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We demonstrate a novel method to fabricate arrays of resorcinol-

formaldehyde xerogel (RFX) based high aspect ratio (HAR) three-

dimensional (3-D) hierarchical C-MEMS structures. Starting from 

a master pattern of HAR 3-D posts fabricated in SU-8 negative 

photoresist by photolithography, a negative PDMS stamp with 

arrays of holes was prepared by micromolding. The PDMS stamp 

was then used to fabricate HAR 3-D RFX posts by replica molding. 

The 3-D RFX posts thus fabricated were electrosprayed with SU-8 

or an RF sol in the form of submicron or nano sized droplets and 

followed by pyrolysis to yield HAR 3-D hierarchical carbon posts. 

To characterize their use in C-MEMS based batteries, 

galvanostatic (charge and discharge) experiments on RFX derived 

carbon showed that it can be reversibly intercalated with Li ions 

and possesses superior intercalation properties as compared to SU-

8 derived carbon which is a widely used material in C-MEMS.  

 

 
Introduction 

 

In order to meet future energy demands, improvement of Li ion battery technology in 

terms of specific capacity, power, manufacturing cost, safety and sustainability are 

important research goal (1-5). Possible strategies to improve Li ion battery technology 

include developing new active electrode materials (anode and cathode), better separators 

and electrolytes, and reconsidering the basic architecture of these batteries (1-26). In 

commercial Li ion batteries, carbon materials are primarily being used as anodes (1, 2, 4, 

8, 10-29). There are two broad categories of carbon materials; soft (graphitic) and hard 

(non-graphitic) carbon. Advantages and disadvantages associated with either type of 

carbon materials for use in Li-ion batteries are discussed elsewhere (3, 18-20, 27, 28). 

Resorcinol-formaldehyde (RF) based porous carbon aerogels, first introduced by Pekala 

(30) in 1989 have been studied as anode materials in batteries and supercapacitors (23-

25). Activated carbon, carbon nanotubes, glassy carbon and many carbon allotropes have 

been investigated as potential electrode materials (3, 12, 18, 19, 26). Although many new 

anode materials have been researched over the years, fewer attempts have been made to 

rethink the electrode design (4-14). In one of those redesign efforts geared towards 

achieving enhanced power and energy density, it was demonstrated that 3-D electrode 

architecture is more useful than the conventional thin film (2-D) approach (4, 6-11). This 
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can be attributed to the reduced ionic transport distances and the accommodation of more 

active electrode material in the same footprint in a 3-D architecture compared to a thin 

film format (6, 7, 9). A wide variety of methods are currently being explored for the 

fabrication of 3-D electrode arrays (4, 7, 8, 10, 11), the most promising of which has been 

direct photo-patterning and pyrolysis of SU-8 photoresist. Recently, Madou et al. (13,14) 

demonstrated mathematically that a fractal electrode design constitutes a more optimal 

design for energy conversion devices because of the maximization of electrochemically 

active surface area while minimizing the electrical work involved. However, the 

fabrication of a truly 3-D multiscale or fractal carbon electrodes remains a challenging 

task.    

In this study, we used resorcinol-formaldehyde xerogel (RFX) (23-25, 30, 31) as an 

organic precursor to yield non-porous dense carbon. We demonstrate the ease of 

fabrication of high aspect ratio (HAR) RFX 3-D structures by replica molding. We show 

that both the material (RF gel) and the fabrication method (micromolding and 

electrospraying) used here for 3-D Li battery architecture are superior to the fabrication 

of micro-post arrays by SU-8 using photolithography. Further, we fabricated arrays of 

carbon hierarchical microposts using a combination of top-down (replica molding) and 

bottom-up (electrospraying) manufacturing approaches. Finally, we show that RFX 

derived non-porous dense carbon films can be reversibly charged and discharged with Li 

ions and thus may be a potential contender as anode materials for 3-D microbattery 

architecture. 

 

Experimental 
 

We first fabricated 3-D micro-arrays of SU-8 by photopatterning using standard 

photolithography. SU-8 is a negative photoresist that yields glassy carbon upon pyrolysis 

and this carbon can be reversibly intercalated with Li ions.  Madou et al. demonstrated 

the use of SU-8 photoresists to fabricate high aspect ratio pillars by photolithography (4, 

8, 10, 11). One can achieve aspect ratios as high as 20 by this top-down method (8, 10, 

11). These SU-8 HAR structures on Si wafers were then used as a master stamp. A 

mixture of a PDMS elastomer and a curing agent (supplied by Dow Chemicals) in a 10:1 

weight ratio was prepared and cast over these master stamps for making negative replicas. 

These replicas were cured at 120
o
C for 12 h in an oven and after curing and cooling; the 

PDMS replicas were gently peeled off the master stamps.  

RFX was synthesized by the polycondensation of resorcinol and formaldehyde in an 

organic solvent (acetone) in the presence of an acidic catalyst (hydrochloric acid). All the 

chemicals used in preparation of RFX were purchased from Qualigens Fine Chemicals, 

India. First a clear solution of Resorcinol (2.0 gm) and Formaldehyde (2.5 ml) was 

prepared by stirring magnetically for about 15 min. A separate solution of acetone (30 

ml) and hydrochloric acid (0.7 ml) was prepared and mixed with the RF clear solution. 

After stirring this mixture for about 10 min, a light pink colored RF sol is formed. The 

RF sol was then poured into the PDMS template and stored at room temperature for 24 h 

to reach the sol gelation stage. Once the RF sol becomes solid and changes to a dark 

brown color, the PDMS stamp was carefully peeled off without destroying any of the 

resulting patterns. The patterned RF gel HAR structures were dried in a controlled 

environment as in the scheme shown below to allow for their isotropic shrinkage without 

cracking (Figure 1a). These drying conditions optimized for isotropic crack free 

shrinkage are as follows: At room temperature (~ 30 °C) for 24 h; At 50 °C for 12h; At 

60 °C for 12 h; At 80 °C for 6h; At 120 °C for 2h. 
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Figure 1. Schematic of the (a) fabrication of RFX based HAR 3-D posts; (b) deposition of 

SU-8 or RFX based submicron and nano droplets on RFX based 3-D posts by 

electrospraying to make hierarchical structures; (c) pyrolysis to yield an array of RFX 

derived HAR 3-D hierarchical carbon posts 

 

To obtain the desired hierarchical carbon structures, we used electrospraying on RFX 

based 3-D microarrays as shown in the schematic in Figure 1b). During electrospraying a 

polymer spray is ejected towards a collector screen from a spraying syringe filled with 

polymer solution by applying a high voltage between syringe and substrate. The 

electrospraying set up was homebuilt and details of this set-up were reported in previous 

papers (31, 32). 

SU-8 photoresist (SU-8 2002; viscosity 7 cSt at 25°C) (MicroChem Corp. USA) was 

electrosprayed to deposit sub-micron beads while RF sol was electrosprayed in the form 

of nano-sized droplets. We have shown that by fine tuning the electrospinning parameters, 

one can get a variety of RF morphologies including fibers, beaded fibers and isolated 

beads only (32). The conditions reported here were specifically optimized for obtaining 

beads (31, 32). More details on the optimization of electrospinning parameters for RF sol 

can be found in our work reported elsewhere (31, 32). 

After conformal deposition of SU-8 or RF sol based submicro- and nano- beads 

respectively on the high aspect ratio 3-D RFX structures, the entire integrated constructs 

were pyrolyzed in an inert atmosphere to yield HAR 3-D hierarchical carbon structures 

(Figure 1c). The pyrolysis conditions were as follows: from room temperature to 300°C 
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with linear ramping in 3 h; At 300°C for 1 h; From 300°C to 900°C in 2 h; At 900°C for 

1 h.  

The above process was followed by naturally cooling over nearly 12 h while 

maintaining a constant nitrogen flow rate of 0.2 lpm throughout the process.  
 
Electrochemical measurements 

An RF sol, prepared as described above, was spin coated onto a Si wafer (with an 

oxide layer of 500 nm) at 3000 rpm for 20 s to fabricate thin films. Drying and pyrolysis 

conditions were the same as we described above. The RFX derived carbon films so 

obtained were used as working electrodes while a Li foil (0.75 mm thick, 99.9% purity, 

Aldrich) was used as counter electrode in an electrochemical cell. The electrolyte used 

was a 1M solution of lithium per chlorate (95% purity, Aldrich) in a 1:1 (v/v) mixture of 

ethylene carbonate (Anhydrous, 99%, Aldrich) and dimethyl carbonate (99% purity, 

Aldrich). An electrochemical test cell made of Teflon was designed with an effective 

working electrode area of 0.654 cm
2
. Galvanostatic (charge and discharge) experiments 

were performed at two different current densities 76.4 and 152.7 µA cm
-2

 at between 0.05 

and 3.0 V using a multichannel potentio/galvanostat (Gamry Instruments). Soaking time 

of 2 hours was maintained for all the test samples. Thickness of RFX derived carbon 

films were measured using surface profilometer (Tencor Alpha Step 200). Specific and 

gravimetric capacities as reported later were calculated as follows: 

Specific capacity = current (mA) x time (h) / area of the electrode (cm
2
) 

Gravimetric Capacity= (specific capacity) / (density (gcm
-3

) x thickness (cm)) 

 

Results and Discussion 
 

The  C-MEMS electrode fabrication process starts with an array of 3-D SU-8 

cylindrical posts (aspect ratio ~6, width ~ 25 micron) as a master pattern for replica 

molding (Figure 2a). Fabrication of these original SU-8 HAR 3-D posts is based on 

photolithography as reported elsewhere (8, 10, 11). A PDMS stamp, as shown in Figure 

2b, was then prepared by replica molding using this SU-8 master pattern. In the next step, 

this negative PDMS replica was used as a master to create an array of 3-D RFX 

microposts as illustrated in Figure 2c. By controlling the molding process parameters (as 

detailed in the experimental section), the fidelity of the printing pattern can be maintained 

adequately. Thus with a proper control of conditions, replica molding is demonstrated to 

be an effective route for fabrication of 3-D structures in RFX over a large area. This 

pattern can be subsequently pyrolyzed to obtain an array of HAR carbon posts (Figure 

2d). The carbon yield of RFX was nearly 50%. In this manner it is easy to produce a large 

number of HAR 3-D RFX posts over large surface areas using a single SU-8 master 

pattern without the need of UV lithography every time SU-8 derived carbon post arrays 

are required in 3-D microbattery mass manufacture. Besides fabricating round posts, we 

have also used a cross shaped design (aspect ratio ~4, width ~50 micron) for the 3-D 

posts (Figure 2e). It was recently
 
demonstrated that cross shaped high aspect ratio posts 

retain their integrity better upon pyrolysis as compared to cylindrical posts which 

aggregate rather readily due to capillary effects (4). The PDMS replicas (Figure 2f) retain 

the cross shaped structures with high fidelity and were again used as the master for 

making 3-D structures from the RF gel. 
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Figure 2. (a) HAR 3-D cylindrical posts in SU-8 used as master pattern; (b) PDMS 

replica showing holes; (c) RFX based cylindrical posts; (d) RFX derived cylindrical non-

porous carbon posts; (e) HAR 3-D posts with cross shaped design in SU-8; (f) PDMS 

replica showing holes; (g)-(h) RFX derived 3-D cross shaped non-porous carbon posts  
 

It is important to note that during the conditions of drying employed here, RFX 

shrinks isotropically (33), thus maintaining  the aspect ratio of the 3-D RFX posts  very 

close to that of the original SU8 master stamp. However, the absolute dimensions of the 
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posts (diameter and height) are reduced by nearly 60% of the original SU-8 pattern. A 

further shrinkage (~10%) was observed during pyrolysis. 

After the successful fabrication of RFX derived HAR 3-D carbon posts, we further 

integrated these microstructures with sub-micron and nano-scale carbon beads to 

fabricate multiscale, fractal-like hierarchical carbon structures. Conformal deposition of 

micro and nano particles over the array of RFX based microposts was carried out by 

electrospraying SU-8 photoresist or RF sol. Electrospraying and electrospinning are 

established techniques to prepare nanostructures with various morphologies (fibres, 

beaded fibres and beads) on a collector surface. The exact type of nanostructure depends 

on the process and solution parameter details. In electrospraying, a jet of polymer 

solution issues from a nozzle by applying a high voltage between the nozzle and a 

substrate. The high voltage allows for the elongation of the liquid meniscus at the nozzle 

opening to form a jet which finally disrupts into fine droplets (in electro spraying) or 

fibers (in electro spinning). In previous work, we optimized the various process 

parameters involved in the electrospraying of SU-8 and RF sols to form roughly 

monodisperse carbon sub-micron and nano- spheres (31, 32).  

After electrospraying, the polymer post arrays covered with polymer beads were 

pyrolyzed to form HAR 3-D carbon posts covered with sub-micron and nano sized 

carbon beads as shown in Figure 3. Figure 3a-c shows the conformal nature of the 

deposition of SU-8 derived carbon submicron spheres (average diameter 275.4 ± 83.1 

nm) on the cross-shaped carbon posts. A magnified view of a side and a top of a cross-

shaped post clearly demonstrates that this novel approach to fabricate hierarchical 

structures is quite efficient in covering complex 3D substrates. Similarly, RFX derived 

electrosprayed carbon nanospheres (average diameter 72.5 ± 21.2 nm) were deposited on 

RFX derived 3-D carbon posts (Figure 3d-f). Cylindrical posts were also integrated with 

SU-8 derived submicron carbon spheres to obtain an array of hierarchical carbon posts as 

shown in Figure 3g-i.  

Thus, replica molding using RFX is easy and cost effective for the fabrication of large 

area, multiple samples of high aspect ratio arrays of carbon micro-posts as compared to 

photolithography of SU-8 photoresist. Additionally by electrospraying, we were able to 

fabricate arrays of hierarchical carbon posts also which have higher external surface area. 
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Figure 3. (a) An array of RFX derived cross shaped carbon posts integrated by 

electrosprayed SU-8 derived submicron size carbon spheres; (b) magnified side view of a 

post; (c) magnified view of top of the one of the posts showing a conformal deposition of 

submicron carbon spheres; (d) an array of RFX derived cross shaped carbon posts 

integrated by electrosprayed RFX derived carbon nanospheres; (e) magnified side view 

of a post; (f) magnified view of top of the one of the posts showing a conformal 

deposition of carbon nanospheres; (g) an array of RFX derived cylindrical carbon posts 

integrated by electrosprayed SU-8 derived submicron size carbon spheres; (h) magnified 

side view of such a hierarchical post; (i) magnified view of top of the one of the 

cylindrical posts showing a dense conformal deposition of submicron carbon spheres 

 

Further, in order to establish the use of RFX derived 3-D hierarchical arrays of non-

porous carbon microposts in C-MEMS batteries, the electrochemical behavior of RFX 

derived non-porous dense carbon films were tested galvanostatically as shown in Figure 4. 

The pyrolyzed RFX exhibited reversible intercalation-deintercalation of lithium as 

demonstrated in Figure 4. 

 

Figure 4a shows first six charge/discharge cycles at a constant current density of 76.4 

µA cm
-2

. The reason the discharge capacity in the first cycle is much larger than in 

subsequent cycles can be attributed to the formation of a solid electrolyte interphase 

(SEI) layer on the electrode surface (29).  SEI film forms due to the electrochemical 

reduction of electro-active species present in the electrolyte and it is widely recognized 

that the presence of this film plays a very important role in battery performance (29). For 

the next five cycles we observe that the discharge capacity remains nearly constant. This 

type of cycling behavior is consistent with the behavior observed for the traditional coke 

materials used as lithium electrode materials (8, 10, 11). Figure 4b and 4c illustrate a 
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comparison of gravimetric and specific capacities of RFX derived carbon with SU-8 

photoresist derived carbon at two different current densities evaluated based on the 

working electrode area (76.4 µA cm
-2 

and 152.7 µA cm
-2

).  The mass of the active carbon 

material was 0.194 mg while the thickness of the RFX derived carbon films was 

measured to be 1.748 µm. The reversible capacity of the RF gel derived carbon at a 

current density of 76.4 µA cm
-2 

was found to be 195.1 mAh/g which is similar to that of 

SU-8 derived carbon (~220 mAh/g) (11). Similarly at a current density of 152.7 µA cm
-2

 

also, the reversible capacity for RFX and SU-8 derived carbon (4) was found
 
to be nearly 

equal (160.0 and 180.1 mAh/g respectively). Columbic efficiency as defined by ratio of 

discharge to charging capacity was calculated to be more than 90% for any given cycle.  

We further calculated the irreversible capacity as the difference between the first and 

sixth charge cycle at a current density of 76.4 µA cm
-2

. For RFX derived carbon, it was 

found to be 213.6 mAh/g which was significantly less than 304.2 mAh/g as reported for 

SU-8 derived carbon (4). Next, we calculated the reversible and irreversible specific 

capacities as shown in Figure 4c. At both current densities (76.4 µA cm
-2 

and 152.7 µA 

cm
-2

), these values were found to be close to those for RFX and SU-8 derived carbon 
[4]

 

(0.058 and 0.048 mAh/cm
2
 respectively). However for RFX derived carbon, the 

irreversible specific capacity was found to be significantly less (0.0636 mAh/cm
2
) than 

what has been for SU-8 derived carbon (4) (0.0788 mAh/cm
2
). In other words, 

irreversible capacity was found to be 9.5% as compared to ~40% for SU-8 derived 

carbon.  For graphite also, irreversible capacity is normally below 10%. It is to be noted 

that percentage irreversible capacity was calculated as follows: [% = (irrev. – rev.) /rev. x 

100]. These results establish that RFX derived carbon can not only be charged and 

discharged with Li ion, but also shows less irreversible capacity compared to SU-8 

derived carbon. Percentage irreversible capacity losses were found to be similar to that of 

graphite. Therefore, RFX derived carbon has potential to be used as an anode material in 

energy storage devices including Li ion battery. 

 

 
 

Figure 4: (a) Galvanostatic charge/discharge cycle behavior of RF gel derived carbon 

film for first six cycles; (b) comparison of gravimetric capacity of RFX derived carbon 

with SU-8 derived carbon; (c) comparison of specific capacity of RFX derived carbon 

with SU-8 derived carbon. The reported values for capacities in (b) and (c) are after 20 

cycles. 

 

Conclusions 
 

We have introduced RFX as a polymer precursor to the fabrication of complex carbon 

shapes through pyrolysis including arrays of high aspect ratio 3-D carbon micro posts. By 

using soft lithography in the fabrication process, we avoid the use of UV lithography 

equipment each time a new batch of 3D carbon structures are to be made. We also 
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developed a simple and novel method to integrate polymer nano-spheres with these RFX 

posts by electrospraying, yielding a 3-D high aspect ratio hierarchical array of carbon 

posts upon pyrolysis. As these hierarchical carbon structures have high external surface 

area, these structures can be very useful in various applications where a high surface area 

is desirable such as in energy storage devices and sensing devices. To enable their use in 

C-MEMS batteries, we have shown that RFX derived carbon can be reversibly 

intercalated with Li ions. We further compared the electrochemical performance of RFX 

derived carbon with SU-8 derived carbon, a material used in C-MEMS batteries. 

Interestingly, RFX derived carbon not only shows similar values for the reversible 

gravimetric and specific capacities as that of SU-8 derived carbon but shows a significant 

reduction in irreversible capacity compared to SU-8 (percentage irreversible capacity 

similar to graphitic carbon electrode). These results indicate that RFX derived carbon has 

excellent electrochemical properties and therefore could be an important contender as an 

anode material for Li ion batteries. The ability to easily and inexpensively pattern arrays 

of 3-D hierarchical carbon structures opens up a wide range of possibilities for 

researchers to develop various new electrodes for energy storage devices and sensors. 
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