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We investigate the effect of cooperative interactions in an ensemble of microorganisms, modelled
as self-propelled disk-like and rod-like particles, in a three-dimensional turbulent flow to show flock-
ing as an emergent phenomenon. Building on the work by Choudhary, et al. [Europhys. Lett.
112, 24005 (2015)] for two-dimensional systems, and combining ideas from active matter and tur-
bulent transport, we show that non-trivial correlations between the flow and individual dynamics
are essential for the microorganisms to flock in, for example, a turbulent three-dimensional, marine
environment. Our results may have implications especially in the modelling of artificial microswim-

mers in a hostile environment.

PACS numbers: 47.63.-b 92.20.Jt 47.27.-1

The understanding of collective, cooperative motion of
organisms is one of the most important problems in ar-
eas spanning physical biology, soft matter, and statistical
physics. This is largely due to its ubiquity in the natural
world spanning a range of scales from macroscopic (birds
and fish) to microscopic (bacteria and plankton) organ-
isms [1]. Therefore it is reasonable to expect that insights
to this phenomenon is critically related to understanding
self-organised behaviour as well as ecological and evolu-
tionary strategies. Such insights, drawn from a variety
of models [2-6], show that combining long-range attrac-
tion, short-range repulsion and alignment rules between
self-propelling individuals of model active systems lead
to self-organised collective dynamics of the individuals.
It thus allows us qualitative as well as quantitative un-
derstanding of the dynamics of real active systems such
as cells [7, 8], autophoretic colloids [9], macroscopic, yet
small, organisms [10-12] or droplets [13], synchronised
oscillators [14] and bacterial lattices [15].

Developing an understanding of flocking has been
largely confined to the problem of directed motion where
the effects of the ambient medium, air or water—typically
noisy, random and spatio-temporally complex—and the
shapes and sizes of the individuals, are ignored. Such an
assumption for the natural world, where the environment
can be non-trivial and even turbulent (such as for ma-
rine life), is an over-simplification. Indeed, the few stud-
ies which have tried to answer this question use either
model flows [16, 17] with mass-less, point-sized organ-
isms or the relatively more realistic and instructive, but
still academic, case of two-dimensional turbulent flows
with finite-sized spherical particles [18] and, more re-
cently, flocking colloids in a randomly and artificially
disordered environment [19]. These studies, however,
strongly suggest the need to study whether collective mo-
tion can exist in the most general, even if simplified, set-
ting. Therefore in this paper, we now show how and
why flocking emerges—surprisingly—for microorganisms

in a turbulent environment by combining ideas from tur-
bulent transport [20-22] and active matter [23-26] and
elucidate the critical role of the non-trivial correlations
between the flow and individual dynamics. Our work
shows that the principles of fluid mechanics leave little
choice for organisms but to flock based on their sizes and
shapes. Thus the inevitable ubiquity of this phenomenon.

For several reasons, the collective behaviour of self-
propelled (active) individuals depends on their ambient
medium. Firstly, self propulsion of active particles—
which is key to their self-organisation—arises from the
fact that each individual is able to convert the available
free energy into directed motion [25, 26]. Examples in-
clude eukaryotic cells which utilize the energy produced
by the hydrolysis of available ATP to self-organise and
form tissue during morphogenesis [27] or Janus colloids
with their asymmetric surface chemistry converting the
difference in the chemical potential across their surfaces
and the surrounding medium into self-propulsion [28, 29].
Secondly, a fluid medium usually allows for long-ranged
hydrodynamic interaction among the active particles,
which, in turn, influences their self-organisation [30-32].
But these interactions, which closely represents the hy-
drodynamics of various soft systems such as colloidal sus-
pensions [33, 34], are at Reynolds numbers which are
essentially zero. Hydrodynamics at low Reynolds num-
ber [35] is, however, not applicable to the collective dy-
namics of the self-propelled microorganisms in a turbu-
lent environment.

For organisms which move and flock in air or water, a
naive guess would be that the flocks ought to break up
in the presence of such strong perturbations [16]. How-
ever, observations show that a wide class of organisms
are able to overcome such strong perturbations and show
evidence of collective behaviour [36, 37]. Therefore it is
important to investigate if the active nature of microor-
ganisms and their strategy to self-organise can overcome
their Stokesian drag and turbulent mixing, to show or-



FIG. 1. A representative snapshot of a randomly chosen sub-
set, for clarity, of a population of microorganisms which shows
collective, flocking behaviour. The blue arrows are the indi-
vidual velocity vectors; the thick red arrow is a guide to the
eye showing the average direction in which the flock is moving.
(See also the online videos from our simulations [46].)

ganised, flocking behaviour in a three-dimensional (tur-
bulent) fluid environment? And, if so, are there preferred
sizes and shapes which lead to flocking as a spontaneously
emergent phenomenon in a collection of self-propelled
particles in a turbulent flow?

We therefore perform detailed numerical simulations of
the motion of a suspension of self-propelled active par-
ticles, of different shapes and sizes, in three-dimensional
turbulence. We use a standard pseudo-spectral method
to obtain turbulent solutions of the driven, incompress-
ible Navier-Stokes equation and choose parameters to en-
sure a Taylor-scale Reynolds number Rey = 130 which
is consistent with typical marine settings [38]. These
microorganisms, modelled as spheroids, have both rota-
tional and translational degrees of freedom and their dy-
namics is governed by (a) the drag due to the carrier flow
which depends on their individual sizes and shapes, (b)
their self-propelled velocity, and (c) their short-ranged
alignment interactions with other individuals within a
neighbourhood. We ensure that the particle sizes are
smaller than the characteristic Kolmogorov length scales
of the fluid. The dynamics of such particles are charac-
terised by their (unit) orientation vector p; following [39]
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and their translational velocity vector, determined from
the linear Stokes drag model (valid for small particles)

for non-spherical particles [20, 21, 40]
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where i is the particle index. Not surprisingly the in-
stantaneous orientation is determined by the local geom-
etry of the advecting flow u, namely the symmetric S
(strain rate) and antisymmetric €2 (vorticity) tensors of
the fluid-velocity-gradients at the particle positions and
inertial effects in the rotational dynamics are negligible
as shown in previous studies [41, 42]. Inertial effects are
however important in the translational degrees of free-
dom (Eq. (2)) where the effective drag on the individual
depends on the instantaneous orientation in the flow as
well as its shape «, the ratio of the semi-major and mi-
nor axes of the particles [43, 44]: a = 1 is a spherical;
a < 1is disk-like (oblate) and « > 1 is rod-like (prolate).
Thus, the resistance tensor K and the orthogonal trans-
formation matrix A are necessary to take into account
the shape of the microorganism [43, 45] and this leads
to a time-dependent drag coefficient, in contrast with
the constant drag associated with a spherical particle.
However, for convenience we define the average Stokes
number St = 7,/7, [41, 45] to quantify our results as
well as compare microorganisms of different shapes; 7,
is the characteristic small-scale Kolmogorov time-scale
of the ambient fluid. Our particles are of course active
with a self-propelled velocity along the orientation vec-
tor vop;. Coupling this with translational equations of
motion, the instantaneous velocity vector of the i-th indi-
vidual is a superposition of these two competing effects,
namely v; = v; + voP;.

Let us finally introduce interactions in a collection of
such active microorganisms. We use Vicsek-like inter-
actions [23] to ensure that at discrete time intervals AT
each individual ¢ orients itself along the average direction
0’8 of all individuals Ny, (with the same shape and size)
within a radius of interaction ri,; of it. This radius of in-
teraction is a way to ensure, as is the case in actual living
organisms, that an individual is not able to see others in
the population who are physically far away. Of course
this assessment of the average orientation cannot be per-
fect. To account for this imperfection we introduce an
additive small random noise in the calculation of @A;"®
for each individual. This implies

vi(ts) = |vi(t)[B5®, 3)

where t, = mAT (m is an integer). A similar strategy
is used for the re-orientation at discrete time intervals
for the vector P;. Between successive reorientations, par-
ticles evolve through the linear, Stokes drag model and
its self-propelled velocity as described. We report results
from 3 different values of 7y, namely, 0.037, 0.27, and
0.47. (This strategy is also found to be useful for many
other purpose such as collective foraging [36].) We also
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FIG. 2. Representative log-log pseudo-color plots of the global order parameter as a function of the size and shape for (a)
Tint = 0.03m and vo = 0, (b) Trmint = 0.27 and vo = 0.2uy,, and (¢) 7ine = 0.47 and vo = 1.Tu,.

use three different values of the self-propelled velocity:
vo = 0 (the passive case), vg = 0.2u,, and vo = 1.7u,,
where u,, is the characteristic small-scale (Kolmogorov)
fluid velocity. Furthermore we use several values of «
and St (which corresponds to particles, or microorgan-
isms with sizes which vary between 1um to 50um) and
perform simulations with N, = 50,000 particles for every
a, St, Ting, and vg.

It is useful to begin with an intuitive picture of whether
there is any evidence of collective motion in our model.
This is best seen online in videos [46] of the time evolu-
tion of a collection of such microorganisms with different
shapes, sizes, activity (vg) and ranges of interaction (i)
with random initial positions. These simulations show
convincingly how flocking emerges only when conditions
are right in terms of not only shapes and sizes but also
vo and rint. Indeed, for the cases where they do flock, a
snapshot of the velocity vectors of the individuals (Fig. 1)
clearly reflect the level of ordering in our model. For clar-
ity, in Fig. 1 we only show a randomly chosen subset of
the total N, rod-like (o« = 2.0) and inertial (St = 2.0)
microorganisms in the flow.

With this picture in mind, and visual evidence of flock-
ing (depending on the type of microorganism), we cannot
refrain anymore from making our study quantitative. A
convenient way to quantify the degree of flocking, is to
measure the global order parameter [23]
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where the angular brackets denote a time-average (after
the initial transients in their motion have died down) and
V; is the unit velocity vector of the j-th individual. This
order parameter ought to vary from species to species of
different shapes and sizes as well as depend on the level
of activity and radius of interaction. Should organisms
flock, then all velocity vectors must point in the same
direction yielding ¢, = 1.0. On the other hand, if there
is no ordering, then the velocity vectors ought to point

in different directions for different individuals leading to
®,, = 0.0. Hence, since by definition 0.0 < ®,, < 1.0, such
a global order parameter quantifies the degree of flocking
in a species unambiguously.

Figure 2 shows representative pseudo-color plots of &,
as a function of « and St (on a log scale) for different i,
and vy (see figure caption). These results are intriguing
for several reasons. For individuals which are not active,
i.e.,, v = 0, microorganisms flock only when they are
sufficiently large, rod-like and with a very large radius
of interaction. This clearly shows that in the absence of
activity, it is extremely hard for microorganisms which
are small, slender or disk-shaped, to overcome turbulent
mixing and drag to self-organise. In this parameter space,
even if an individual aligns with its neighbour, eventu-
ally that direction gets randomised due to the turbulent
medium and therefore it cannot continue with the di-
rection over time which is necessary for the flocking to
emerge.

However as soon as we turn on activity, i.e., vg # 0
but still small (Fig. 2b), we obtain non-zero values of
the order parameter for all species only for large sizes
(St > 1). For smaller-sized microorganisms for a given
radius of interaction, the shape plays a crucial role: Rods
are more likely to show collective behaviour than disks
because, as has been known, correlation time-scales for
rods are considerably longer than disks [45]. Understand-
ably, as the 7y, and vy increase (e.g., Fig. 2¢), the degree
of flocking enhances for all species. Nevertheless, it is
clear from our results that both size and shape matter—
in a non-monotonic and complicated way—decisively in
determining the ability of a species to overcome turbu-
lent mixing and drag to swarm. Indeed for a significant
range of values of «, St, vy, and 7y, we do find evidence
of near perfect flocking (®, — 1.0).

This is the first clear evidence of how collective be-
haviour can emerge in a collection of microorganism in a
complex, random turbulent medium. Before we provide
a theoretical explanation of this emergent phenomenon,



FIG. 3. Representative plot of the nematic order, as a func-
tion of size St, for differently shaped microorganisms o for
Tint = 0.2m. We show results for both active (vg = 0.2uy) as
well as (inset) passive (vo = 0) microorganisms.

it is useful to characterise one additional aspect, namely
the nematic order [47], of these flocks. This is done most
conveniently through the tensorial order parameter

Q=<{’i®‘7j—;1>; (5)

whence we can calculate the scalar order parameter, asso-
ciated with the nematic order, S,(x) = ngnjQap, where
n’(x) are the local symmetry directions of the fields.
Since we are interested in the global behaviour of this sys-
tem, we calculate the global nematic order ©, = f dx.S,.
In Fig. 3 we show a representative plot of ©,, for a given
radius of interaction and self-propelled velocity as well
as for, in the inset, the same rj,; but for vg = 0, as a
function of the Stokes number and for different shapes
«. Although we have not obtained perfect nematic or-
dering, we do see that a certain level of order emerges
only for Stokes numbers larger than 1. From the inset, it
is clear there is no ordering when particles are essentially
passive but still allowed to interact over the same length
scale. This is of course consistent with the picture that
emerged when we looked at the global order parameter
®,. (A similar definition is possible for the orientation
vector p; we have checked that the fluctuations are far
stronger for the orientation vector as discussed at the end
of this paper.)

We know that finite-sized, passive, inertial particles
tend to preferentially concentrate for a range of Stokes
numbers. A convenient quantification of this inhomoge-
neous distribution of particles in a flow is through the cor-
relation dimension Dy which is measured via the proba-
bility of finding two particles within a distance r, namely,
P<(r) ~ rP2. For tracers (St = 0), which are space fill-

ing, Dy = 3 (in 3 dimensional flows). However for non-
tracers (St # 0), it decreases from Dy = 3 with increasing
St and reaches a minima for St = O(1), before increasing
again to saturate at Dy = 3 for St > 1 [21]. It is this non-
monotonic (as a function of the Stokes number) nature
of preferential concentration of heavy, inertial particles
which we show is central to flocking of our active parti-
cles. Hence, the particle dynamics ensure that for certain
values of a and St more organisms are forced, mechani-
cally, to be close to each other and hence an enhancement
in the degree of flocking. Therefore if the microorganisms
are active, such preferential concentration plays a dom-
inant role in the emergence of flocking. In the absence
of preferential concentration, the chances of a large frac-
tion of microorganisms clustered close enough for their
mutual alignment-interactions to become effective would
be minimal.

Our findings could be of importance for fabrication
and design of artificial micro-swimmers. But are they
equally relevant for observations in nature? Typical
marine environments are known to be turbulent with
a Reynolds number comparable to the ones we use in
our simulations and a Kolmogorov scale n of the or-
der of a few mm [36, 38]. In such an environment,
microorganisms—not necessarily spherical—such as zoo-
plankton often show collective behaviour [48]. Recent
measurements suggest that this class of organisms have a
variety of sizes which could range from 1pmm to 10mm
and, hence, less than 7 [36, 48]. This scale separation
ensures that our modeling of microorganisms through a
combination of the linear Stokes drag model [20-22], for
the translational degrees of freedom and the Jeffery equa-
tion [39, 45, 49, 50], for the rotational degrees of freedom,
is valid. Additionally, the associated response time scale,
the Stokes time, 1us < 7, < 1s, of such microorganisms
when compared to the Kolmogorov time scale 7, of the
ocean environment leads to Stokes numbers of the same
order as we have used in our study [48].

These arguments suggest that our theoretical frame-
work, even with its limitations (see below), is a rele-
vant model for small organisms in a marine environ-
ment. Our results show that collective, ordered mo-
tion in active systems is an emergent phenomenon which
can spontaneously occur even in a hostile environment
where the range of interactions (here, quantified by rint)
for a collection of individuals is restricted. These re-
sults show that purely mechanical principles related to
the dynamics of finite-sized particles in turbulence are
critical in forcing certain organisms to flock: Given the
right size and shape, microorganisms are brought in much
closer proximity to each other allowing them to behave
cooperatively and flock. Indeed recent studies of pas-
sive, non-interacting, non-spherical particles shed light
on the correlation between particle trajectories and flow
directions [45, 49, 50]; as particles become interacting
and self-propelled the competing effects between the pas-



sive and active cases lead to our very interesting—and
surprising—discovery that shape and size both matters
for stabilising model flocks in turbulent flows. Without
these underlying principles of fluid mechanics a random,
chaotic environment would have pushed individuals far
apart leading to a break up of flocks. Hence, by bringing
together basic principles of turbulent transport and ac-
tive matter, we have, for the first time, shown how model
flocks can form in a collection of self-propelled individuals
moving in a turbulent flow. Such cooperative behaviour
has recently been reported for dry, granular systems [51]
but not for the complex system that we report here. More
pertinently, Durham, et al. [37], considered modelled ac-
tive tracers to understand the observed patchiness of mi-
croorganisms such as phytoplankton: However, the idea
of collective motion and the role played by inertia as well
as the translational and rotational degrees of freedom was
largely ignored in this and other studies.

Before we conclude, it is essential to understand some
of the limitations of our model. Our model cannot cap-
ture the more dramatic instances of flocking in nature
which involve macroscopically large organisms such as
birds. This class of phenomena should be studied with
a similar fluid mechanics approach in future by resolving
boundaries and developing ideas for large structure-fluid
interactions. Furthermore, the role of hydrodynamic in-
teractions in flock stability ought to be investigated sys-
tematically within the present model. Finally, a more
systematic study of finite (population) size effects and
the effect of intrinsic noise as well as the level of activity
is left for future work.

We hope that this novel—yet simple—mechanical ap-
proach, bringing together already well-established con-
cepts in different areas, is an important ingredient in
explaining why flocking is ubiquitous, and is as much
a strategy as it is forced. Such an approach could also
lead to new ideas beyond the present study such as de-
veloping more realistic predator-prey models in complex
environment.
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