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Abstract

In this paper we analyze the performance of single stream and multi-stream spatial multiplexing (SM)

systems employing opportunistic scheduling in the presence of interference. In the proposed downlink

framework, every active user reports the post-processing signal-to-interference-plus-noise-power-ratio (post-

SINR) or the receiver specific mutual information (MI) to its own transmitter using a feedback channel.

The combination of scheduling and multi-antenna receiver processing leads to substantial interference

suppression gain. Specifically, we show that opportunistic scheduling exploits spatial interference alignment

(SIA) property inherent to a multi-user system for effective interference mitigation. We obtain bounds for

the outage probability and the sum outage capacity for single stream and multi stream SM employing real

or complex encoding for a symmetric interference channel model.

The techniques considered in this paper are optimal in different operating regimes. We show that the sum

outage capacity can be maximized by reducing the SM rate to a value less than the maximum allowed value.

The optimum SM rate depends on the number of interferers and the number of available active users. In

particular, we show that the generalized multi-user SM (MU SM) method employing real-valued encoding

provides a performance that is either comparable, or significantly higher than that of MU SM employing

complex encoding. A combination of analysis and simulation is used to describe the trade-off between the

multiplexing rate and sum outage capacity for different antenna configurations.

I. INTRODUCTION

Interference alignment (IA) [1]- [5] techniques have been proposed as a means to achieve the optimum

degrees-of-freedom (DOF) of an interference channel. This technique relies on symbol extension over

multiple time/frequency epochs, together with channel state feedback for precoding. Even for the simple



case of K = 3 transmitters, optimal DOF can only be attained by expanding the symbol set over infinitely

large number of time/frequency epochs. Approaching DOF with limited symbol set still remains an open

problem.

Non-circular signals play an important role in increasing the capacity of interference channels. Recently, [6]

has shown that non-circular signals offer higher DOF compared to conventionally used circularly symmetric

signals. Based on this result, [7] proposed asymmetric complex-valued signaling together with multi-user

diversity (MUD) [8], [9] to obtain 1.5 DOF for K = 3 transmitter case. This method relies on transmitter

precoding and MUD to obtain the required gains. In [4], conditions for satisfying IA solutions are derived

for K-user MIMO interference channel. This method requires global channel state information at the

transmitter for enabling interference mitigation at the receiver. Additionally, [10] considered non-circular

complex Gaussian signaling with two users where real-valued signaling is shown to provide optimum sum

rate.

In [11], an opportunistic interference nulling (OIN) method is proposed for the uplink with K base stations

(BSs) each with M antennas, and M single antenna users simultaneously communicating with their own

BSs. In this method, each BS opportunistically selects a set of users who generate the minimum interference

to the other BSs. It is shown that KM DOFs are achievable under the OIN protocol, if the total number of

active users in a BS scales at least as SNR(K−1)M where SNR is the operating signal-to-noise power ratio.

This work is further generalized in [12] for the case of user having N antennas. It is shown that a singular

value decomposition (SVD)-based OIN method can reduce the required users to SNR(K−1)M−N+1 by

optimizing weight vectors at each user.

In this paper, we consider K transmitter downlink interference channel in which all the transmitters employ

spatial multiplexing (SM) [13]-[17] using Nt antennas. Each transmitter simultaneously serves a group of

Nt users that are selected from a pool of L active users. We consider two transmission formats employing

either complex or real encoding. Performance analysis is carried out for each case independently. Every

user in the system is assumed to have Nr receiver antennas. Our analysis is general and encompasses the

special case of single antenna at the transmitter and receiver. In the considered framework, every active

user periodically reports the post-processing signal-to-interference-plus-noise-power-ratio (post-SINR) of

the receiver to the serving transmitter. We consider a particular approach where interference is mitigated in

two stages. In the first stage, the receiver exploits multiple receiver antennas to suppress a portion of the
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interference. In the second stage, an opportunistic scheduler selects a group of users with highest sum rate

so that the scheduled users become nearly free of interference. We provide analytical results quantifying

the interference suppression gain and outage capacity using a successive max-SINR scheduler. To this

end, we consider a symmetric interference channel (SIC) model where the power level of the dominant

interferers are assumed to be equal while the weak interference is treated as additive white Gaussian noise

(AWGN); this assumption is also used in [11], [12] to study DOF in interference limited networks.

We analyze the performance for the following operational scenarios: a) Single stream transmission (SST)

with complex-valued encoding b) MU SM with complex-valued encoding c) SST with real-value encoding

and its generalization to MU SM employing real-valued encoding. The analysis is first carried out for the

SST modes employing either complex or real encoding and these results are further generalized to MU

SM cases.

In section II, first we analyze the performance of SST technique with max-SINR scheduling. We show

that opportunistic scheduling exploits spatial interference alignment (SIA) property inherent to a multi-

user system for effective interference mitigation. More specifically, we show that the post-SINR of the

scheduled user employing multiple antenna minimum-means-square-estimation (MMSE) receiver reaches

a high value when the interference covariance matrix (ICM) of the scheduled user becomes nearly rank

deficient. This condition generally occurs when the scheduler selects a particular user whose interfering

channel vectors tend to become linearly dependent. This phenomenon is referred to as SIA. We obtain a

tight bound for the outage probability and the sum outage capacity which shows that we get a sum outage

capacity of K log(1+SNR) bits/sec/Hz when the number of active users L is proportional to SNRK−Nr .

In section III, the analysis for SST with complex-encoding is further generalized to the general case of

MU SM employing complex encoding. Using a sub-optimal successive max-SINR scheduling algorithm,

we show that a sum outage capacity of KNt log(1 + SNR) can be obtained when L ∝ SNRKNt−Nr .

In section IV, we propose a transmission method which is suitable for systems with limited antennas

(including the single antenna case) and a large number of interferers. In the proposed system model, all

the transmitters in the network transmit a single data stream using real-valued modulation alphabets. The

receiver at each user collects the real and imaginary parts of the multi-antenna receiver to obtain a virtual

antenna array of size 2Nr. The receiver further filters the real and imaginary parts of the received signal

using a widely linear (WL) MMSE filter [18]- [21] for data detection. We show that this method offers
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a sum outage capacity of K
2 log(1 + SNR) when L ∝ SNR

K
2 −Nr . This result is further generalized

to MU SM employing real-encoding. We show that by spatial multiplexing t real-valued data streams

using t antennas, we get a sum outage capacity of tK
2 log(1 + SNR) when L ∝ SNR

tK
2 −Nr . While

complex-valued MU SM offers a SM rate of R = Nt where Nt takes integer values, real-valued MU SM

gives fractional multiplexing rates of R = t
2 which take values in steps of 0.5. The real-valued encoder

can be viewed as a generalized SM encoder. Using t = 2Nt, we get the same user scaling results as that

of complex-valued encoding. Numerical results are given in section V where we illustrate the trade-off

between the SM rate and achievable capacity. Finally, conclusions are drawn in section VI.

II. SYSTEM MODEL FOR SINGLE STREAM TRANSMISSION

We consider K single antenna transmitters each with L single antenna active users. All transmitters

simultaneously send a single complex-valued data stream to one of the L users. The baseband received

signal for the user with index l that is served by a given transmitter is represented as

yl(k) =
√
Shlxl(k) +

K−1∑

i=1

√

I0gi,lxi,l(k) + nl(k), l = 1, 2, .., L (1)

where k denotes discrete time index, S is the signal power, and I0 denotes the power level of each

individual interferer. The desired and interfering signal channel vectors hl and gi,l for each i are modeled

as multivariate circularly symmetric complex Gaussian random vectors having independent, identically

distributed (i.i.d.) elements with E[hl] = E[gi,l] = 0 and E[hlh
†
l ] = E[gi,lg

†
i,l] = I, where E denotes

the expectation operation and I denotes the identity matrix. The noise term nl is modeled as a circularly

symmetric complex Gaussian noise vector composed of i.i.d. elements with zero-mean and variance N0

2 per

dimension. The operating signal-to-noise power ratio (SNR) is defined as: SNR = S
N0

. The complex-valued

modulation sequences xl(k) and xi,l(k) are assumed to be i.i.d. circularly symmetric complex Gaussian

random variables (r.v’s) with zero-mean, unit variance, and statistically independent of each other.

A. Max-SINR Scheduling based on Post-processing SINR of MMSE

The MMSE receiver weighs and combines the Nr copies of the received signal samples using an un-biased

MMSE filter [22] wl to produce a decision variable zl(k) = wlyl(k), where wl =
√
Sh

†
l R̂

−1
l and

R̂l = E

(
K−1∑

i=1

√

I0gi,lxi,l(k) + nl(k)

)(
K−1∑

i=1

√

I0gi,lxi,l(k) + nl(k)

)†

=

K−1∑

i=1

I0gi,lg
†
i,l +N0I

denotes the short-term noise-plus interference covariance matrix (NICM). The SINR at the output of the

MMSE receiver is given by: γl = Sh
†
l R̂

−1
l hl. Let Rl =

∑K−1
i=1 I0gi,lg

†
i,l be the interference covariance

matrix (ICM) and the symbol † denotes conjugate-transpose operation.
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In the proposed scheduling policy, each transmitter allocates the entire available bandwidth to the user with

highest reported instantaneous post-SINR. The transmitter serves the user with index l∗ with maximum

reported post-SINR i.e.,γl∗ = max (γ1, γ2, .., γL). The transmitter selects a suitable modulation and coding

technique and transmits to the scheduled user at a rate I = log(1+γl∗)
1 where the logarithm is taken with

respect to base 2. We introduce a metric called transmitter outage probability (TOP) which is defined as:

Pout = P (I < log(1 + β)) where log(1 + β) is the target outage capacity of the transmitter and β

is a target SNR which is distinct from the operating SNR.

Further, the TOP can be expressed in alternative form as: Pout = P (max (γ1, γ2, .., γL) < β). To simplify

the analysis, we express the post-SINR in an alternative form. Let rl denote the rank of ICM. Then Rl has

exactly rl positive ordered eigenvalues represented in vector form: λl = [λl,1, λl,2, .., λl,rl ] (λl,1 > λl,2 >

.. > λl,rl), and the remaining Nr−rl eigenvalues are identically equal to zero. Therefore, the eigenvalues of

R̂l can be expressed as: λ̂l,p = λl,p+N0, for p = 1, .., rl and λ̂l,p = N0, for p = rl+1, .., Nr. The rank

of ICM can be expressed as: rl = min(Nr,K − 1). Next, the matrix R̂l is expressed as: R̂l = U
†
l Λ̂

−1
l Ul

where Λ̂l = diag

[

λ̂l,1, λ̂l,2, .., λ̂l,Nr

]

is a diagonal matrix of size Nr ×Nr and Ul represents a unitary

matrix. Using this, the post-SINR can be expressed as

γl = Sω†
lΛ̂

−1
l ωl = S

rl∑

p=1

|ωl,p|2
λl,p +N0

+ S

Nr∑

p=rl+1

|ωl,p|2
N0

, l = 1, 2, .., L (2)

where ωl = [ωl,1, ωl,2, .., ωl,Nr
]T = Ulhl.

When the number of interferers (K − 1) is less than Nr, the ICM becomes rank deficient. As N0 → 0,

the post-SINR scales inversely with N0 for all users in the system. In the high SNR limit, the MMSE

receiver suppresses all K − 1 interferers as long as K − 1 < Nr. In the opposite case, for K − 1 ≥ Nr,

the ICM has full rank. In this case the post-SINR is dictated by the instantaneous eigenvalues of the

ICM. Though MMSE receiver by itself cannot provide full interference suppression all the time, it leads

to additional interference suppression gain when an opportunistic scheduler selectively schedules a user

with maximum instantaneous post-SINR. In the following, we consider performance analysis for the case

when K − 1 ≥ Nr which is of interest to us. In the case of K − 1 < Nr, the MMSE receiver provides

full interference suppression leading to noise limited case, while the max-SINR scheduler provides further

multi-user diversity gain. In [9], it has been shown that the capacity increases as ln(L) log(1 + SNR).

For the case of K − 1 ≥ Nr, the post-SINR can be expressed as: γl = S
∑Nr

p=1
|ωl,p|2

λl,p+N0
. The summation

1Use of capacity achieving codes with large block lengths is assumed here.
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is typically dominated by the last term corresponding to the minimum eigenvalue i.e.,

γl ≥ S
|ωl,Nr

|2
λl,Nr

+N0
. (3)

For most channel realizations, the ICM generally has full rank i.e., the interfering channel vectors are

linearly independent for most users. However, the ICM becomes rank deficient i.e., λl,Nr
= 0 when a

subset of interference channel vectors (ICV) align to a common direction or, more generally the interference

channel vectors (ICV) become linearly dependent. We refer to this phenomenon as spatial interference

alignment (SIA). When the number of active users is very high, each transmitter is likely to encounter

a few users that have rank deficient ICM. Since the channels take values from a continuous probability

distribution, the probability of a small set of discrete events wherein a subset of ICV becoming linearly

dependent is zero. However, in practice, it is not necessary to meet the rank deficient criterion strictly to

achieve high capacity. What is more important is that the minimum eigenvalue takes a value smaller than

noise power level i.e., λl,Nr
< N0. Alternatively, if λl,Nr

= ǫ where ǫ < N0 and N0 → 0, we term this

condition as ǫ spatial interference alignment or simply spatial interference alignment.

Connections to Explicit Interference Alignment: Ref [1] uses symbol extension and applies a set of weights

on the repeated symbols such that the interference channel vectors are aligned at the receiver. A ZF or

MMSE receiver exploits the IA property for signal separation. Explicit IA requires the users to feedback

exact value of signal and interference channel vectors. However, the framework proposed here requires

significantly reduced feedback in the form of post-SINR. Our approach relies on the fact that one user

selected from a large pool obeys ǫ SIA with high probability. Essentially, we rely on multi-user diversity

to provide required interference mitigation.

Next, we obtain a closed-form expression for the TOP using the lower bound (3) on post-SINR, which leads

to an upper-bound (UB) on the TOP. If we assume that each user reports the lower bound (LB) on SINR

given by (3) instead of the actual SINR, the TOP is upper-bounded as: Pout,UB = P (max (γ̄1, γ̄2, .., γ̄L) <

β) where γ̄l = S
|ωl,Nr |2

λl,Nr+N0
. Since γ̄l are i.i.d. r.v’s, the TOP-UB is expressed as

Pout,UB = FL(β) (4)

where F (β) = P (γ̄l < β) and,

F (β) = P

(

S
x

λm +N0
< β

)

(5)
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where λm = λl,Nr
denotes the minimum eigenvalue (MEV) and we omit the dependency on l for notational

simplicity. Let x = |ωl,Nr
|2 be the Nrth element of the vector ωl. The projection of a zero-mean i.i.d.

complex Gaussian random vector on to an unitary matrix gives another r.v. with zero-mean i.i.d. complex

Gaussian distribution. Therefore, the vector ωl = Ulhl has same distribution as hl. As a consequence,

the r.v. x has exponential distribution: p(x) = e−x, x ≥ 0 with cumulative distribution function (cdf):

p(x < a) = 1− e−a, a ≥ 0.

Recall that the ICM is defined as: Rl =
∑K−1

i=1 I0gi,lg
†
i,l where gi,l is a zero-mean i.i.d. complex Gaussian

vector with covariance I. This matrix is called complex central Wishart matrix [23], [24] and its distribution

is denoted by CWm(n, I0I)), n ≥ m where m = min(Nr,K − 1) and n = max(Nr,K − 1). Since we

are considering the specific case of K − 1 ≥ Nr, we have: m = Nr, n = K − 1. The joint probability

density function (pdf) of ordered eigenvalues λ1 > λ2 > .. > λm > 0 is given in [25]-[28]. Using this,

the pdf of minimum eigenvalue can be evaluated. The evaluation is straightforward for small values of

Nr,K − 1 and it gets tedious for large values. However, closed-form expression for this pdf is available

in polynomial form as [23], [29], [30]

p(λm) =
1

I0
e

−mλm
I0

K0∑

k=k0

a(k)

(
λm

I0

)k

(6)

where elements of a(k) can be obtained using either the mathematica program given in the Appendix of

[23] or the closed-form expression given in [25]. Table I provides the values for certain combinations of

(n,m). Here, k0 = K −Nr − 1 and K0 is equal to the number of non-zero elements of the vector a(k).

For the special case of Nr = K − 1 where the number of interferers is equal to the antenna array size,

λm has exponential distribution

p(λm) =
Nr

I0
e

−Nrλm
I0

with mean E(λm) = I0
Nr

. In this case, the pdf has its peak at λm = 0 which implies that P (0 < λm < N0)

is significantly high for small values of N0. It also implies that when the number of active users L is

sufficiently large, the scheduled user with Nr receiver antennas can fully reject Nr interferers. The exact

number of users required to meet this condition depends on the ǫ SIA probability P (0 < λm < N0). Note

that this probability decreases quickly for K − 1 > Nr, since the pdf expression given in (6) vanishes at

λm = 0 for K − 1 > Nr. Therefore, the number of active users required to fulfill this condition will be

very large when K − 1 − Nr takes high values. The exact number of users required for achieving full

interference suppression is determined by evaluating the TOP in closed-form. We carry out this exercise

for the general case involving Nr antennas and K − 1 interferers.
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1) TOP Evaluation: First, we begin with (5)

F (β) =

∫ ∞

λm=0

P

(

x < β
(λm +N0)

S

)

p(λm) dλm = 1− e
−βN0

S

K0∑

k=k0

a(k)k!
(

βI0
S

+m
)k+1

. (7)

The UB on TOP is: Pout,UB =

[

1− e
−βN0

S

∑K0

k=k0

a(k)k!

(βI0
S

+m)
k+1

]L

. Alternatively, the number of active

users required to meet a given TOP is given by

L =
ln(Pout,UB)

ln

[

1− e
−βN0

S

∑K0

k=k0

a(k)k!

(βI0
S

+m)
k+1

] . (8)

For large values of βI0
S

+m, L is approximated as: L ≈ e
βN0
S ln(P−1

out,UB)
( βI0

S
+m)

K−Nr

a(k0)(k0)!
where we use the

approximation: ln(1 − x) ≈ −x and retain only the first term in the summation. When βI0
S

+m is large

and when βI0
S

≥ m, L ∝
(

βI0
S

)K−Nr

. If we let β = S
N0

, L ∝
(

I0
N0

)K−Nr

. The interference-to-noise

power ratio is a key parameter that dictates the user requirement. For S = I0, we have: L ∝ SNRK−Nr .

Thus, each transmitter provides an outage capacity of log(1 + β) with TOP Pout,UB. The sum of outage

capacities of all K transmitter is given by

Csum,Complex = K log(1 + β) (9)

This holds as long as L satisfies (8). Thus, the proposed framework enables the transmitter to schedule a

user who is nearly free of interference when the number of active users L satisfies the stated requirement.

It is important to note that the sum outage capacity grows linearly with the number of transmitters even

in the case of single receiver antenna. Multiple receiver antennas play an important role here mainly in

reducing the user requirement.

III. MULTI-USER SPATIAL MULTIPLEXING

Next, we consider a generalized system model with K transmitters each with Nt transmit antennas. In

every scheduling epoch, every transmitter serves Nt users simultaneously with single data stream allocated

per user. Throughout this paper we assume that L ≥ Nt. The baseband received signal for the user with

index l that is served by a given transmitter is represented as

yl(k) =

√

S

Nt

Hlx(k) +

K−1∑

i=1

√

I0

Nt

Gi,lxi(k) + nl(k), l = 1, 2, ..L. (10)

The total signal power is equally divided among the Nt data streams. Here, Hl and Gi,l are modeled as

multivariate circularly symmetric complex Gaussian random matrices having i.i.d. elements with E[Hl] =

E[Gi,l] = 0 and E[HlH
†
l ] = E[Gi,lG

†
i,l] = I. The modulation vectors x(k) ∼= [x1(k), x2(k), .., xNt

(k)]
′

and xi(k) ∼= [xi,1(k), xi,2(k), .., xi,Nt
(k)]

′

are assumed to be complex-valued vectors whose elements are
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i.i.d. complex Gaussian random variables with zero mean, and unit variance, respectively.

In the proposed framework each user is restricted to receive a single complex-valued data stream from

its transmitter. Therefore, every user can potentially receive data from any one of Nt antennas of its own

transmitter. We further propose that each user reports the post processing SINR of an MMSE receiver

corresponding to all the Nt data streams back to the transmitter. Let i denote the index of the antenna

through which the data is transmitted for a particular user. This index is referred to as the stream index

(SI). Considering the symmetric channel with S = I0 = 1, the signal model for detecting ith data stream

can be represented as

yl(k) =

√
1

Nt









hi,lxi(k)
︸ ︷︷ ︸

Desired Signal

+
∑

j 6=i

hj,lxj(k)

︸ ︷︷ ︸

Self interference

+

K−1∑

i=1

Gi,lxi(k)

︸ ︷︷ ︸

Other cell interference









+ nl(k), i = 1, 2, .., Nt (11)

where hp,l is the channel vector of pth data stream with length Nr × 1. In detecting ith data stream, the

remaining Nt − 1 data streams transmitted by its own transmitter appear as self-interference, in addition

to other cell interference contributed by the (K− 1)Nt data streams transmitted by the K− 1 co-channel

transmitters. Thus a total of KNt − 1 data streams cause interference to the desired signal. The user

determines the post-processing SINR of an MMSE receiver for the ith data stream as

γi,l = h
†
i,lR

−1
i,l hi,l, i = 1, 2, .., Nt (12)

where Ri,l =
∑

j 6=i hj,lh
†
j,l +

∑K−1
i=1 Gi,lG

†
i,l + NtN0I is the total noise-plus-interference covariance

matrix. We are particularly interested in the case when the ICM has full rank. This happens when KNt−1 ≥

Nr i.e., the number of interfering data streams is greater than or equal to the receiver antenna array size.

The user scaling rules for the MU SM can be obtained by extending the user scaling results obtained for

the case of SST with complex-valued encoding. Using a sub-optimum sequential max-SINR scheduler that

is described in Appendix A, the sum of outage capacities of all Nt streams for all K transmitters is shown

to be

Csum, MU SM = KNt log(1 + β) (13)

with each stream meeting the outage probability constraint given in (18). For large values of β +m, and

when L >> Nt, L ≈ eβNtN0 ln(P−1
out,UB)

(β+m)KNt−Nr

a(k̄0)(k̄0)!
. For, β ∼= 1

N0
, using suitable approximations we

can show that the number of active users required to meet certain target per stream outage probability is

proportional to SNRKNt−Nr . To achieve interference free performance, SM requires a significantly higher

number of active users. In the following we propose a real-valued transmission scheme that reduces the
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user requirement. First, we analyze the performance of this method for the case of SST followed by a

generalization to the case of MU SM employing real-valued encoding.

IV. SST WITH REAL-VALUED ENCODING

In the proposed system model, all the transmitters in the network transmit a single data stream using

real-valued modulation alphabets. The receiver at each user collects the real and imaginary parts of the

multi-antenna receiver to obtain a virtual antenna array of size 2Nr. The receiver filters the real and

imaginary parts of the received signal using a WL MMSE filter for data detection. The post-processing

SINR of the receiver is reported back to the transmitter using a feedback channel. Scheduling and MCS

allocation is done based on the post-SINR of the WL MMSE. We evaluate the TOP for this type of

encoding. First, we begin with the system model for transmission of real-valued modulation symbols

yl(k) =
√
Shlx̄l(k) +

K−1∑

i=1

√

I0gi,lx̄i,l(k) + nl(k), (14)

where x̄l(k) and x̄i,l(k) are real-valued modulation alphabets of the desired signal and interference,

respectively. The baseband receiver collects the real and imaginary parts of the complex-valued received

signal for each antenna branch and collects the observations in a vector-format as: ỹl(k) =
√
Sh̃lx̄l(k) +

∑K−1
i=1

√
I0g̃i,lx̄i,l(k) + ñl(k), where the notation x̃ =




real(x)

imag(x)



 denotes a vector with real and

imaginary parts stacked in a column vector format. Here, h̃l, g̃i,l contain the real and imaginary parts

of the desired and interfering channels, respectively, and ñl(k) contains the real and imaginary parts of

the noise samples. Since the individual elements of the complex-valued channel vectors hl are assumed

to be i.i.d. circular complex Gaussian random variables, the real and imaginary parts of hl are also zero-

mean, i.i.d. Gaussian. Therefore, h̃l ∼ N(0, 1
2I), where the notation denotes a multivariate real Gaussian

distribution with zero-mean and variance 1
2I. Similarly, g̃i,l ∼ N(0, 12I) for i = 1, 2, ..,K − 1. The real-

valued modulation sequences x̄l(k) and x̄i,l(k), for each i, are assumed to be i.i.d. real Gaussian random

variables with zero-mean, unit variance, and statistically independent of each other.

Capacity scaling laws for real-encoding: Using the results of Appendix B, the sum of outage capacities

of K transmitters employing real-valued encoding is given by

Csum,Real =
K

2
log(1 + β) (15)

This result hold when: L ∝
(

I0β
S

+m
)K

2 −Nr

. For β = S
N0

, for S = I0 and when I0β
S

> m, we have:

L ∝ SNR
K
2 −Nr . Compared to SST with complex-valued encoding, the proposed real encoder requires

significantly less number of users. The user reduction is achieved at the expense of a pre-log rate reduction
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by a factor of 1
2 . Numerical and simulation comparison shows that these two methods are optimal in

different operating regimes.

A. Generalized MU SM with real-encoding

The results for SST with real-valued encoding can be generalized to MU employing real-valued encoding.

Following the analysis for the case of MU SM with complex-valued encoding, it can be shown that by

spatial multiplexing t real-valued data streams using t antennas, we get a sum outage capacity of

Csum, real MU SM =
tK

2
log(1 + β) (16)

when the number of active users L ∝ β
tK
2 −Nr . The proof follows the same line of arguments used in the

case of SM employing complex-valued encoding using a sequential max-SINR scheduler. While complex-

valued MU SM offers a SM rate of R = Nt where Nt takes integer values, real-valued MU SM gives

fractional multiplexing rates of R = t
2 which take values in steps of 0.5. The real-valued encoder can

be viewed as a generalized SM encoder. Using t = 2Nt, we get the same user scaling results as that of

complex-valued encoding. However, real encoding offer a wider range of multiplexing rates and therefore

offers a finer trade-off between outage capacity and the number of active users. Simulation shows that use

of real-valued encoding offers a performance that is either comparable to complex encoding or exceeds by

a significant margin. Detailed results are given in section V.

SIA feasibility in non-Rayleigh fading channels: We remark here that though we analyze the system

performance for the important case of i.i.d. Rayleigh fading channels, the SIA gains can be obtained in

channels with arbitrary type of fading as long as the interference channel vectors exhibit linear dependency.

In channels with full magnitude correlation between receiver antenna branches, the SIA phenomenon occurs

as long as the phase vectors of the channel takes random values. In case of Rician channels, the channel

has a line-of-sight (LOS) term and a Rayleigh fading component. The SIA feasibility in case of LOS

channels needs careful attention. When the signal and interference channel have strictly LOS component,

then: a) individual interferers often arrive at different angles b) inter-antenna spacing causes a phase

difference among the channel states of different antennas, and these phase differences take distinct values

for different interferers arriving at different angles. Essentially, any two interference channel vectors become

linearly independent as long as their angles of arrival are sufficiently distinct. Therefore, the probability

of occurrence of SIA increases if the signal and interferers always arrive at distinct angles. One needs to

carefully study the performance of opportunistic scheduling for Rician case using more complex channel

models.

In case of real encoding, the channel vector contains the real and imaginary parts of the complex-valued

11



channel. Consider the special case of single receiver antenna. The channel gain between a given transmitter

receiver pair almost always takes complex-values independent of whether the channel has LOS, Rayleigh,

or Rician distribution. Even in the case of LOS channel, the phase angles of channels of signal and

interferers are statistically independent. Consequently, the interference channel vectors (that contain real

and imaginary parts of a complex scalar) take values such that SIA occurs with high probability when the

number of users is sufficiently large. However, for the case of real-encoding with multiple antennas, the full

benefit can be realized when channel phase states are statistically independent among antenna branches,

and among interferers.

V. RESULTS AND DISCUSSION

A. Comparison of SST with real and complex encoding

Throughout the rest of the section, we assume that S = I0 = 1. The target SNR (β) is denoted as: SNRt.

In Fig 2, the analytically obtained TOP results are compared with simulation results for the case of complex

encoding. The legend exact UB refers the exact TOP UB and approx refers to the various approximations

used in arriving at a closed-form expression for the TOP. Fig 2 shows that the UB on TOP is extremely

tight for complex-valued encoding. Fig 3 shows that the UB on TOP given by (31) in Appendix B 2

for real-valued encoding deviates slightly for low values of SNR however it becomes a tight bound for

moderate to high SNR values. Additionally, the Q-function based approximation given in Appendix B 4

is fairly accurate for even values of K for real-valued signaling case. In Fig 4, it is shown that the TOP

approximations given in Appendix B 5.1 for real-valued encoding are tight for K = 2Nr + 1.

In Fig 5, we plot sum outage capacity as a function of number of active users for the case of Nr = 2. We

consider the important case where the number of interferers either equals or exceeds the receiver array size.

Results show that real-valued encoding with K = 5 provides a significantly higher sum outage capacity

compared to other feasible configurations involving real/complex encoding.

Next, we discuss the mean sum capacities of proposed techniques. The results are obtained using simulation

where results are averaged over 1000 channel realizations.

Fig 6, show the results with single receiver antenna for L=10. The performance is quite remarkable

since we are able to get fairly high capacities using a single receiver antenna. Complex-valued signaling

outperforms real-valued signaling in low to medium SNR range. At high SNR, real-valued signaling

performs significantly better as mean sum capacities of complex-valued signaling reach saturation.

Fig 7 shows results for two receiver antenna case for L = 50. For real-valued signaling, mean sum capacity

grows linearly with SNR when K < 5. For K = 3, complex-valued signaling shows near linear growth
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and this mode outperforms real-valued signaling. However, for K > 3, the gain of real-valued signaling

over complex-modulation is substantially high. In Tables II and III, the mean sum capacity results for real

and complex-valued encoding methods are tabulated for the case of Nr = 1 and Nr = 2, respectively. In

each column, the method with highest mean sum capacity is highlighted.

B. Performance comparison between SST, SU and MU SM

In all the figures the SM rate is defined as: R = Nt

2 for real encoding and R = Nt for complex encoding.

Fig 8, shows results for Nr = 2, L = 10 and K = 3. We see that SST with complex-valued encoding

outperforms 2-stream MU SM with complex encoding.

Fig 9 shows performance results for the case with Nr = 4, 50 active users, and K = 2. Limiting to

2-streams using complex encoding gives better performance compared to the rest of the cases. However

with K = 3, results of Fig 10 shows that 3-stream MU SM with real encoding with a rate of R = 1.5

gives significant gain over the case of R = 2 which uses complex-valued encoding.

In Fig 11, we compare sum capacity results for Nr = 8, with K = 3, L = 100. For this case, a

rate of 2.5 or 3 outperforms all other modes. In particular, 5-stream MU SM with real encoding with

R = 2.5 outperforms 3-stream MU SM which employs complex-valued signaling at high SNR. However,

the performance for both cases is comparable in the medium SNR range. Also note that for a SM rate of

R = 4, MU SM with real and complex encoding have comparable sum capacity.

Remarks

• We show that MU SM with real encoding offers a higher sum capacity compared complex encoding in

certain cases. This is accomplished by increasing the number streams/antennas at each transmitter. The

number of used antennas can be reduced further using a combination of real and complex encoding.

For example, let us assume that each transmitter transmits m complex-valued data streams using m

antennas, and Nt −m real-valued data streams using the remaining Nt −m antennas. Thus, the BS

serves t = 2m + Nt − m = Nt + m users using Nt antennas. The total spatial multiplexing rate

for each transmitter is: R = Nt+m
2 , m takes values in the range [0, Nt] where the extreme values

represent real only, or complex-only encoders. For m ∈ [0, Nt], we get multiplexing rates in the range

[Nt

2 , Nt+1
2 , .., 2Nt−1

2 , Nt] using a suitable mix of real and complex modulations. For example, to get

a SM rate of 2.5, real encoding uses 5 real-valued streams using Nt = 5. For this mixed encoding

case, we use a total of 3 antennas where the first two antennas employ complex-valued encoding and

the third antenna employs real encoding. The total number of streams is 5 using 3 transmit antennas.

For this case, the receiver for each user uses WL-MMSE processing as in the case of real encoding.
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Simulation shows that this type of encoding provides a performance similar to the case of real only

encoding. Detailed results are not shown due to space limitations.

• In cellular networks IA is applicable where interference is high, that is for a cell edge user. For a

user at the edge of the cell, the distances from the active BS and the interfering BSs are comparable.

As the BSs are assumed to use equal transmit power, the interference power levels are approximately

equal. In this situation, SIC model is justified. This model is used in [7],[11],[12] as well.

• Recently, [31] presented a tractable approach to coverage and rate evaluation for MIMO cellular

networks using stochastic geometry methods [32]. Using ZF receivers, it is shown that that SM

degrades the rate for a notable percentage of users compared to single stream transmission. For the

case of two receiver antennas, the increase in mean rate of SM is shown to be modest compared to

SST, while SST is shown to provide a gain in rate for cell edge users. However, for higher antenna

configurations, reducing the SM rate to a value less than the maximum allowed rate is shown to offer

an overall increase in the system performance. In this paper, we observe a similar trend using a SIC

model when opportunistic scheduling is combined with MMSE interference suppression. Therefore, the

performance of the proposed encoding methods needs to be investigated further in both conventional

and Heterogeneous cellular networks employing opportunistic scheduling [33].

VI. CONCLUSIONS

This paper highlights the spatial interference alignment phenomenon that naturally occurs in multi-user

systems employing opportunistic scheduling. For the case of symmetric interference channel, closed-form

expressions for outage capacity and capacity scaling laws with number of users is obtained for a single

stream and multi-stream SM systems employing real or complex-encoding.

We show that SST methods employing real and complex-valued encoding methods have distinct sum

capacities and the two methods are optimal in different operating regimes. In an Nr receiver antenna

system employing SST with complex-encoding, use of opportunistic scheduling based on post-SINR of

MMSE receiver enables mitigation of more than Nr−1 interferers. For K = Nr+1, the required number of

users scale linearly with SNR. For the case of real-encoding, mitigation of more than 2Nr − 1 interferers

is feasible. Though SST with real-encoding reduces the peak rate by a factor of two, the overall sum

capacity exceeds that of complex-valued encoding in certain cases. For the special case of K = 2Nr + 1,

the required number of users for real encoding scales with
√
SNR where it provides a higher sum outage

capacity compared to complex encoding.
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We generalized the SST with complex/real encoding to MU SM case. The real/complex encoding with a

spatial multiplexing rate of R, we get a sum outage capacity of KR log(1+SNR) when L ∝ SNRKR−Nr .

With Nt antennas, R = Nt

2 for real encoding and R = Nt for complex encoding. We show that the

generalized MU SM encoder with real-valued modulation provides a performance that is either comparable,

or significantly higher than that of complex encoding. The additional gain owes to the fact that real-valued

MU SM offers a wider range of multiplexing rates and offers a finer trade-off between achievable capacity

and user requirement.

In systems with significant amount of interference, a reduction in SM rate is shown to have a beneficial

effect of increasing the overall sum capacity. With two receiver antennas at the user, SST mode employing

complex encoding and opportunistic scheduling outperforms SM. With four receiver antennas, reducing

the SM rate to either 1.5 or 2 is preferable over full rate transmission i.e, R = 4. The proposed encoding

methods can be used to improve the cell edge user rate in cellular systems.
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APPENDIX A

CAPACITY SCALING LAWS FOR MU MIMO USING SEQUENTIAL MAX-SINR SCHEDULER

Appendix A 1

Sequential Max-SINR Scheduler

In a given scheduling epoch, the transmitter determines a group of Nt users from the available set of

L users that provides maximum sum capacity among all feasible groups. The computational complexity

of the search algorithm which determines the optimum group is quite large for large values of (L,Nt).

We propose a sub-optimum algorithm with low implementation complexity and good performance. In

the proposed method, the transmitter determines the user to be scheduled for each stream index using

a sequential max-SINR scheduler. More specifically, let U1
∼= {γ1,1, γ1,2, .., γ1,L} denote the channel

quality information (CQI) metrics reported by all L available users for the first stream index. For i = 1,

the scheduler first selects a user using the following rule: γ1,l∗(1) = max U1 where l∗(1) is the index

of the user whose CQI is maximum. Let U2
∼= {γ2,1, γ2,2, .., γ2,L} denote the CQI metrics reported by

all L available users for stream index 2. We determine the scheduling decision for SI i = 2 using the

new set Ū2 which is obtained by excluding the CQI of the previously scheduled user from the set U2

i.e., Ū2 = U2 − {γ2,l∗(1)}. The scheduler selects a user as γ2,l∗(2) = max Ū2. Generalizing in this

manner, we have: Ui
∼= {γi,1, γi,2, .., γi,L} denote the CQI metrics reported by all L available users for ith

stream index. Let, Ūi
∼= Ui−{γ1,l∗(1), γ2,l∗(2), .., γ(i−1),l∗(i−1)}. Note that the set Ūi contains L− (i− 1)

CQI metrics which are i.i.d. r.v’s. The size of this set is: |Ūi| = L − (i − 1). For ith SI, the scheduling

decision l∗(i) is obtained as γi,l∗(i) = max Ūi, i = 1, 2, .., Nt Thus the transmitter selects Nt users

using a sequential max-SINR scheduler, and transmits data to these users simultaneously, using a suitable

modulation and coding scheme (MCS). Each scheduled user is served at a rate Ii = log(1+γi,l∗(i)), where

Ii denotes the mutual information measured at the output of the MMSE receiver of the scheduled user

for ith SI. The outage probability for ith data stream is given by: Pout,i = P (Ii < log(1 + βi) where

log(1 + βi) is the target outage capacity for ith steam. If we assume that the outage requirement for all

steams are equal, we set βi = β. The outage probability can be expressed in alternative form as:

Pout,i = P (γi,l∗(i) < β) (17)

where γi,l∗(i) is obtained by taking the maxima over L − (i − 1) CQI metrics which are i.i.d. r.v’s. An

expression of this form is encountered in single stream case. Using the outage probability results obtained
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in the SST case, the outage probability for ith data stream is upper-bounded as

Pout,UB =



1− e−βNtN0

K0∑

k=k̄0

a(k)k!

(β +m)k+1





L−(i−1)

(18)

≈



1− e−βNtN0

K0∑

k=k̄0

a(k)k!

(β +m)k+1





L

, for L ≫ Nt. (19)

where k̄0 = KNt − Nr − 1. This result indicates that, in the limiting case when the number of active

users is very large compared to the number of transmit antennas, each stream fully exploits the entire pool

of available users for scheduling. The number of active users required to meet a given per stream outage

probability is given by

L ≈ ln(Pout,UB)

ln
[

1− eβNtN0
∑K0

k=k̄0

a(k)k!

(β+m)k+1

] (20)

Remark

If the successive max SINR scheduler uses the set Ui for scheduling instead of Ūi, then the scheduler may

assign a variable number of streams to each user.

APPENDIX B

CAPACITY SCALING LAWS FOR REAL ENCODING

Appendix B 1

Max-SINR Scheduling based on Post-processing SINR of WL-MMSE

Although, the TOP analysis for real-encoding case exhibits certain similarities compared to complex case,

the performance differs in a significant manner. The following analysis exposes the key differences. In

this case, the receiver weighs and combines the real and imaginary parts of the multi-antenna received

signal samples using a WL MMSE filter w̃l to produce a decision variable zl(k) = w̃lỹl(k), where

w̃l =
√
Sh̃

†
l R̄

−1
l and R̄l =

∑K−1
i=1 I0g̃i,lg̃

†
i,l +

N0

2 I is the WL NICM. The SINR at the output of the

WL MMSE receiver is given by: γ̃l = Sh̃
†
l R̄

−1
l h̃l. Let r̃l denote the rank of the WL ICM defined as:

R̃l =
∑K−1

i=1 I0g̃i,lg̃
†
i,l. Following the approach for conventional case, the post-SINR can be expressed as:

γ̃l = Slh̃
†
l R̄

−1
l h̃l which simplifies to

γ̃l = S

r̃l∑

p=1

|ω̃l,p|2
λ̃l,p +

N0

2

+ S

2Nr∑

p=r̃l+1

2|ω̃l,p|2
N0

, l = 1, 2, .., L (21)

where ω̃l = [ω̃l,1, ω̃l,2, .., ω̃l,2Nr
]Tr is a real-valued vector that has same distribution as h̃l. When K−1 <

2Nr, the WL ICM becomes rank deficient and therefore the receiver at each user can suppress up to

2Nr − 1 interferers fully. In the opposite case when K − 1 ≥ 2Nr, the WL ICM has full rank. As in
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case of complex-valued signaling, we consider the TOP analysis only for K − 1 ≥ 2Nr. For this case, the

post-SINR of WL MMSE takes the form

γ̃l = S

2Nr∑

p=1

|ω̃l,p|2
λ̃l,p +

N0

2

≥ S
|ω̃l,2Nr

|2
λ̃l,2Nr

+ N0

2

. (22)

Let γ̂l = S
|ω̃l,2Nr |2

λ̃l,2Nr+
N0
2

. If we assume that each user reports the SINR γ̂l instead of actual SINR, the TOP

can upper bounded as

Pout,UB,Real = P (max (γ̂1, γ̂2, .., γ̂L) < β) = F̂L(β) (23)

where F̂ (β) = P (γ̂l < β) and, F̂ (β) = P

(

S
|ω̃l,2Nr |2

λ̃l,2Nr+
N0
2

< β

)

. Let λ̃m = λ̃l,2Nr
denote the minimum

eigenvalue of the WL ICM, and x̂ = |ω̃l,2Nr
|2, where omitted the dependency on index l. Since ω̃l,2Nr

∼

N(0, 1
2 ), the pdf of x̂ is given by

p(x̂) =
1√
πx̂

e−x̂. (24)

This pdf differs from the case of complex encoding where we deal with exponential distribution.

Appendix B 1.1

pdf of minimum eigenvalue of a real Wishart matrix: Let us consider the WL ICM: R̃l =
∑K−1

i=1 I0g̃i,lg̃
†
i,l

where g̃i,l is a real-valued i.i.d. Gaussian random vector: N(0, 1
2I). This matrix is called a real Wishart

matrix [29], denoted as: Wn(m, I0
2 I), n ≥ m where m = min(2Nr,K − 1) and n = max(2Nr,K − 1).

Since we are considering the specific case of K − 1 ≥ 2Nr, we have: m = 2Nr, n = K − 1. The joint

pdf of the ordered eigenvalues λ̃1, .., λ̃m, (λ̃1 > λ̃2 > .. > λ̃m > 0) of Wm(n, I0
2 I), n ≥ m is given in

[29]. In [23], the pdf of MEV is expressed for the special case of I0 = 2. The pdf for the general case is

obtained by using a transformation: λ → 2λ
I0

. For even values of K , the pdf takes the form

p(λ̃m) =
1

I0
e

−mλ̃m
I0

K0∑

k=k0

a(k)

(

λ̃m

I0

)k0+1

(25)

where k0 = (K−2Nr−2)
2 . The entries in Table I can be used to obtain the values of a(k) for several

combinations of (n, K
2 +1). Note that for even values of K , the pdf of the MEV of a real Wishart matrix

has the same form as that of a complex Wishart matrix. However, for odd values of K , the pdf has a

remarkably different form. For the special case of K = 2Nr + 1, the pdf is given by

p(λ̃m) = Γ

(
m+ 1

2

)
m

√

πI0λ̃m

e
−mλ̃m

I0 U

(

m− 1

2
,
−1

2
,
λ̃m

I0

)

(26)

where the Tricomi function U(a, b, z) is the confluent hypergeometric function

U(a, b, z) =
1

Γ(a)

∫ ∞

t=0

e−ztta−1(1 + t)b−a−1 dt, ℜ(a) > 0. (27)
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where Γ(x) =
∫∞
0

tx−1e−t dt x > 0 is the gamma function and U (a, b, 0) = Γ(1−b)
Γ(a−b+1) . For other values

of K taking odd values, the pdf can be obtained using the recursive formula given in [23].

Appendix B 2

TOP with real-valued encoding

First, we shall derive an exact expression for the TOP for even values of K . F̂ (λ) is evaluated as

F̂ (β) = P

(

S
x̂

λ̃m + N0

2

< β

)

= P

(

λ̃m >
Sx̂

β
− N0

2

)

. (28)

The expression (28) is evaluated by integrating the joint pdf p(λ̃m, x̂) = p(λ̃m)p(x̂) over the shaded area

shown in Fig 1. The area under the region A1 is given by

A1 =

∫ βN0
2S

x̂=0

1
√
π
√
x̂
e−x̂ dx̂

∫ ∞

λ̃m=0

p(λ̃m) dλ̃m = 1− 2Q

(√

βN0

S

)

. (29)

A change of variable x̂ = y2

2 is used arrive at the result and Q(a) ∼= 1√
2π

∫∞
a

e−
a2

2 . For even values of

K , the area A2 is evaluated as

A2 =

∫ ∞

x̂=
βN0
2S

[
∫ ∞

λ̃m=Sx̂
β

−N0
2

p(λ̃m) dλ̃m

]

p(x̂) dx̂. (30)

The integral is evaluated in the Appendix C and the result is given in (56). The TOP is determined as

Pout,UB,Real = (A1 +A2)L K even. (31)

Appendix B 3

Further Approximations

The TOP expression (31) allows fast and easy numerical computation but it is not in a form convenient

to illustrate the trade-off between the number of required users and associated interference suppression

effects. We present an alternative result using certain approximations. This approach is applicable to both

even and odd values of K . To this end, we evaluate F̂ (λ) as

F̂ (β) = P

(

S
x̂

λ̃m + N0

2

< β

)

=

∫ ∞

λ̃m=0

P

(

x̂ < β
(λ̃m + N0

2 )

S

)

p(λ̃m) dλ̃m. (32)

Consider

P

(

x̂ < β
(λ̃m + N0

2 )

S

)

=

∫ β
(λ̃m+

N0
2

)

S

x̂=0

1√
πx̂

e−x̂ dx̂ = 1− 2Q





√

2β
(λ̃m + N0

2 )

S



 . (33)

20



This expression is not suitable for closed-form evaluation of (32). To arrive at simple expression, the

Q-function is approximated as a sum of exponentials as: Q(x) ≈ 1
12e

−x2

2 + 1
4e

− 2x2

3 . This is tight

approximation for a wide range of values of x [34]. Using this

P

(

x̂ < β
(λ̃m + N0

2 )

S

)

≈ 1− 2

2∑

i=1

Kie
−2ciβ

(λ̃m+
N0
2

)

S (34)

where c1 = 1
2 , c2 = 2

3 ,K1 =
1
12 ,K2 = 1

4 . Substituting (34) in (32), we get

F̂ (β) ≈ 1− 2

2∑

i=1

Ki

∫ ∞

λ̃m=0

e−2ciβ
(λ̃m+

N0
2

)

S p(λ̃m) dλ̃m. (35)

Appendix B 4

Approximations for even values of K

Substituting the pdf p(λ̃m) given by (25) for even values of K , we get

F̂ (β) ≈ 1− 2

2∑

i=1

Kie
−ciβ

N0
S

[
K0∑

k=k0

a(k)

∫ ∞

λ̃m=0

1

Ik+1
0

e
−λ̃m

(

(2ciβ

S
+ m

I0

)

λ̃k
m dλ̃m

]

(36)

= 1− 2

2∑

i=1

Kie
−ciβ

N0
S






K0∑

k=k0

a(k)
k!

(
(2ciI0β

S
+m

)k+1




 . (37)

A change of variable u = λ̃m

(
(2ciβ
S

+ m
I0

)

is made on line 1 to arrive at the result. Using (23), the total

number of active users required to meet a given TOP is given by

L ≈ ln(Pout,UB,Real)

ln

[

1− 2
∑2

i=1 Kie
−ciβ

N0
S

[

∑K0

k=k0
a(k) k!

(

2ciI0β

S
+m

)k+1

]] (38)

≈
ln(P−1

out,UB,Real)
(

2ciI0β
S

+m
)k0+1

2
∑2

i=1 Kie
−ciβ

N0
S a(k0)k0!

. (39)

To arrive at the result, we assume large values for I0β
S

, we invoke the approximation ln(1−x) ≈ −x, and

retained only the term containing k0. Substituting, k0 = (K−2Nr−2)
2 , we get: L ∝

(
I0β
S

+m
)K

2 −Nr

.

Appendix B 5

Approximations for odd values of K

Evaluation of TOP for odd values of K is considerably more involved. In the following, we provide the

TOP expression for the case of K = 2Nr + 1 and for the case of K = 2Nr + 3. Results for the general

case of K taking odd values are omitted due to space limitations.
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Appendix B 5.1

Approximations for K = 2Nr + 1: Substituting (26) in (35), after simple manipulations we get

F̂ (β) ≈ 1− 2Γ

(
m+ 1

2

)
m√
π

2∑

i=1

Kie
−ciβ

N0
S

∫ ∞

u=0

1
√

u
(

2ciI0
β
S
+m

)e
−u ×

U




m− 1

2
,
−1

2
,

u
(

2ciI0
β
S
+m

)



 du. (40)

Note that, for large values of u, the integrand takes small values due to the scaling factor e−u

√
u

. Therefore,

it is sufficient to consider the integrand for small to medium values of u. At high SNR, u

(2ciI0 λ
S
+m)

takes

very small values. Under this assumption, and using the result: U (a, b, 0) = Γ(1−b)
Γ(a−b+1) , the tricomi function

is approximated as

U




m− 1

2
,
−1

2
,

u
(

2ciI0
β
S
+m

)



 ≈ U

(
m− 1

2
,
−1

2
, 0

)

=
Γ
(
3
2

)

Γ
(
m
2 + 1

) . (41)

Substituting (41) in (40), after simple manipulations we get

F̂ (β) ≈ 1− 2mΓ

(
m+ 1

2

)

Γ

(
3

2

) 2∑

i=1

Kie
−ciβ

N0
S

Γ
(
m
2 + 1

)
(√

2ciI0
β
S
+m

) . (42)

Using this

L ≈ ln(Pout,UB,Real)

ln

[

1− 2mΓ
(
m+1
2

)
Γ
(
3
2

)∑2
i=1

Kie
−ciβ

N0
S

Γ(m
2 +1)

(√
2ciI0

β
S
+m

)

] ≈
ln(Pout,UB,Real)

√

I0
β
S

2mΓ
(
m+1
2

)
Γ
(
3
2

)∑2
i=1

Kie
−ciβ

N0
S

Γ(m
2 +1)

√
2ci

(43)

where we assume 2ciI0
β
S
+m to take high values and 2ciI0

β
S
≫ m. In this case, L is directly proportional

to the square root of I0
β
S

.

Appendix B 6

TOP for real-valued Encoding K = 2Nr + 3

For K = 2Nr + 3, p(λ̃m) is given by [23]

p(λ̃m) = Γ

(
m+ 1

2

)
2

√
πI

3
2
0

√

λ̃me
−mλ̃m

I0 g(λ̃m) (44)

where

g(λ̃m) = L
(2)
m−1

(

−2λ̃m

I0

)

U

(

m− 1

2
,
−1

2
,
λ̃m

I0

)

+
λ̃m

I0
L
(3)
m−2

(

− λ̃m

I0

)

U

(

m+ 1

2
,
1

2
,
λ̃m

I0

)

(45)

and L
(α)
p (−x) =

∑p

q=0(p+ α)Cp−qx
q . Substituting (45) in (35) we get

F̂ (β) ≈ 1− 2Γ

(
m+ 1

2

)
2

√
πI

3
2
0

2∑

i=1

Kie
−ciβ

N0
S

∫ ∞

λ̃m=0

√

λ̃me
−λ̃m

(

2ci
β
S
+ m

I0

)

g(λ̃m) dλ̃m. (46)
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Consider

1

I
3
2
0

∫ ∞

λ̃m=0

√

λ̃me
−λ̃m

(

2ci
β

S
+ m

I0

)

g(λ̃m) dλ̃m =
1

(

2ci
I0β
S

+m
) 3

2

∫ ∞

u=0

√
ue−u ×

g

(

u

2ci
β
S
+ m

I0

)

du (47)

where

g

(

u

2ci
β
S
+ m

I0

)

= L
(2)
m−1

(

− 2u

2ci
I0β
S

+m

)

U

(

m− 1

2
,
−1

2
,

u

2ci
I0β
S

+m

)

(48)

+

(

u

2ci
I0β
S

+m

)

L
(3)
m−2

(

− 2u

2ci
I0β
S

+m

)

U

(

m+ 1

2
,
1

2
,

u

2ci
I0β
S

+m

)

(49)

≈ L
(2)
m−1(0)U

(
m− 1

2
,
−1

2
, 0

)

. (50)

The approximation in second line holds for high values of 2ci
β
S
+ m

I0
. Since, U

(
m−1
2 , −1

2 , 0
)
=

Γ( 3
2 )

Γ(m
2 +1)

,

and L
(2)
m−1(0) = (m+ 1)Cm−1, we get

g

(

u

2ci
β
S
+ m

I0

)

≈ (m+ 1)Cm−1

Γ
(
3
2

)

Γ
(
m
2 + 1

) . (51)

Substituting (51), and (47) in (46), we get

F̂ (β) ≈ 1− (m+ 1)Cm−14Γ

(
3

2

) 2∑

i=1

Kie
−ciβ

N0
S

(

2ci
I0β
S

+m
) 3

2

∫ ∞

u=0

1√
π

√
ue−u du (52)

= 1− (m+ 1)Cm−1

√
π

2∑

i=1

Kie
−ciβ

N0
S

(

2ci
I0β
S

+m
) 3

2

. (53)

The result on second line is due to
∫∞
u=0

2√
π

√
ue−u du = 1, and Γ

(
3
2

)
=

√
π

2 .

Now combining the results for odd and even cases, we get: L ∝
(

I0β
S

+m
)K

2 −Nr

. For β = S
N0

, for

S = I0 and when I0β
S

> m, we have: L ∝ SNR
K
2 −Nr . The sum of outage capacities of K transmitters

employing real-valued encoding is given by

Csum,Real =
K

2
log(1 + β) (54)

This expression holds when the number of users is sufficiently high.

APPENDIX C

First evaluate area A2a =
∫∞
λ̃m=Sx̂

β
−N0

2
p(λ̃m) dλ̃m =

∑K

k=k0

a(k)

m(k+1)

∫∞
t=t0

e−ttk dt where a change of

variable t = mλ̂m

I0
is made on line 2 and we define t0 = m

(
Sx̂
I0β

− N0

2I0

)

. Using integration by parts we
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TABLE I

COEFFICIENTS a(k)

m, n a(k)

(2,2) [2]

(2,3) [0 4/3 8/3]

(2,4) [ 0 0 24 16 4]/15

(4,4) [4]

(4,5) [0 120 180 72 8 ]/15

(4,6) [0 0 40320 80640 72000 33600 8640 1152 64]/6300

TABLE II

MEAN SUM CAPACITY IN BITS/S/HZ FOR Nr = 1

Mode L = 10, SNR = 5 L = 10 SNR = 30 L = 50, SNR = 5 L = 50, SNR = 30

SST Complex, K = 3 4.75 6.5 6.9 9.5

SST Complex, K = 4 4.75 5.5 7.1 8.5

SST Real, K = 3 4.7 11 6.0 12.5

SST Real, K = 4 8.35 7.9 6.9 14.9

have:
∫∞
t=t0

tke−t dt =
∑k

p=0 e
−t0t0

(k−p) k!
(k−p)! . Using this

A2a =

K∑

k=k0

a(k)

m(k+1)

[
k∑

p=0

e
−
(

mSx̂
I0β

−mN0
2I0

)

m(k−p)

[
k−p
∑

r=0

(k − p)Cr

(−N0

2I0

)r (
Sx̂

I0β

)(k−p−r)
]]

(55)

where binomial expansion of
(

Sx̂
I0β

− N0

2I0

)(k−p)

is used. Substituting A2a into (30), we have

A2 =

∫ ∞

x̂=
βN0
2S

K∑

k=k0

a(k)

m(k+1)

k∑

p=0

e
−
(

mSx̂
I0β

−mN0
2I0

)
(
m

I0

)(k−p) k−p
∑

r=0

(k − p)Cr

(−N0

2

)r (
Sx̂

β

)(k−p−r)
1

√
π
√
x̂
e−x̂ dx̂

=
1√
π
e

mN0
2I0

K∑

k=k0

a(k)

m(k+1)

k∑

p=0

(
m

I0

)(k−p) k−p
∑

r=0

(k − p)Cr

(−N0

2

)r (
S

β

)(k−p−r)
D

(
mS
I0β

+ 1
)k−p−r+ 1

2

(56)

where D = 1√
π

∫∞
x̂=

βN0
2S

(

mS
I0β

+1
) u(k−p−r− 1

2 )e−udu. Using integration by parts, this expression can be

represented in terms of Q-function which is suitable for numerical calculation.
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Fig. 1. Area under integration
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Fig. 2. TOP for complex-valued encoding, Nr=2, K=3, SNR=20 dB, L=10
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Fig. 3. TOP for real-valued encoding, Nr = 2, K = 6, L = 10, SNR=20 dB

TABLE III

MEAN SUM CAPACITY IN BITS/S/HZ FOR Nr = 2

Mode L = 50, SNR = 5 L = 50, SNR = 20

SST Complex, K = 3 9.97 21.4

SST Complex, K = 4 10.9 15.84

SST Complex, K = 5 10.9 13.66

SST Real, K = 3 7.34 19.67

SST Real, K = 4 9.2 25.14

SST Real, K = 5 10.5 25.97
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Fig. 4. TOP for real-valued encoding, Nr = 2, K = 5, L = 10, SNR=20 dB
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Fig. 6. Mean Capacity for Nr = 1, L = 10
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Fig. 7. Mean Capacity for Nr = 2, L = 50
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Fig. 8. Mean Sum Capacity Comparison of SST and SM for Nr = 2, L = 10, K = 3
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Fig. 9. Mean Sum Capacity Comparison of SST and SM for Nr = 4, L = 50, K = 2
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Fig. 10. Mean Sum Capacity Comparison of SST and SM for Nr = 4, L = 50, K = 3
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