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Abstract— Design of high quality factor (Q) micromechanical
resonators depends critically on our understanding of energy
losses in their oscillations. The Q of such structures depends on
process induced prestress in the structural geometry, interaction
with the external environment, and the encapsulation method. We
study the dominant fluid interaction related losses, namely, the
squeeze film damping and acoustic radiation losses in a drumhead
microresonator subjected to different prestress levels, operated in
air, to predict its Q in various modes of oscillation. We present a
detailed research of the acoustic radiation losses, associated with
the 15 transverse vibration modes of the resonator using a hybrid
analytical-computational approach. The prestressed squeeze film
computation is based on the standard established numerical
procedure. Our technique of computing acoustic damping based
quality factor Qac includes calculation of the exact prestressed
modes. We find that acoustic losses result in a non-monotonic
variation of Qac in lower unstressed modes. Such non-monotonic
variation disappears with the increase in the prestress levels.
Although squeeze film damping dominates the net Q at lower
frequencies, acoustic radiation losses dominate at higher fre-
quencies. The combined computed losses correctly predict the
experimentally measured Q of the resonator over a large range
of resonant frequencies. [2013-0035]

Index Terms— Prestressed micro drum resonator, annular
plate vibration, high Q resonators, acoustic radiation damping,
squeeze film damping, exact modeshape, nonmonotonic acoustic
losses.

I. INTRODUCTION

M ICROMECHANICAL resonators offer significant ad-

vantages over other resonators in terms of size, power

consumption [1], CMOS integration [2], and high quality fac-

tor, Q [3]. With the advent of micro and nanoelectromechanical
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systems, there has been rapid development in design and fab-

rication of sensitive resonant structures that find applications

as RF filters [4], mass sensors [5]–[7], pressure sensors [8],

and other high-frequency sensors [9]. The sensitivity of these

dynamic devices depends on their resonant frequency and

quality factor, Q. For devices made of low loss materials, such

as silicon, and operating in a fluid medium, such as air, the

Q of the device is usually dominated by the fluid interaction

dependent losses [10].

For devices oscillating over a fixed substrate at low oper-

ating frequencies, the fluid damping is due to a combination

of the squeeze-film flow and air-drag [10]–[14]. The squeeze

film damping is due to the viscous losses in the sideways

motion of the thin air film trapped between the transverse

vibrating structure and the fixed substrate [15], [16]. There

have been many studies on the squeeze film effect in MEMS

and NEMS [10], [13], [14], [17] devices. The findings of

these studies indicate that the squeeze film damping reduces

with increasing air gap thickness and operating frequency.

For large air-gap thickness, the drag losses can dominate the

damping in the structure at low frequencies [10] and acoustic

damping can dominate the losses at high frequencies [18].

However, for a relatively small air gap, the thin air film, which

gives rise to squeeze-film damping at low frequencies [13],

behaves like a compressible fluid [14] at higher frequencies.

Hence its contribution to net damping reduces drastically at

high frequencies. Under such conditions, the damping due to

the radiation of acoustic energy from the vibrating surface

to the infinitely open surrounding region dominates the loss

mechanism [19], [20]. In this paper, we quantify the losses

due to acoustic radiation and squeeze film for a conceptually

simple structure: an annular plate fixed at its outer edges,

suspended over a thin cavity above the fluid substrate and open

to the surrounding on the other side (see Fig. 1). We show that

the acoustic losses can be reduced by operating the structure

at higher harmonics, where the phase difference between the

adjacent moving segments at various vibrating modes of the

resonator leads to a reduction in radiated energy.

The dynamic motion of the annular plate considered here

involves vibration of the device in contact with the sur-

rounding fluid, which is of significant interest in wide range

of systems such as a piston that moves in contact with

the fluid in a closed cylinder [21], a structure that moves

underwater in the ocean [19], the movement of a magnetic

disc drive read-head in contact with air [22], vibration of a

nano circular drum resonator pressure sensor in contact with

1057-7157 © 2013 IEEE
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Fig. 1. (a) A picture depicting the prestressed drumhead resonator with a
center hole [8]. (b) Depiction of squeeze-film damping and acoustic radiation
loss regions, respectively, corresponding to fundamental mode of vibration.

(c) Clamped-free circular region with inner radius, b = d1
2

, and outer radius,

a = d3
2 , oscillating near a substrate with an air-gap of d2.

the surrounding fluid [8], microfluidic devices consisting of

a circular membrane [23], and other examples. There are

two main effects associated with such systems due to the

fluid-structure interaction. First is the “added mass effect”,

which reduces the effective resonance frequency of the struc-

ture. Second is the acoustic radiation loss that affects the

quality factor of the vibrating structure. This fluid-structure

interaction problem is analyzed numerically using the finite

element method or boundary element method for complex

domains and analytically for simple domains. Here, we stress

on developing an analytical procedure to analyze the acoustic

radiation losses on the top side of the vibrating annular plate

in several modes of oscillation. The squeeze film damping

for the corresponding modes can be readily computed using

standard FEM based software, ANSYS [17]. Therefore, our

focus is also on developing mathematical formulations for

acoustic radiation losses.

Lord Rayleigh [24] was probably the first to study the effect

of the mass loading due to the surrounding fluid on a vibrating

rigid disk in contact with the fluid. He suggested the idea of

an “added mass”. This classic problem was then studied by

Lamb [19] to investigate the added mass induced change in

the first two natural frequencies of a circular plate, fixed along

its outer edge and vibrating in contact with a fluid. In addition

to the frequency change, Lamb also found the acoustic radi-

ation losses corresponding to those two modes. These results

have been validated experimentally by subsequent studies.

It is, however, important to note that Lamb’s results are

based on approximate mode shapes. Revisiting this problem,

Amabili et al. [25], [26] used the Hankel transform to analyze

the added mass effect on the frequency of the structure vibrat-

ing in its fundamental and higher modes. However, their study

was limited to analysis of the added mass effect on resonators

with no prestress. Such fluid-structure interaction effects have

recently been analyzed in the context of MEMS/NEMS

structures. Unlike the case of macroscale problems, where

the surrounding fluid is assumed to be incompressible and

inviscid, the experimental validation of Lamb’s theory was

examined for a microsensor working in the presence of a vis-

cous fluid (water-glycerol mixture) [27]. Experimental results

were found to be in good agreement with Lamb’s predic-

tions for a less viscous fluid mixture (< 10 cP) but differed

for fluid mixtures with higher viscosity. The difference was

attributed to the viscosity contribution to the added mass effect

qualitatively [27] as well as quantitatively [28]. Considering

the first approximate mode shape of a circular plate vibrating

in contact with the surrounding fluid, Kozlovsky [28] analyzed

the effect of viscosity on the natural frequency as well as the

quality factor. Recently, Olfatnia et al. [18] have compared

theoretical and experimental results for analyzing the effect of

viscosity of the surrounding fluid on the frequency as well as

the quality factor of a circular diaphragm vibrating in its first

mode.

Our central interest in the present study is to find acoustic

losses and the associated quality factor in various modes of

vibration of an annular micromechanical resonator (a MEMS

plate) clamped at its outer edge in order to assess the suitability

of higher modes to high-Q applications. The annularity of

the resonator results from the requirement of an etch hole

typically used in the micromachining technique to create a

cavity underneath the resonator by dissolving the supporting

oxide material starting from the etch hole. Although a pattern

with many etch holes could be laid out to penetrate and free up

the plate, a central etch hole serves the purpose and creates the

simplest resonator structure [8], [29]. The annular resonator is

also particularly amenable to analytical treatment for studying

acoustic losses [30], [31] and building mathematical models

for predicting the Q-factor.

In order to analyze acoustic radiation losses associated with

various modes of vibration of the annular plate, we first derive

the exact mode shapes of the structure ignoring any effect of

the surrounding fluid (air) on the mode shape. We use these

mode shapes to study the effect of the surrounding fluid on

the associated natural frequencies and the Q-factor. Since the

surrounding fluid is air, the effect of “added mass” on the

frequencies of the structure is found to be negligible [26].

Hence, it is not considered in the formulation of acoustic

damping. The effect of the surrounding air on the Q-factor,

however, is significant because of the acoustic radiation losses

which is the subject matter of this paper. We extend the

analytical approach proposed by Amabili et al. [25], [26] to a

thin annular plate with prestress (typically present in all thin

film micromechanical structures) to find the acoustic losses

corresponding to different modes. Finally, we compare our

results, first, with Lamb’s results for the first two modes, and

then with published experimental results [8] for the higher

modes of the resonator.

II. PROBLEM DEFINITION

We take a prestressed drumhead resonator with a hole,

shown in Fig. 1, which is clamped at its outer edge and

separated from the bottom substrate by the air-gap d2.

The air gap comprises a thin film which is present between

the substrate and the bottom surface of the annular plate.

This thin film is open to the outer surroundings through the

hole provided at the center having a diameter d1 (see Fig. 1(b)).
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On the other hand, the upper surface of the plate is in direct

contact with the surrounding air which leads to either drag

flow damping or acoustic radiation losses. However, drag

damping is a low frequency phenomena and is found to be

negligible [10], [32], hence, it is not considered in the present

study. For the given configuration, under normal operating

conditions, there are two types of dominant fluid dissipation

mechanisms. The first is termed “squeeze film damping”

because of the squeezing of the trapped air film which flows

through the etch hole to the surrounding volume above the

plate. The second mechanism is due to acoustic radiation

damping from the upper surface of the plate. The effect of

these two damping mechanisms that contribute in different

proportions to the net damping when we consider different

resonance modes is analyzed in this paper.

The relevant dimensions and the properties of the resonator

and the surrounding air are: the inner diameter d1 = 4 µm,

the outer diameter d3 = 36.8 µm, the diameter ratio d1
d3

=
b
a

= 0.1087, the drum thickness d0 = 300 nm, and the air-

gap thickness d2 = 572 nm. The drum is made of polysilicon

material with Young’s modulus E = 150 GPa, Poisson’s ratio

ν = 0.22 and density ρs = 2330 kg/m3. The drum oscillates

in the surrounding air of density ρ f = 1.2 kg/m3 and viscosity

µ = 18.3 × 10−6 Ns/m2 under constant ambient temperature

T = 293 K and pressure P = 1.013 × 105 Pa. (Further

details of the resonator are available in Southworth et al. [8]).

The ratio d0
d3

≈ 0.008, suggests that thin plate analysis that

includes prestress is sufficient to capture the exact modes of the

annular plate. One uncertainty here, however, is the value of

the prestress. The residual stress value of 400 MPa mentioned

in ref. [8] is for the polysilicon film before patterning and

etching. The residual stress in the released resonator structure

is not known. Therefore, we carry out modal analysis on the

resonator with varying levels of prestress and try to match

the experimentally measured frequencies in various modes.

The closest match obtained for σr = 96 MPa in all the

15 modes considered makes this value to be the most realistic

one for the rest of the analysis.

In the subsequent section, we present the complete math-

ematical formulation of acoustic radiation damping. On the

other hand, since we are using a standard approach to com-

pute the squeeze film damping contribution, we only briefly

mention the important steps involved in its computation.

III. MATHEMATICAL MODELING OF ACOUSTIC

RADIATION DAMPING

In this section, we present the mathematical background

for computing the acoustic radiation losses due to a vibrating

annular plate with free inner edge and fixed outer edge

subjected to a radial prestress. The annular plate, with the

inner radius, b, and the outer radius, a, in contact with the

hemispherical surrounding fluid on its upper surface is shown

in Fig. 2.

First, we find the expression for the exact mode shapes of

the vibrating annular plate in vacuum. Subsequently, using the

same mode shapes, we present the procedure for computing

the acoustic radiation losses.

Fig. 2. Schematic of semi-hemispherical fluid domain above the vibrating
annular plate with uniform in-plane principal stress state (σr = σθ ), fixed at
its outer edge.

A. Modal Analysis of Annular Plate

The vibration of annular plates with fixed outer boundary is

widely analyzed for different applications. Under the assump-

tions of a thin plate made of isotropic, homogeneous, and

linearly elastic material, the equation governing the transverse

deflection, W (r, θ, t), of the plate subjected to radial prestress

for undamped, free vibration can be written in polar co-

ordinates as, [33]–[35]

∇4W −
(

N

D

)

∇2W +
(

ρsd0

D

)

∂2W

∂ t2
= 0, (1)

where, N = σr d0 is the tension per unit length, σr is the

radial stress, d0 is the uniform thickness of the plate, ∇2 =
∂2

∂r2 + 1
r

∂
∂r

+ 1
r2

∂2

∂θ2 is the Laplacian operator, and D = Ed3
0

12(1−ν2)
is the flexural rigidity of the plate and ρs is the density of the

plate. Assuming that the plate vibrates in a normal mode, W

can be expressed as,

W = w(r, θ)eiωt . (2)

Substituting eqn. (2) in eqn. (1) and then rearranging the

resulting equation, we get the modal equation as,

(∇2 + S2)(∇2 − S̃2)w(r, θ) = 0, (3)

where, β2 = ρs d0

D
ω2 is the frequency parameter, S2a2 =

1
2

(
√

T 4a4 + 4a4β2 − T 2a2
)

, S̃2a2 = 1
2

(
√

T 4a4 + 4a4β2 +
T 2 a2

)

and T =
√

N/D. It is noted that for a given tension

N , S and S̃ are functions of β only. The modal solution

w(r, θ) can be expressed in terms of Bessel functions [36]
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and is given by, [37]

w(r, θ) = χ(r)ψ(θ) = [Amn Jn(Sr) + BmnYn(Sr)

+ Cmn In(S̃r) + Dmn Kn(S̃r)]ψ(θ),

(4)

where, Jn is the Bessel function of the first kind, Yn is the

Bessel function of the second kind, In and Kn are the modified

Bessel’s functions of the first and second kind, respectively.

For the annular plate shown in Fig. 2, the following bound-

ary conditions can be used. At the outer radius r = a,

w = ∂w
∂r

= 0 and at the inner radius r = b, the bending mo-

ment [38], Mr = −D
[

∂2w
∂r2 + ν( 1

r
∂w
∂r

+ 1
r2

∂2w
∂θ2 )

]

= 0 and the

shear force [38] Vr = −D
[

∂
∂r

∇2w + 1−ν
r2

∂2

∂θ2 ( ∂w
∂r

− w
r
)
]

= 0.

On applying these boundary conditions, we get the system of

four linear and homogenous equations for the four constants

Amn , Bmn , Cmn and Dmn which we list as eqns.(26)–(29)

in Appendix A. For a non-trivial solution of these constants,

the determinant of the coefficient matrix given by eqn. (38),

Appendix C, of the above equations is set to zero, which

gives the required characteristic equation governing the fre-

quency constant β. Since the characteristics equation given by

eqn. (38) in Appendix C, is difficult to solve analytically, we

employ a numerical technique for finding roots in MATLAB

to estimate β and then we find S and S̃. The various solutions

of β are proportional to the natural frequencies, f , for corre-

sponding modes of vibration. For the given values of S and S̃,

the corresponding constants Amn , Bmn , Cmn , and Dmn can be

determined by solving the system of linear homogenous equa-

tions (26)–(29). Since the equations are homogenous, these

constants can be expressed in terms of any one (say Dmn).

Therefore, expressing the constants Amn , Bmn , Cmn in terms

of Dmn and substituting them in eqn. (4), the mode shape can

be written as w(r,θ)
ψ(θ)

= Dmnτmn(Sr, S̃r). Normalizing the mode

shape based on the normalization condition [26],

∫ 1

b/a

(

w(α, θ)

ψ(θ)

)2

αdα = 1, (5)

where, α = r/a, we get the expression for Dmn as

Dmn = 1
√

∫ 1
b
a
{τmn(αSa, α S̃a)}2αdα

. (6)

For a particular mode of vibration of the annular plate, the

computed Dmn from eqn. (6) can be used to determine other

constants Amn , Bmn and Cmn respectively.

For the limiting condition of the annular plate when the

radius of the inner hole goes to zero, i.e., a solid plate, we

find, following a similar procedure as described above, that

Yn and Kn tend to infinity as r tends to zero [37]. As w is

finite at the center of the plate, we must, therefore, set Bmn

and Dmn to be zero. The resulting deflection profile takes the

form [35], [37],

w(r, θ) = [Amn Jn(Sr) + Cmn In(S̃r)]ψ(θ). (7)

Using the boundary conditions and following a similar pro-

cedure as described above, we get the following characteristic

equation,

Jn(Sa)In+1(S̃a)S̃ + In(S̃a)Jn+1(Sa)S = 0. (8)

For unstressed case, i.e., σr = 0, S and S̃ are equal to
√

β.

Again, solving the above characteristic equation for β and

using the normalization condition, we can obtain expression

for values of Amn and Cmn .

Most of the fluid structure interaction problems [19] use a

polynomial approximation for the mode shapes. However, such

approximation introduces errors in estimating the damping

from the fluid-structure interaction. In the present analysis, we

use exact structural mode shapes for estimating the acoustic

radiation losses in different mode shapes.

B. Estimation of Acoustic Radiation Losses

In the previous section, we found the natural frequencies and

corresponding mode shapes of the prestressed annular plate

vibrating in vacuum. When the plate vibrates while in contact

with a surrounding air, the reduction in the modal frequency is

found to be negligible [25], [26], [39]. Hence, the added mass

effect is not considered in our formulation for estimating the

acoustic radiation losses in the surrounding air.

As the annular plate vibrates, a disturbance is created in

the fluid adjacent to the plate that causes the wave motion to

introduce pressure fluctuations at all points in the fluid domain

[40]. Considering the surrounding fluid as irrotational and

inviscid at constant ambient mean pressure p0, temperature T0

and density ρ f , the pressure variation about the mean value p0

and the particle velocity can be found in terms of the velocity

potential φ through the equation [21], [40]

p = −ρ f

∂φ

∂ t
and v = ∇φ. (9)

The governing equation for the velocity potential corre-

sponding to small disturbances is given by, [21], [40], [41]

∇2φ − 1

c2
s

∂2φ

∂ t2
= 0, (10)

where cs is the speed of acoustic waves in the fluid.

The incompressibility condition ∇ ·v = 0 leads to the Laplace

equation in terms of φ, i.e., ∇2φ = 0. Therefore, it is sufficient

to find the velocity potential field in order to analyze the

propagation of waves in the fluid medium.

For the domain shown in Fig. 2, the fixed outer support

(i.e., for r > a) is assumed to be radially extended to infin-

ity. For the hemispherical fluid domain enclosing the upper

surface of the annular plate and the support, along with

the Sommerfeld boundary conditions, i.e., velocity and its

gradient vanish as r → ∞, the velocity potential can be

obtained by solving the wave equation as mentioned above.

To find the velocity potential at a generic point P due to

an elementary source � as shown in Fig. 3, we follow the

analysis given by Lamb [19]. Let the position co-ordinates of

point P be (R sin ξ cos ψ, R sin ξ sin ψ, R cos ξ), and that of �

on elemental surface area d� in the plane of the resonator be

(r cos θ, r sin θ, 0). The distance r ′ of the point P from the

source position � is given by

r ′ =
{

R2 − 2Rr sin ξ cos(ψ − θ) + r2
} 1

2
. (11)
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Fig. 3. Generic point P in acoustic far field from the resonator.

Since at the far field point P , R ≫ r , the expression for r ′

can be approximated as,

r ′ = {R − r sin ξ cos(ψ − θ)} . (12)

Assuming that the normal component of the velocity of

the fluid at the plate interface is same as that of the plate.

The fluid velocity vn = ∂W
∂t

at point � on the upper surface

of the annular plate can be written in terms of the mode shape

w(r, θ) defined in section III(A). Since, W = w(r, θ)eiωt and

w(r, θ) = χ(r)ψ(θ) = χ(r)C cos nθ , we write the normal

velocity as,

vn = ∂W

∂ t
= iω w(r, θ)eiωt = Aχ(r) cos nθeiωt (13)

where, A = iCω, χ(r) = [Amn Jn(Sr) + BmnYn(Sr) +
Cmn In(S̃r)+ Dmn Kn(S̃r)], ω is the frequency of the vibrating

plate. The velocity potential at a distance R from the center of

the resonator, or at a distance r ′ from the elemental surface d�

due to the disturbance at � is given by, [19], [42]

φ =
1

2π

∫ 2π

0

∫ a

b

e−ikr ′

r ′
∂W

∂ t
d�. (14)

Using the approximation of r ′ from eqn. (12) and the

expression of ∂W
∂t

from eqn. (13), the velocity potential can

be rewritten as,

φ =
Aeik(cs t−R)

2π R

∫ a

b

∫ 2π

0

eikrsinξ cos(ψ−θ) × cos nθχ(r)rdrdθ,

(15)

where k = ω
cs

is the acoustic wave number. Using the

following property of Bessel functions [22], [43],
∫ 2π

0

eikrsinξ cos(ψ−θ) cos nθdθ = 2π in cos nψ Jn(kr sin ξ),

(16)

the velocity potential can be written as,

φ = Aineik(cs t−R)

R
cos nψ ×

∫ a

b

Jn(kr sin ξ)χ(r)rdr . (17)

From this expression of velocity potential, one can calculate

the pressure fluctuation and velocity using eqn. (9). Taking the

real part of the velocity potential,

φr = ℜ
(

Aineik(cs t−R)

R

)

cos nψ ×
∫ a

b

Jn(kr sin ξ)χ(r)rdr ,

(18)

corresponding to the real part of the velocity ∂W
∂t

=
χ(r) cos (nθ) cos (kcs t), the intensity of the acoustic wave at

any point at distance r ′ can be written as the product of pres-

sure and particle velocity at that point [21]. The corresponding

power radiated across a hemispherical surface of radius R, is

obtained by integrating the intensity over the hemispherical

fluid domain and can be written as

d Eflux

dt
=

∫ 2π

0

∫ π
2

0

−ρ f

(

∂φr

∂ t

∂φr

∂ R
R2 sin ξ

)

dξdψ. (19)

The flux of energy dissipated in the form of sound waves

per cycle is given by,

△EMF =
∫ 2π

ω

0

d Eflux

dt
dt = U A2. (20)

The expression for U is obtained by substituting the velocity

potential, φr , in the power radiated eqn.(19). The parameter U

depends on fluid properties, geometric properties, mode shapes

and its corresponding frequency of oscillation of the resonator

as given below,

U = −ρ f R

∫ π
2

0

(∫ a

b

Jn(krsinξ)χ(r)rdr

)2

sinξdξ

×
∫ 2π

0

cos2(nψ)dψ

∫ 2π
ω

0

∂

∂ t

(

ℜ(ineik(cs t−R))
)

× ∂

∂ R

(

ℜ(ineik(cs t−R))

R

)

dt. (21)

The input kinetic energy of the plate is given as [19], [26]

Estored = 1

2
ρsd0

∫ 2π

0

∫ a

b

(χ(r)A cos nθ)2rdrdθ = V A2.

(22)

Based on the definition of quality factor [44], we get,

Qac = 1

2ζ
= 2π

Estored

△EMF
= 2π

V

U
= 2π

δ
, (23)

where δ = U/V , and is given by,

δ = −
ρ f

ρs

R

d0

∫
π
2

0

(∫ a

b Jn(krsinξ)χ(r)rdr
)2

sinξdξ
∫ a

b
χ2(r)rdr

×
∫ 2π

ω

0

∂

∂ t

(

ℜ(ineik(cs t−R))
) ∂

∂ R

(

ℜ(ineik(cs t−R))

R

)

dt,

(24)

and ω = 2π f , where, f being the frequency of the vibrating

plate. Although the final expression of the quality factor

looks very simple, it requires the computation of δ which

is mode dependent. Since the computation of the parameter

requires successive differentiation and numerical integration,
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Fig. 4. Flow chart for computing acoustic radiation damping.

we perform these steps in MATLAB and MAPLE. The entire

set of calculations is somewhat involved but algorithmic.

We, therefore, present the sequence of calculations to be done

as a schematic flow chart in Fig. 4.

There are two major computational blocks that we present

separately for conceptual clarity. As is evident from Fig. 4, the

computation involves some FEM analysis along with computer

algebra and general numerics as described in the following

section.

C. Steps Involved in Acoustic Damping Calculations

1) Modal analysis with no fluid: The goal here is to obtain

an analytical expression for the mode shapes of interest

and determine the corresponding frequencies for a given

prestress σr . We do this by the following sequence of

steps.

• Use FEM based modal analysis for the resonator

in ANSYS and find numerical values of the natural

frequencies fi of interest.

• Use the numerically obtained natural frequencies to

obtain the initial estimate for the frequency parame-

ter βi using fi = βi

2π

√

Ed2
0

12ρs(1−ν2)
. Plug this estimate

in the nonlinear algebraic equation for βi obtained

as the characteristic equation for βi by substituting

boundary conditions in eqn.(4), and solve for exact

βi using numerical iteration (MATLAB).

• Find exact fi using exact βi , and by solving the

set of homogeneous equations given by boundary

conditions on the mode shape, along with the mode

normalization condition, determine Amn , Bmn , Cmn ,

Dmn , and thus the mode shape is given by eqn. (4).

2) Acoustic radiation loss computation: We need to evalu-

ate the loss of energy from the resonator to the surround-

ing fluid in the form of acoustic radiation per cycle of

vibration. The computational steps are as follows.

• Find the velocity potential φ derived by Lamb [19]

using the exact mode shapes found through the

modal analysis.

• Use the velocity potential to determine the flux of

energy radiated in the form of acoustic waves per

cycle of oscillation.

• Compute the mean kinetic energy of the resonator

as energy stored.

• Use the radiated energy and the input energy to find

the quality factor Qac using eqn. (23).

This is the hybrid sequence of analytical and numerical

steps that we follow to evaluate the acoustic quality factor

for each mode of vibration of the resonator. We can also use

the procedure described above to compute the quality factor

for an unstressed thin solid circular plate by setting b = 0,

σr = 0 and χ(r) = Amn Jn(
√

βr) + Cmn In(
√

βr).

IV. SQUEEZE FILM DAMPING CALCULATIONS

We use a finite element model for the air film between the

resonator structure and the fixed substrate in order to determine

the pressure variation in the film and subsequently the squeeze

film damping force. The finite element analysis is carried out

using ANSYS. The air film is modeled using 2D 4-noded

fluid elements with pressure degrees of freedom at each node.

The hole effect is modeled using 1D 2-noded fluid element.

The fluid elements are coupled to the resonator structure mod-

eled with 8-noded prestress solid elements. The coupled model

is shown in Fig. 5. ANSYS solves Reynolds equation in the

squeeze film domain taking velocities at structural nodes as the

input boundary conditions for the fluid domain on the dynamic

interface. ANSYS integrates the pressure field and computes

the corresponding stiffness and damping coefficients. The final

output is the damping ratio from which we compute Qsq.

The Knudsen number, a measure of rarefaction is defined as

the ratio of the mean free path, λm (65 nm, at ambient pressure

and temperature) of air molecules in the air gap at specified

macroscopic thermodynamic pressure and temperature to the
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Fig. 5. (a) Finite element model of the resonator using different elements
for the solid and fluid regions. 1©: 4-noded 2D FLUID136 elements with
velocity boundary conditions extracted from modal analysis of adjacent
solid elements, 2©: 8 noded SOLID185 elements that supports prestress,
3©: Ambient pressure specified on the node of FLUID138 elements to capture

hole effect and 4©: Common nodes of solid and fluid elements that exchange
compatible structure-fluid velocities. (b) Pressure contours of squeeze film
cavity for a diametral mode.

characteristic flow length, d2. The Knudsen number of the flow

is 0.1136, and falls in the range of transition flow regime [45].

Therefore the rarefaction effect has to be accounted for which

is readily done by using an effective viscosity model [45].

We compute µeff and input this value in ANSYS in order to

account for rarefaction. Fig. 5(a) shows the schematic finite

element model of the resonator and Fig. 5(b) depicts the

squeeze film pressure in the thin air cavity of the drum head

resonator.

V. RESULTS AND DISCUSSION

In this section, we first discuss the results for quality

factor due to acoustic damping and then due to squeeze

film damping under prestress effect. Subsequently we find

the net Q and compare the results with experimental values

obtained by Southworth et al. [8]. To do the analysis, we

take the dimensions and material properties of the structural

and the fluid domains used by Southworth et al. [8] in their

experimental studies.

A. Acoustic Damping

We first discuss the acoustic damping results for an

unstressed solid circular plate oscillating in contact with the

surrounding fluid. For the analysis of the solid plate, we simply

take the inner radius to be zero, i.e., b = 0, σr = 0, and rest

of the parameters remain the same.

Fig. 6. Normalized circular mode shapes of a clamped and unstressed solid
circular plate.

Fig. 7. Normalized diametral mode shapes of a clamped and unstressed solid
circular plate.

1) Solid circular plate: We compare the frequency and

quality factor based on the exact mode shapes given by eqn. (7)

and the approximate mode shapes used by Lamb for the

first two modes. Fig. 6 and 7 show the comparison between

the normalized exact mode shape (ems) and the normalized

approximate mode shape (ams) for the axisymmetric mode

with zero nodal circle, i.e., (m = 0, n = 0) and single nodal

diameter mode (m = 0, n = 1), respectively. As is evident

from these figures, the exact mode shape differs from the

approximate one in spatial amplitude variation. The variation

is significant enough to cause non-negligible differences in

the radiated acoustic power. This is precisely what we see

in the computed values of corresponding Q, listed in Table I.

The difference in amplitude variation across the plate between

the two mode shapes causes very significant change in the

corresponding Q. In particular, the approximate mode shape

used by Lamb in the second mode overestimates the radiative

losses by as much as 42%. This approximation may lead to
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TABLE I

QUALITY FACTORS ASSOCIATED WITH EXACT AND APPROXIMATE MODE

SHAPES CORRESPONDING TO CIRCULAR AND DIAMETRAL MODES OF

UNSTRESSED CIRCULAR SOLID THIN PLATE

even bigger difference when we try to compute the Q’s for a

prestressed annular plate in the next section.

2) Annular plate: We now consider the annular plate shown

in Fig. 2. We intend to compare our analytically computed

results with experimental results of Southworth et al. [8].

We use the procedure outlined in section III (A) to obtain

the exact mode shapes of the annular resonator and use these

mode shapes to compute the corresponding Q for each mode.

In order to estimate the correct value of prestress in the

resonator, we compare the experimentally obtained frequencies

with the frequencies obtained from the thin annular plate

model with varying levels of prestress. We find that the

computed frequencies without considering the prestress give

lower values as compared to the experimental values listed

in Table II. However with a prestress value of 96 MPa, the

computed frequencies are found to be the closest in all modes

to the experimental results with a maximum percentage error

of about 4%. The detailed results are tabulated in Table II.

Therefore, we take 96 MPa prestress value for computing

acoustic radiation losses. Our focus here is on computing

Qac—the quality factor associated with acoustic radiation

losses—and understanding its variation in different modes of

vibration. In order to highlight the effect of prestress on Qac,

we plot the computed values of Qac without prestress and

with prestress values of 96 MPa and 400 MPa respectively

in Fig. 8. As we can see, the variation in Qac over the first

few modes (<40 MHz) is marked with a local maximum and a

minimum for the unstressed case. Beyond this range, however,

Qac increases monotonically. Nevertheless, it is also found that

the magnitude of such maximum and minimum reduces as the

prestress increases. Figure 8 shows the absence of maximum

and minimum corresponding to the prestress level of 400 MPa.

As the mode number increases, the resonator starts behaving

like many point sources and addition of more such sources

with increasing mode number makes less and less difference to

Qac leading to a somewhat predictable, monotonic and slower

increase in Qac. We point out here that we have ignored any

acoustic radiation from the central hole itself in our analysis.

The hole area is about 1% of that of the resonator and we find

no appreciable fluid volume oscillations in the hole to effect

acoustic radiation. The fluid flow in the hole is bulk flow due

to squeeze film and the related losses are accounted for in the

next section on squeeze film damping.

B. Squeeze Film Damping

For the given device, the squeeze-film region is formed

between the drumhead and the fixed bottom substrate as shown

Fig. 8. Calculated acoustic radiation loss based quality factor Qac variation
with resonant modes for prestress levels of 0, 96 and 400 MPa.

Fig. 9. Calculated squeeze film loss based quality factor, Qsq variation with
resonant modes for prestress levels of 0, 96 and 400 MPa.

in Fig. 1(b). The squeeze-film damping (Q−1
sq ) corresponding to

different modes of annular thin plate subjected to the prestress

level of 0, 96 and 400 MPa are computed by following the

procedure described in section IV. Figure 9 shows the variation

of Qsq with different modes of vibration. It is found that

the damping in the fundamental mode is the highest of all

the modes because of the large displacement of the fluid in the

squeeze-film region. However, as the mode number increases

(along with frequency), the damping due to the squeeze film

mechanism is reduced and the quality factor increases.

Figure 9 shows the monotonic increase in the squeeze-

film based quality factor, Qsq, from 5 to 21 000 calcu-

lated for different modal frequencies ranging from 3.4 to

168 MHz for b/a = 0.1087 for unstressed case. However,

we observe a relatively higher Qsq corresponding to the stress

levels of 96 MPa and 400 MPa, respectively. Similar results

can also be obtained for other values of b/a. In higher

modes of oscillation, the maximum displacement of the fluid

decreases and consequently the damping [46] decreases. As

is evident from the figure, the Qsq covers a range of five
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TABLE II

EXPERIMENTAL AND THEORETICAL COMPARISON OF PRESTRESSED ACOUSTIC Q-FACTORS FOR ANNULAR RESONATOR, CLAMPED AT THE OUTER

EDGE (a) AND FREE AT THE INNER EDGE (b) WITH b/a = 0.1087

orders of magnitude over the range of frequencies of interest.

Compared to the Qac, it is easy to see that Qsq dominates

at low frequencies (< 20 MHz) and plays insignificant role at

high frequencies (> 40 MHz).

C. Comparison of Net Q With Experimental Results

To compute the total quality factor for the annular thin

plate subjected to the prestress of 96 MPa, we use 1/Qnet =
1/Qac + 1/Qsq + 1/Qrest. We use this relationship to evaluate

the relative contribution of Qac to Qnet (experimentally, Qnet

is Qexp). Here, we present results from the computation of

squeeze-film damping and acoustic radiation damping in the

fluid medium under different operating modes characterized

by (m, n), compare computed values with experimental results

reported earlier [8]. We show that these two damping mech-

anisms correctly predict the Q of the resonator over a large

frequency range. On comparing the net quality factor,

Qnet =
(

1

Qac

+ 1

Qsq

)−1

, (25)

with the experimental results for b/a = 0.1087 [8] as shown

in Fig. 10, we find that, at lower harmonics, the squeeze-

film effect dominates and for higher harmonics the acoustic

damping dominates the Qnet. The relative contribution of

the two dissipative mechanisms is shown in the form of
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Fig. 10. Comparison of total Q-factor based on squeeze film and acoustic
losses for prestress level of 96 MPa, with experimental result [8].

the Qac/Qsq ratio plotted in Fig. 10 using the right axis.

This ratio varies over two orders of magnitude, clearly indi-

cating the regions of dominance of one mechanism over the

other in various modes. The first three modes (< 20 MHz)

are dominated by Qsq, the next three modes require both Qac

and Qsq and the rest of the higher modes (> 40 MHz) are

dominated by Qac. The results obtained for acoustic radiation

losses are interesting because of their non-monotonic variation.

The presence of a local maximum and a minimum in Qac for

lower harmonic oscillation modes has significant implications

in the design of a MEMS or NEMS resonator. However, such

effects can be controlled using pre-stress level. If the design

constraints allow other modes of dissipation to be suppressed

(e.g., squeeze film damping can be more or less eliminated

by increasing the cavity height considerably or by increasing

the density of etch holes [47]–[49]) and acoustic losses to be

dominant, then one can choose to operate the resonator in the

mode corresponding to the local maximum of Qac to get a high

Q device. The non-monotonic behavior of Qac in the first few

modes of the resonator is not intuitive but can be explained

by invoking the concept of acoustic radiation efficiency [50],

[51] which depends on different acoustic radiation parameters

such as mode number, intranodal area, intranodal aspect ratio

factor as defined in [51]. It is known that different modes of

a resonator have different radiation efficiencies, some modes

being better radiators than others.

It is evident that the acoustic radiation losses depend on

the surrounding fluid medium and the design of the resonator

structure. The radiation efficiency of the structure is perhaps

best captured by the ratio of the flexural wave number of the

structure to the acoustic wave number [50], [51]. The flexural

wave number depends on the thickness of the resonator, its

flexural rigidity, and its natural frequency. These are not

independent design variables. Furthermore, the radiation in

higher modes of oscillation depends on the complex interplay

of odd and even nodal numbers, intranodal areas, etc., [51].

Thus, in order to make definitive recommendations on design

parameters of the resonator, one needs to carry out a separate

analysis, perhaps with target Q in mind.

Here, we must point out that we have not considered

internal thermoelastic and support losses. In our experience,

such losses [29] are typically one to two orders of magnitude

smaller than the fluid interaction related losses considered

here. The final comparison with experimental results is a clear

evidence of the dominance of fluid damping.

VI. CONCLUSION

We have presented a detailed procedure for computing

acoustic damping using exact mode shapes in various modes of

vibration of a prestressed annular plate with fixed outer edge.

We have also compared the computed Q-factor associated with

acoustic radiation for various modes of a micromechanical

drum head resonator with published experimental values where

the experimental results report the net Q in various modes.

We have shown that the contribution of Qac to the net Q is

dominant for higher modes (above the 5th mode of vibration)

and accounts for almost 80% of the net Q. However, the

quality factor in the first two modes are governed by squeeze

film dissipation mechanism. It is also found that the quality

factor based on the squeeze film, Qsq, increases monotonically

with the higher modes of vibration for prestress levels of

0, 96 and 400 MPa respectively. However, the variation of

acoustic damping based quality factor, Qac, is quite different

over the first few modes in the unstressed state. It is found that

Qac attains a maximum before decreasing and then increasing

monotonically. The effect of increase in the prestress dimin-

ishes such variations in Qac, and brings about the monotonic

variation in the complete frequency range. However, the mag-

nitude of such effects can be controlled by proper prestress

condition. Comparison with published experimental results

validates the predictive utility of the calculations, especially

for higher modes where acoustic radiation seems to be the

dominant constituent of Q. Qac-like variation is not observed if

the net quality factor is dependent both on the squeeze film as

well as acoustic damping. The analysis presented in the paper

can be extended to different MEMS and NEMS structures to

compute acoustic damping.

APPENDIX A

SYSTEM OF LINEAR AND HOMOGENOUS EQUATIONS FOR

THE FOUR CONSTANTS Amn , Bmn , Cmn AND Dmn

Amn Jn(Sa)+BmnYn(Sa)+Cmn In(S̃a)+Dmn Kn(S̃a)=0,

(26)

Amn

[

n

S̃a
Jn(Sa) − S

S̃
J(n+1)(Sa)

]

+Bmn

[

n

S̃a
Yn(Sa) − S

S̃
Y(n+1)(Sa)

]

+Cmn

[

n

S̃a
In(S̃a) + I(n+1)(S̃a)

]

+Dmn

[

n

S̃a
Kn(S̃a) − K(n+1)(S̃a)

]

= 0,

(27)

Amn F1(ν, n, Sb, S̃b)+Bmn F2(ν, n, Sb, S̃b)−Cmn F3(ν, n, S̃b)

−Dmn F4(ν, n, S̃b) = 0, (28)

Amnφ1(ν, n, Sb, S̃b)+Bmnφ2(ν, n, Sb, S̃b)−Cmnφ3(ν, n, S̃b)

−Dmnφ4(ν, n, S̃b) = 0, (29)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VISHWAKARMA et al.: EVALUATION OF MODE DEPENDENT FLUID DAMPING 11

∣

∣

∣

∣

∣

∣

∣

∣

∣

Jn(Sa) Yn(Sa) In(S̃a) Kn(S̃a)
n

S̃a
Jn(Sa) − S

S̃
J(n+1)(Sa) n

S̃a
Yn(Sa) − S

S̃
Y(n+1)(Sa) n

S̃a
In(S̃a) + I(n+1)(S̃a) n

S̃a
Kn(S̃a) − K(n+1)(S̃a)

F1(ν, n, Sb, S̃b) F2(ν, n, Sb, S̃b) −F3(ν, n, S̃b) −F4(ν, n, S̃b)

φ1(ν, n, Sb, S̃b) φ2(ν, n, Sb, S̃b) −φ3(ν, n, S̃b) −φ4(ν, n, S̃b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (38)

where, the functions F1, F2, F3, F4, φ1, φ2, φ3 and φ4 are

defined by eqns. (30)-(37) as mentioned on the appendix B.

APPENDIX B

EXPRESSIONS FOR FUNCTIONS F1 , F2 , F3 , F4 ,

φ1, φ2 , φ3 AND φ4

F1(ν, n, Sb, S̃b)=
(

S2

S̃2
Jn(Sb) − (1 − ν)

×
[

n(n − 1)

(S̃b)2
Jn(Sb) + S

S̃2b
J(n+1)(Sb)

])

(30)

F2(ν, n, Sb, S̃b)=
(

S2

S̃2
Yn(Sb) − (1 − ν)

×
[

n(n − 1)

(S̃b)2
Yn(Sb) + S

S̃2b
Y(n+1)(Sb)

])

(31)

F3(ν, n, S̃b)=
(

In(S̃b) + (1 − ν)

×
[

n(n − 1)

(S̃b)2
In(S̃b) − 1

S̃b
I(n+1)(S̃b)

])

(32)

F4(ν, n, S̃b)=
(

Kn(S̃b) + (1 − ν)

×
[

n(n − 1)

(S̃b)2
Kn(S̃b) + 1

S̃b
K(n+1)(S̃b)

])

(33)

φ1(ν, n, Sb, S̃b)= S2

S̃2
n Jn(Sb)−(

S3

S̃2
b)J(n+1)(Sb)+ n2(1 − ν)

(S̃b)2

×
[

(n − 1)Jn(Sb) − (Sb)J(n+1)(Sb)
]

(34)

φ2(ν, n, Sb, S̃b)= S2

S̃2
nYn(Sb)−(

S3

S̃2
b)Y(n+1)(Sb)+ n2(1 − ν)

(S̃b)2

×
[

(n − 1)Yn(Sb) − (Sb)Y(n+1)(Sb)
]

(35)

φ3(ν, n, S̃b)=nIn(S̃b)+(S̃b)I(n+1)(S̃b)− n2(1 − ν)

(S̃b)2

×
[

(n − 1)In(S̃b) + (S̃b)I(n+1)(S̃b)
]

(36)

φ4(ν, n, S̃b)=nKn(S̃b)−(S̃b)K(n+1)(S̃b)− n2(1 − ν)

(S̃b)2

×
[

(n − 1)Kn(S̃b) − (S̃b)K(n+1)(S̃b)
]

(37)

APPENDIX C

DETERMINANT OF THE COEFFICIENT MATRIX OF

EQNS. 26–29

The characteristic equation for frequency parameter β is

given by eqn. (38), shown at the top of the page.

ACKNOWLEDGMENT

We acknowledge the fruitful discussions with

Prof. V. R. Sonti from Dept. of Mechanical Engineering,

Indian Institute of Science on acoustic radiation efficiency

and some topics in technical acoustics. The authors thank

Robert Anthony Barton from Center for Materials Research,

Cornell University for providing essential help with extraction

and formatting of data obtained in the original experiment

and also for his inputs during the writing of this manuscript.

This work was partially supported by MCIT grant CEN

phase II, NPMASS grant 3.14, NSF grant ECCS 1001742

and DMR 1120296. The authors would also like to thank

both anonymous reviewers for their thoughtful comments and

valuable suggestions, specifically on the inclusion of prestress

in the analysis.

REFERENCES

[1] C. T.-C. Nguyen, “Frequency-selective MEMS for miniaturized low-
power communication devices,” IEEE Trans. Microw. Theory Tech.,
vol. 47, no. 8, pp. 1486–1503, Aug. 1999.

[2] M. K. Zalalutdinov, J. D. Cross, J. W. Baldwin, B. R. Ilic, W. Zhou,
B. H. Houston, and J. M. Parpia, “CMOS-integrated RF MEMS
resonators,” J. Microelectromech. Syst., vol. 19, no. 4, pp. 807–815,
Aug. 2010.

[3] V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead, and
J. M. Parpia, “Modal dependence of dissipation in silicon nitride drum
resonators,” Appl. Phys. Lett., vol. 99, no. 25, pp. 253103-1–253103-5,
Dec. 2011.

[4] H. Chandrahalim, D. Weinstein, L. F. Cheow, and S. A. Bhave, “High-κ
dielectrically transduced MEMS thickness shear mode resonators and
tunable channel-select RF filters,” Sens. Actuators A, Phys., vol. 136,
no. 2, pp. 527–539, May 2007.

[5] Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes,
“Zeptogram-scale nanomechanical mass sensing,” Nano Lett., vol. 6,
no. 4, pp. 583–586, Apr. 2006.

[6] K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nano-
electromechanical mass detection,” Appl. Phys. Lett., vol. 84, no. 22,
pp. 223–225, May 2004.

[7] S. S. Verbridge, R. Ilic, H. G. Craighead, and J. M. Parpia, “Size and
frequency dependent gas damping of nanomechanical resonators,” Appl.

Phys. Lett., vol. 93, no. 1, pp. 013101-1–013101-3, May 2008.
[8] D. R. Southworth, H. G. Craighead, and J. M. Parpia, “Pressure depen-

dent resonant frequency of micromechanical drumhead resonators,”
Appl. Phys. Lett., vol. 94, no. 21, pp. 213506-1–213506-3, May 2009.

[9] M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based
cantilevers for sensing, scanned probe and very high-frequency applica-
tions,” Nature Nanotechnol., vol. 2, no. 2, pp. 114–120, Feb. 2007.

[10] H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-
shaped micro-oscillators,” Sens. Actuators A, Phys., vol. 49, pp. 87–95,
Feb. 1995.

[11] J. J. Blech, “On isothermal squeeze films,” J. Lubricat. Technol.,
vol. 105, pp. 615–20, Oct. 1983.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

[12] M. I. Younis and A. H. Nayfeh, “Simulation of squeeze-film damping of
microplates actuated by large electrostatic load,” J. Comput. Nonlinear

Dyn., vol. 2, no. 3, pp. 232–241, Jul. 2007.
[13] A. K. Pandey, R. Pratap, and F. S. Chau, “Influence of boundary

conditions on the dynamic characteristics of squeeze films in MEMS
devices,” J. Microelectromech. Syst., vol. 16, no. 4, pp. 893–903,
Aug. 2007.

[14] S. S. Mohite, V. R. Sonti, and R. Pratap, “A compact squeeze-film model
including inertia, compressibility, and rarefaction effects for perforated
3-D MEMS structures,” J. Microelectromech. Syst., vol. 17, no. 3,
pp. 709–723, Jun. 2008.

[15] M. Bao and H. Yang, “Squeeze film air damping in MEMS,” Sens.

Actuators A, Phys., vol. 136, no. 1, pp. 3–27, May 2007.
[16] M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for

squeeze-film air damping in low vacuum,” J. Micromech. Microeng.,
vol. 12, no. 3, pp. 341–346, May 2002.

[17] A. K. Pandey and R. Pratap, “Effect of flexural modes on squeeze film
damping in MEMS cantilever resonators,” J. Micromech. Microeng.,
vol. 17, no. 12, pp. 2475–2484, Dec. 2007.

[18] M. Olfatnia, Z. Shen, J. M. Miao, L. S. Ong, T. Xu, and M. Ebrahimi,
“Medium damping influences on the resonant frequency and quality
factor of piezoelectric circular microdiaphragm sensors,” J. Micromech.
Microeng., vol. 21, no. 4, pp. 045002–045011, Apr. 2011.

[19] H. Lamb, “On the vibrations of an elastic plate in contact with water,”
Proc. R. Soc. A, Math. Phys. Eng. Sci., vol. 98, no. 690, pp. 205–216,
Nov. 1920.

[20] D. W. Greve, I. J. Oppenheim, A. P. Wright, and W. Wu, “Design and
testing of a MEMS acoustic emission sensor system,” Proc. SPIE, vol.
6932, pp. 69321P, Apr. 2008.

[21] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamen-

tals of Acoustics. New York, NY, USA: Wiley, 2000, ch. 5, pp. 113–148.
[22] M. Lee and R. Singh, “Analytical formulations for annular disk sound

radiation using structural modes,” J. Acoust. Soc. Amer., vol. 95, no. 6,
pp. 3311–3323, Jun. 1994.

[23] R. Pratap, S. S. Mohite, and A. K. Pandey, “Squeeze film effects in
MEMS devices,” J. Indian Inst. Sci., vol. 87, no. 1, pp. 75–94, Mar. 2007.

[24] J. W. S. L. Rayleigh, The Theory of Sound, vol. 1. New York, NY, USA:
Dover, 1945, p. 480.

[25] M. Amabili and M. K. Kwak, “Free vibrations of circular plates coupled
with liquids: Revising the Lamb problem,” J. Fluids Struct., vol. 10,
no. 7, pp. 743–761, Oct. 1996.

[26] M. Amabili, G. Frosali, and M. K. Kwak, “Free vibrations of annu-
lar plates coupled with fluids,” J. Sound Vibrat., vol. 191, no. 5,
pp. 825–846, Apr. 1996.

[27] C. Ayela and L. Nicu, “Micromachined piezoelectric membranes with
high nominal quality factors in Newtonian liquid media: A Lamb’s
model validation at the microscale,” Sens. Actuators B, Chem., vol. 123,
pp. 860–868, Nov. 2007.

[28] Y. Kozlovsky, “Vibration of plates in contact with viscous fluid: Exten-
sion of Lamb’s model,” J. Sound Vibrat., vol. 326, nos. 1–2, pp. 332–339,
Sep. 2009.

[29] V. P. Adiga, B. Ilic, R. A. Barton, I. Wilson-Rae, H. G. Craighead,
and J. M. Parpia, “Approaching intrinsic performance in ultra-thin
silicon nitride drum resonators,” J. Appl. Phys., vol. 112, no. 6,
pp. 064323-1–064323-6, Sep. 2012.

[30] M. C. Junger and D. Feit, Sound, Structures, and Their Interaction.
Cambridge, MA, USA: MIT Press, 1972.

[31] W. P. Rdzanek, “The sound power of an individual mode of a clamped-
free annular plate,” J. Sound Vibrat., vol. 261, no. 5, pp. 775–790,
Apr. 2003.

[32] W. Zhang and K. Turner, “Frequency dependent fluid damping of
micro/nano flexural resonators: Experiment, model and analysis,” Sens.

Actuators A, Phys., vol. 134, no. 2, pp. 594–599, Mar. 2007.
[33] S. M. Vogel and D. W. Skinner, “Natural frequencies of transversely

vibrating uniform annular plates,” J. Appl. Mech., vol. 32, no. 4,
pp. 926–931, Dec. 1965.

[34] P. N. Raju, “Vibrations of annular plates,” J. Aeronaut. Soc. India,
vol. 14, no. 2, pp. 37–52, May 1962.

[35] J. S. Rao, Dynamics of Plates. New York, NY, USA: Marcel Dekker,
1999, chs. 3–4, pp. 43–148.

[36] A. W. Leissa, Vibration of Plates, vol. 160. Washington, DC, USA:
NASASP, 1969, pp. 22–23.

[37] G. N. Watson, A Treatise on the Theory of Bessel Functions. New York,
NY, USA: Cambridge Univ. Press, 1944, chs. 3–5, pp. 38–132.

[38] S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates
and Shells. Auckland, New Zealand: McGraw-Hill, 1959, ch. 9,
pp. 282–324.

[39] M. K. Kwak and K. C. Kim, “Axisymmetric vibration of circular plates
in contact with fluid,” J. Sound Vibrat., vol. 146, no. 3, pp. 381–389,
May 1991.

[40] H. Lamb, The Dynamical Theory of Sound. London, U.K.: Arnold, 1931,
ch. 7, pp. 200–286.

[41] E. J. Skudrzyk, The Foundations of Acoustics—Basic Mathematics and

Basic Acoustics. New York, NY, USA: Springer-Verlag, 1971, ch. 23,
pp. 489–511.

[42] J. W. S. L. Rayleigh, The Theory of Sound, vol. 2. New York, NY, USA:
Dover, 1945, ch. 14, pp. 97–148.

[43] E. J. Skudrzyk, The Foundations of Acoustics—Basic Mathematics and
Basic Acoustics. New York, NY, USA: Springer-Verlag, 1971, ch. 26,
pp. 593–640.

[44] S. S. Rao, Mechanical Vibrations. 2nd ed. New York, NY, USA:
Addison-Wesley, 2011, chs. 2–3, pp. 6–174.

[45] T. Veijola, “End effects of rare gas flows in short channels and in
squeezed-film dampers,” in Proc. 5th Int. Conf. Model. Simul. Microsyst.,
Apr. 2001, pp. 104–107.

[46] A. K. Pandey and R. Pratap, “A semi-analytical model for squeeze-film
damping including rarefaction in a MEMS torsion mirror with complex
geometry,” J. Micromech. Microeng., vol. 18, pp. 105003-1–105003-12,
Aug. 2008.

[47] G. D. Pasquale, T. Veijola, and A. Soma, “Modelling and validation of
air damping in perforated gold and silicon MEMS plates,” J. Micromech.

Microeng., vol. 20, pp. 015010-1–015010-12, Nov. 2010.
[48] D. Homentcovschi and R. N. Miles, “Analytical model for viscous

damping and the spring force for perforated planar microstructures
acting at both audible and ultrasonic frequencies,” J. Acoust. Soc. Amer.,
vol. 124, no. 1, pp. 175–181, Jul. 2008.

[49] S. S. Mohite, V. H. Kesari, and R. Pratap, “Analytical solutions for the
stiffness and damping coefficients of squeeze films in MEMS devices
with perforated back plates,” J. Micromech. Microeng., vol. 15, no. 11,
pp. 2083–2092, Nov. 2005.

[50] F. J. Fahy and P. Gardonio, Sound and Structural Vibration: Radiation,

Transmission and Response, 2nd ed. New York, NY, USA: Academic,
2007, p. 151.

[51] C. E. Wallace, “Radiation resistance of a rectangular panel,” J. Acoust.

Soc. Amer., vol. 51, no. 3B, pp. 946–952, Jul. 1972.

Santhosh D. Vishwakarma received the B.E.
degree in mechanical engineering from the Banga-
lore Institute of Technology, Bengaluru, India, in
2002, and the M.Tech. degree in machine design
from the B.M.S. College of Engineering, Bengaluru,
in 2006. He is currently pursuing the Ph.D. degree
in the Department of Mechanical Engineering and
Supercomputer Education Research Centre, Indian
Institute of Science, Bengaluru.

He was a Project Engineer with Hindustan Aero-
nautics Ltd., Bengaluru, from 2002 to 2003. He

had a year of exposure in the Smart Materials and Structure Group at the
National Aerospace Laboratories, Bengaluru, during his master’s project. His
current research interests include multiscale modeling (FEM, Monte Carlo),
MEMS/NEMS design, analysis and its related damping mechanisms. He has
received a gold medal for his academic excellence in his master’s degree.

Ashok K. Pandey received the B.E. degree in
mechanical engineering from the Bhilai Institute of
Technology, Durg, India, in 2001, and the M.S. and
Ph.D. degrees in mechanical engineering from the
Indian Institute of Science, Bengaluru, India, in 2003
and 2007, respectively.

He was a Research Associate with the Department
of Mechanical Engineering from 2007 to 2008. He
was a Post-Doctoral Fellow with the Technion-Israel
Institute of Technology, Haifa, Israel, from 2008 to
2010. He is currently an Assistant Professor with

the Department of Mechanical Engineering, Indian Institute of Technology,
Hyderabad, India. His current research interests include linear and non-
linear vibration, modeling and simulation of vehicle dynamics, micro and
nanomechanical systems, microfluidics and nanofluidics, mechanics involved
with carbon nanotubes, and quantum nanoelectromechanical systems. He was
conferred with the Hetenyi Award by the Society of Experimental Mechanics
in 2010.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

VISHWAKARMA et al.: EVALUATION OF MODE DEPENDENT FLUID DAMPING 13

Jeevak M. Parpia received the B.S. degree from
the Illinois Institute of Technology, Chicago, IL,
USA, in 1973, and the M.S. and Ph.D. degrees
in experimental physics from Cornell University,
Ithaca, NY, USA, in 1979.

He was an Assistant and Associate Professor with
Texas A&M University, College Station, TX, USA,
from 1979 to 1986, before moving back to Cornell’s
Physics Department. He is currently a Professor and
Chair of the Department of Physics. His current
research interests include the physics of 3He, MEMS

and NEMS structures adapted for sensing, mechanics and opto mechanics of
graphene. He is a Fellow of the American Physical Society.

Darren R. Southworth received the B.S. degree in
engineering physics from the University of Maine,
Orono, ME, USA, in 2005, and the Ph.D. degree
from Cornell University, Ithaca, NY, USA, in 2010.

He is currently a Post-Doctoral Fellow at
the Lehrstuhl für Festkörperphysik, Ludwig-
Maximilians-Universität, Munich, Germany,
focusing on fundamental investigation of
nanomechanical systems.

Harold G. Craighead received the B.S. (Hons.)
degree in physics from the University of Maryland,
College Park, MD, USA, in 1974, and the Ph.D.
degree in physics from Cornell University, Ithaca,
NY, USA, in 1980. From 1979 to 1984, he was a
Technical Staff Member with the Device Physics
Research Department, Bell Laboratories, Murray
Hill, NJ, USA. In 1984, he joined Bellcore, Red
Bank, NJ, USA, where he formed and managed the
Quantum Structures Research Group. He joined the
faculty of Cornell University as a Professor in the

School of Applied and Engineering Physics in 1989. From 1989 to 1995, he
was the Director of the National Nanofabrication Facility, Cornell University.
He was the Director of the School of Applied and Engineering Physics from
1998 to 2000 and the Founding Director of the Nanobiotechnology Center

from 2000 to 2001. He served as an Interim Dean of the College of Engi-
neering from 2001 to 2002, after which he returned to the Nanobiotechnology
Center as a Co-Director. He has been a pioneer in nanofabrication methods
and the application of engineered nanosystems for research and device
applications. His recent research activity includes the use of nanofabricated
devices for biological applications. His research continues to involve the study
and development of new methods for nanostructure formation, integrated
fluidic/optical devices, nanoelectromechanical systems, and single molecule
analysis.

Dr. Craighead was elected to the National Academy of Engineering in
February 2007. According to the academy, Craighead, director of Cornell’s
Nanobiotechnology Center, was selected for “contributions to the fabrication
and exploitation of nanostructures for electronic, optical, mechanical and
biological applications”. He has been a pioneer in using nanostructures as tools
in biological research. His research group has created devices that can detect
and identify single bacteria and viruses, nanoscale gas sensors and nanofluidic
devices that can separate, count and analyze individual DNA molecules.

Rudra Pratap (M’07) received the B.Tech. degree
from the Indian Institute of Technology (IIT),
Kharagpur, India, in 1985, the M.S. degree in
mechanics from the University of Arizona, Tucson,
AZ, USA, in 1987, and the Ph.D. degree in theoret-
ical and applied mechanics from Cornell University,
Ithaca, NY, USA, in 1993.

From 1993 to 1996, he was with the Sibley School
of Mechanical and Aerospace Engineering, Cornell
University. In 1996, he was with the Indian Institute
of Science, Bengaluru, India. From 1997 to 2000,

he was an Adjunct Assistant Professor at Cornell University. He was an
Invited Professor at the Ecole Polytechnique Federal de Lausanne, Lausanne,
Switzerland, from 2004 to 2005. He is currently the Chairperson of the Center
for Nano Science and Engineering and an Associate Faculty Member with
the Department of Mechanical Engineering, Indian Institute of Science. His
current research interests include MEMS design, computational mechanics,
nonlinear dynamics, structural vibration, and vibroacoustics. He is a member
of the Institute of Smart Structure and System and is on the Editorial Board of
the Journal of Computers, Materials and Continua and the Journal of Shock
& Vibration.


