plane.

3.4. Out-of-plane actuation of cilia

In nature, the cilia on a Paramecium beat in a plane normal to the surface during the
effective stroke, and during the recovery stroke they beat in a plane parallel to the
surface. To achieve such a motion, we apply a magnetic field so that the magnetic field
vector can be oriented in three-dimensional space (see figure 11). The dimensionless
parameters take the following values. The magnetic number Mn = 9.55 (based on
maximum field magnitude) and the fluid number Fn = 0.06 (based on tbeat = 25 ms).

Figure 12 shows the motion of a SPM cilium in which the cilium performs the
effective stroke in the x–z plane and the recovery stroke in the x–y plane near the
no-slip boundary. This results in large flow during the effective stroke and a small flow
during the recovery stroke. The effective stroke consists of a uniform bending of the
cilium in the x–z plane. During the recovery stroke, the cilium undergoes a significant
amount of twisting, and comes back to the initial position (see figure 12d–f ).

In figure 13(a), we show the flow as a function of the width of the cilium. It can
be seen that flow drastically decreases as the width of the cilium is increased. This
is because, the cilia can no longer twist and stay closer to the bottom boundary (see
figure 13b). In such cases, we see a significant amount of flow during the recovery
stroke, and this reduces the net amount of fluid propelled.
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FIGURE 9. Synchronous motion (1φy = 1φx = 0) of one row of cilia and the resulting
motion of a plane of particles at different time instances. (a–c) Represents the front view and
(d–f ) represents the top view. The initial position of the particles plane in both the views is
shown by the dashed lines. The particles move only in the plane of beat: (a) t = 0.4tbeat ; (b)
t = 0.7tbeat ; (c) t = 0.85tbeat ; (d) t = 1.0tbeat ; (e) t = 1.1tbeat ; (f ) t = 1.3tbeat .

4. Summary

We have developed a FSI model to simulate the interaction of thin shells with the
surrounding fluid. The shell structures are modelled using finite elements, while the
fluid is modelled using boundary elements. The magnetic field is calculated from the
magnetostatic boundary conditions. The developed model was used to simulate the
flow due to magnetic artificial cilia, where it is shown that our model captures the
essential physical phenomena governing the ciliary motion. Extensions of the present
model include the implementation of a fast multipole method for the fluid model and
implementing a boundary element method to calculate the local magnetic field in and
around the cilia (Khaderi et al. 2009).

The three physical problems studied are the effect of: (i) cilia width and spacing; (ii)
metachronal wave formation; and (iii) the out-of-plane actuation on the flow generated.
It is found that the flow does not scale linearly with the width of the cilia, and for
a given width, narrow and closely spaced cilia create the largest flow. A rectangular
array of cilia were prescribed to beat with a metachronal motion in the direction of
the width. When the cilia beat with the metachronal wave travelling along the width
of the cilia, a flow is created in the direction of the effective stroke (primary flow)
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FIGURE 10. Out-of-phase motion (1φy = π/10 and 1φx = 0) of one row of cilia and the
resulting motion of a plane of particles at different time instances. (a–c) Represents the front
view and (d–f ) represents the top view. The initial position of the particle plane in both
of the views is shown by the dashed lines. The particles move in the plane of beat and
also orthogonal to the beat plane (compare instant (f ) with figure 9f ): (a) t = 0.4tbeat ; (b)
t = 0.7tbeat ; (c) t = 0.85tbeat ; (d) t = 1.0tbeat ; (e) t = 1.1tbeat ; (f ) t = 1.3tbeat .

and due to the metachronal motion a significant flow is created in the direction of

the cilia width (secondary flow). Subsequently, we analysed the generated flow due to

a three-dimensional motion of the cilia, in which the effective stroke takes place in

x–z plane and the recovery stroke takes place in the x–y plane. As the cilia undergo

significant twisting during the recovery stroke, the motion of the cilia during the

out-of-plane recovery stroke strongly depends on the cilia width. It is interesting to

note that in case of laeoplectic metachrony of the cilia inside a microchannel, the

primary flow will cause a net fluid transport, while the secondary flow can be used for

the mixing of fluids.

Appendix A. Solid mechanics model

In this appendix we describe in detail the solid mechanics model used. Let the

displacement of a point on the mid-surface be (u0, v0, w0). As we model the cilia to be
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x–y plane. The numbers adjacent to the arrows show the time in ms. The magnitude of the
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FIGURE 12. Snapshots of the motion of a SPM cilium due to a three-dimensional magnetic
field. The arrow shows the applied magnetic field. The cilium performs the effective stroke in
the x–z plane (see a–c) and the recovery stroke in the x–y plane (see d–f ). Significant twisting
of the cilium during the recovery stroke can be observed from the instances shown in (d,e).

shell structures, the displacement of any point on the normal is

u = u0 + zβx, v = v0 − zβy, w = w0, (A 1)

where βx and βy are the rotations of the normal with respect to the x- and
y-axes, respectively (see figure 14). Now, the only non-zero components of the
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FIGURE 14. Schematic representation of the parameters involved in the shell element
formulation.

Green–Lagrange strain are

ǫx =
∂u

∂x
+

1

2

(

∂w

∂x

)2

, ǫy =
∂v

∂y
+

1

2

(

∂w

∂y

)2

, 2ǫxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
. (A 2)

Taking the variation of the Green–Lagrange strain and substituting the displacements
from (A 1), we get

δǫx =
∂δu

∂x
+

∂w

∂x

∂δw

∂x
=

∂δu0

∂x
+

∂w0

∂x

∂δw0

∂x
+ z

∂δβx

∂x
= δǭx + zδκx. (A 3)

Similarly,

δǫy = δǭy + zδκy and 2δǫxy = δǭxy + zδκxy. (A 4)
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Here, κx = βx,x, κy = −βy,y and κxy = −βy,x + βx,y are the curvatures (consequently, the
rotations in x–z plane and y–z plane are βx and −βy, respectively), and

δǭx =
∂δu0

∂x
+

∂w0

∂x

∂δw0

∂x
=

∂δu0

∂x
+ βxδβx, (A 5a)

δǭy =
∂δv0

∂y
+

∂w0

∂y

∂δw0

∂y
=

∂δu0

∂y
+ βyδβy, (A 5b)

and

δǭxy =
∂δu0

∂y
+

∂δv0

∂x

∂w0

∂x

∂δw0

∂y
+

∂w0

∂y

∂δw0

∂x
=

∂δu0

∂y
+

∂δv0

∂x
− βxδβy − βyδβx (A 6)

are the membrane strains. The subscript (·),x denotes a partial derivative with respect
to the x-direction. It is to be noted that the membrane strains contain terms which are
linear in the in-plane displacements (u0 and v0), and nonlinear in the rotations.

The internal virtual work is

δWint =

∫

V0

(σxδǫx + σyδǫy + 2σxyδǫxy) dV0, (A 7)

where σx, σy and σxy are the components of the second Piola–Kichhoff stress tensor
and dV0 represents an elemental volume in the undeformed configuration. By using the
definitions of membrane strains and curvatures, the internal virtual work can be written
as

δWint =

∫

A0

(δǫ ·P + δκ · M) dA0, (A 8)

where κ = [κx κy κxy]
T , ǫ = [ǭx ǭy ǭxy]

T, dA0 represents an elemental area in the
undeformed configuration,
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
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and

M =




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


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Mxy
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κxy
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



= D
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κ, (A 10)

with h being the thickness of the shell element, E the elastic modulus and ν the
Poisson’s ratio. In (A 8), the first and second terms represent the virtual work done by
the membrane forces and bending moments, respectively. The internal virtual work at
time t + 1t is

δW t+1t
int =

∫

A0

(δǫ t+1t
·P t+1t + δκ t+1t

· M
t+1t) dA0. (A 11)
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Expanding this equation linearly in time yields:

δW t+1t
int =

∫

A0

((δǫ t + 1δǫ) · (P t + 1P) + (δκ t + 1δκ) · (M t + 1M)) dA0,

=

∫

A0

(δǫ t
·P t + δκ t

· M
t + 1δǫ ·P t + δǫ t

·1P + δκ t
·1M) dA0. (A 12)

In the last equation, the higher-order terms are neglected and use has been made of the
fact that 1δκ = 0.

We discretize (A 12) using three-node triangular finite elements. Each element has
three displacement u, v, w and three rotational degrees of freedom θx, θy, θz at each
node. The nodal displacement vector for each element has 18 degrees of freedom and
is written as

p = [u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2 u3 v3 w3 θx3 θy3 θz3]
T . (A 13)

The rotations of the normal (βx and βy) are interpolated using the discrete Kirchhoff
formulation: βx = Hxp and βy = Hyp and the variation of the curvature is related to the
nodal displacement vector as

δκ = Cδp. (A 14)

The forms of Hx, Hy and C are given by Batoz et al. (1980). The variation of the
membrane strains can be written using the DKTs for the nonlinear part and CSTs with
drilling degrees of freedom for the linear part. This gives

δǫ =











ǭx

ǭy

ǭxy










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
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

1 y 0 0 0

0 0 1 x 0

0 −x 0 −y 1






B1δp +







pTHx
THx

pTHy
THy

pT(−Hy
THx − Hx

THy)






δp,

= (BL + BNL)δp. (A 15)

Here B1 is a matrix which depends on the coordinates of the vertices of the triangle
whose form can be found elsewhere (Allman 1984). Now, the increment of the virtual
strain is given by

1δǫ = [1pTHx
THx, 1pTHy

THy, 1pT(−HT
y Hx − Hx

THy)]
T
δp. (A 16)

The internal virtual work (equation (A 12)) can be now written in terms of the
interpolation matrices (using (A 14), (A 15) and (A 16)) as

δW t+1t
int =

∫

A0

[δpT(BL
T + BNL

T)P t + δpT
C

T
M

t

+ δpT(Hx
THxP

t
x + Hy

THyP
t
y − (Hx

THy + Hx
THy)P

t
xy)1p

+ δpT(BL
T + BNL

T)DM(BL + BNL)1p + δpT
C

T
D

B
C1p] dA0. (A 17)

We now adopt an updated Lagrangian point of view and choose the domain of
integration to be the deformed configuration. This makes the total displacements p to
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be zero so that BNL vanishes. The internal virtual work now becomes

δW t+1t
int = δpTf t

int + δpT(kM + kG)1p, (A 18)

where

f t
int =

∫

A

(BL
TP t + C

T
M

t) dA (A 19)

is the internal force vector,

kM =

∫

A

(BL
T
D

M
BL + C

T
D

B
C) dA (A 20)

is the material stiffness matrix and

kG =

∫

A

(Hx
THxP

t
x + Hy

THyP
t
y − (Hx

THy + Hx
THy)P

t
xy) dA (A 21)

is the geometric stiffness matrix.
The internal virtual work in (equation (A 18)) is in the local coordinates. This

equation after transforming to the global coordinates (Zienkiewicz & Taylor 2002) and
performing the standard finite-element assembly can be written as

δW t+1t
int = δPTFt

int + δPT(KM + KG)1P, (A 22)

where P is the global displacement vector.
The external work at time t + 1t due to body forces and body moments can be

written as

δW t+1t
ext =

∫

V

(fxδu + fyδv + fzδw − Nxδβy + Nyδβx) dV, (A 23)

where fx, fy and fz are the body forces and Nx and Ny are the body moments. Because
the current shell element does not provide an interpolation function for the in-plane
rotations, they are incorporated using equivalent point forces acting at the nodes of
an element. For the external virtual work, we choose to interpolate the translational
displacement using linear shape functions, and for the rotations we use the shape
functions from the DKTs:

δW t+1t
ext = δpT

∫

V

(NT [fx fy fz]
T −HT

y Nx + HT
x Ny) dV = δpTf t+1t

ext , (A 24)

where

N =







N1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0 0 0

0 N1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0 0

0 0 N1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0






, (A 25)

N1, N2 and N3 are the standard area coordinates of a three-node triangular element
(Zienkiewicz & Taylor 2002). After performing the standard finite-element assembly
procedure, the external virtual work can be written as

δW t+1t
ext = δPTFt+1t

ext . (A 26)

Appendix B. Benchmark tests for the solid mechanics model

The three-dimensional numerical model is benchmarked using three reference
problems: (i) nonlinear deflection of a square clamped plate (Hughes & Liu 1981);
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FIGURE 15. Benchmark tests for the shell element. (a) Load-deflection curve for the
clamped square plate subjected to a uniform pressure on its surface, compared against
(Hughes & Liu 1981). (b) Load-deflection curve for the hinged cylindrical roof subjected
to a point load at the centre, compared with Jog & Kelkar (2006). (c) Load-deflection curve
for the pinched cylinder problem, compared with Masud et al. (2000).

(ii) deflection of a hinged cylindrical roof (Jog & Kelkar 2006); and (iii) pinching
of an open-ended cylinder (Masud, Tham & Liu 2000). All of the problems analysed
possess a significant amount of nonlinearity. The tests have been performed with a
fixed load increment. Symmetries present in the problems have been used to reduce
the time for computations. The results plotted in figure 15 show that the shell element
formulation is in good agreement with the results available in the literature.

Appendix C. Benchmark tests for the fluid dynamic model

To benchmark the fluid dynamic model we choose the problem of the translation
of a sphere near a no-slip surface. This problem was also solved numerically using
the method of regularized Stokeslets (Ainley et al. 2008). The analytical values of
the forces (per unit velocity) when the sphere translates parallel and perpendicular to
the no-slip boundary are 2.6475 and 23.6605 (in units of 6πµrv), respectively. The
spacing between the sphere and the no-slip plane is very small compared with the
radius of the sphere r (0.0453r). This results in a large velocity gradient between
the sphere and the no-slip plane. The singular and non-singular integrals encountered
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FIGURE 16. A sphere translating parallel/perpendicular to the wall: error in the forces as a
function of the number of nodes used to discretize sphere.

during the integration of (2.10) are integrated using 36 and 7 gauss points, respectively
(Pozrikidis 2002). For comparison we use the same discretization as that of (Ainley
et al. 2008); the surface of the sphere is covered with equally spaced points using a
spherical coordinate system and then triangulated.

The error in the forces are plotted as a function of the number of nodes used to
discretize the sphere, see figure 16. The convergence is slow in the case when the
sphere translates perpendicular to the wall. However, the convergence obtained from
our method is much better than that obtained in (Ainley et al. 2008). The sphere was
discretized into 2718 points for an error of 11 % in the perpendicular force compared
to 400 points in our case.

Appendix D. Benchmark test for the FSI model

As benchmark tests for the FSI models are not available in the literature, we use a
two-dimensional FSI model (Khaderi et al. 2009) to validate the present formulation.
The problem chosen is the relaxation of a plate of length L, width b and thickness h

subjected to an initial displacement. The plate is placed parallel to the no-slip plane
at a distance of 0.1L, see figure 17(a). The elastic modulus of the plate is taken to
be 1 MPa, and the viscosity of the fluid is taken to 1 mPa s. The plate is clamped
along its width, while the corresponding opposite edge of the plate is given an initial
transverse displacement of 0.25L in the direction opposite to the no-slip plane, and is
released at time t = 0. The geometry and boundary conditions for the two-dimensional
model are shown in figure 17(b). The response of the plate as a function of time,
for different widths of the plate in the direction normal to the plane of its motion,
is shown in figure 18. It can be seen that as the width of the plate increases the
response of the three-dimensional model converges to the two-dimensional model. The
beam in the two-dimensional model is discretized into 80 elements. The plate element
is divided into 12 elements along L and into 12b/L elements along b. The 36 and
7 gauss points were used to integrate the singular integral and non-singular integrals,
respectively.
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FIGURE 18. Benchmark test for the FSI problem. Comparison of relaxation of a plate
subjected to an initial displacement of the free end with the two-dimensional model.

Appendix E. Benchmarking the magneto-static model

We use the previously developed two-dimensional magneto-mechanical model
(Khaderi et al. 2009) to benchmark the magneto-mechanical model presented in § 2.4.
To this end we subject a magnetic cilium to an external magnetic field, and compare
the tip displacement resulting from the two-dimensional model (Khaderi et al. 2009)
with the tip displacement obtained from the present model. We would like to remind
the reader that in the two-dimensional case, the magnetic field is calculated by solving
the Maxwell’s equations. We take the case of a SPM cilium which is tapered in the
thickness direction and subject it to a rotating magnetic field of B0 = 20 mT with a
time period of 20 ms. The length L of the film is 100 µm, the thickness h is 2 µm
at the fixed end and decreases uniformly along the length, so that the thickness at
the free end is 1 µm. The width of the cilium b is taken to be 2L (when b > 2L the
three-dimensional model converges to the two-dimensional model, see § D). The elastic
modulus of the cilium is taken to be 1 MPa. The tip displacements are compared
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FIGURE 19. Cilium tip displacement computed by solving the Maxwell’s equations in a
two-dimensional model (solid lines) and by using the magneto-static boundary conditions for
the three-dimensional model with b = 2L (broken lines). Dotted lines represent the results
from the two-dimensional model, with the magnetic field calculated using the magneto-static
boundary conditions.

in figure 19. We see that the tip displacement resulting from the present model is
in good agreement with the displacement computed by the two-dimensional model in
which the magnetic field is obtained from the solution of Maxwell’s equations. The
discrepancy between the approaches results from two sources. The fluid–solid coupling
and the way the magnetic fields are calculated. To show that the error due to the
fluid–solid coupling is low, we also plot the displacement of the tip of the cilium for
the two-dimensional case with the magnetic fields calculated from the magneto-static
boundary conditions similar to the three-dimensional model, see the dotted lines in
figure 19. It can be seen that the error in the solid–fluid coupling is indeed small and
the main difference comes from the way the magnetic fields are calculated.
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