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 Environmentally conscious logistics planning for food grain industry 

considering wastages employing multi objective hybrid particle swarm 

optimization 

 

Abstract 

In this paper, a hub and spoke network based multi-objective green transportation model is 

developed while evaluating optimal shipment quantity, modal choice, route selection, hub 

location, and vehicle velocity decisions in Indian food grain context. A hybrid version of multi-

objective meta-heuristic, Multi-Objective Particle Swarm Optimization with Differential 

Evolution (MOPSODE) is proposed to tackle the resulting non-linear formulation. 

Benchmarking with NSGA-II confirms the dominance of MOPSODE over NSGAII pertaining 

to near optimal pareto fronts obtained for the tested cases. Finally, the study derives the 

economic and environmental impact of varying hub location level, food grain wastage 

threshold and intermodal hub capacity. 

Keywords: Food grain transportation; GHG emission reduction; Sustainability; Multi-objective 

optimization; MOPSODE; NSGA II  

1. Introduction 

According to Netherlands Environment Assessment Agency, the GHG emissions reduction in 

different countries ranged between 1.3% to 6%, whereas India and Indonesia have registered 

4.7% and 6.4% increase in their GHG emissions (Olivier et al., 2017). Thirty eight percent of 

global GHG emissions is attributed to transportation and agriculture sectors (IPCC 2014). 

Owing to large scale of food grain transportation operations in developing and densely 

populated economies, holistic design of food grain systems demand deeper attention of 

transportation research. To this end, this paper proposes a cost effective sustainable intermodal 

transportation model to facilitate environmental friendly food grain shipments considering 

GHG emissions in Indian context.  
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Food and Agriculture Organization (FAO) estimates that only two-thirds of the total produce 

manage to reach the consumer’s table. FAO points out that a kilogram of food lost in the later 

stages of supply chain (post harvesting stages) possess higher carbon intensity than at 

preliminary stages. In India, agriculture contributes to 18% of total GHG emissions (INCCA 

2010). The forecasts by Indian Council of Agricultural Research (ICAR) suggest that the area-

averaged annual mean warming is estimated to 3 °C by 2050. Thus, there is an immense need 

for the design and implementation of cost effective and carbon sensitive food grain supply 

networks in Indian context considering food grain wastages.   

The large network of food grain supply chain considered in this paper is geographically 

widespread consisting of storage facilities, intermodal hubs connected by rail and road links to 

facilitate the transport between surplus and deficit states. Streamlining of transportation 

operations in airline, shipping, telecommunication and large retail delivery networks has been 

achieved by the implementation of hub and spoke framework. According to Meng and Wang 

(2011) the consolidation at intermodal hubs reap significant cost savings for large networks 

from economies of scale. Hence, this paper attempts to model the food grain transportation 

problem on a hub and spoke framework as different from the traditional point to point network. 

A multi-objective cost minimization model for the interstate transportation of food grains 

considering cost and GHG emission (total grams of carbon dioxide equivalents) as two separate 

objectives is formulated. The first objective minimizes the total transportation, hub location, 

and service time violation costs whereas the second objective minimizes the cost of emissions 

resulting from transportation and intermodal hub facilities. The mathematical model is 

designed to fulfill a multi period deterministic demand while observing wastages at intermodal 

facilities. The optimal choice of mode in addition to other decisions including shipment 

quantity allocation, facility allocation and vehicle speed is made while balancing the tradeoff 

between the first and second objectives. The multi-objective problem is contingent with respect 
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to warehouse capacity, intermodal transfer capacity, maximum allowable food grain wastage, 

flow balance, vehicle capacity and speed restrictions. The primary question that this research 

aims to address is, “In what way does the modelling for wastages at intermodal hubs with 

simultaneous consideration to supply network cost and GHG emissions in food grain 

transportation network design influence itself ?”. In this regard, this paper attempts to answer 

the following specific important questions: 

• What is the optimal food grain shipment quantity and shipment route? 

• What is the optimal intermodal hub allocation plan? 

• What is the optimal choice of transportation mode inside the origin and destination 

states? 

• What are the optimal speeds of rail and road transport vehicle that minimize GHG 

emissions without violating service time restrictions? 

• How does the variation in intermodal hub location level, maximum food grain wastage 

threshold and intermodal hub capacity, effect the total supply network cost and total 

GHG emission? 

The remainder of the paper is organized as follows. The next section outlines the literature 

review conducted in the context of this work. Section 3 presents the problem description. The 

mathematical model with detailed description of indices, sets, parameters, decision variables, 

objective function and constraints are described in section 4. Section 5 describes the multi 

objective solution methodology proposed to solve the given food grain transportation problem. 

Section 6 summarizes the plan of experiments and data used for further study. Results from 

computational validation, benchmarking and sensitivity analysis with development of problem 

specific insights are reported in section 7.  Finally, section 8 presents conclusion and future 

work.  
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2. Literature review 

The significant contribution from transportation sector towards total supply network GHG 

emissions has attracted the critical focus of researchers and practitioners to deal with green 

supply chain network design problem (Centobelli et al. 2017). Table 1 shows that most studies 

apply optimization models based on mixed integer linear or non-linear programming (MILP or 

MINLP) and non-linear programming (NLP). Only two exceptional papers present simulation 

models (Harris et al., 2011; van der Vorst et al., 2009).  All reviewed studies take into account 

transportation costs, while only about every second study considers hub or facility location 

costs. Vehicle speed decisions are hardly addressed, only Harris et al. (2011), De et al. (2017) 

and Kumar et al. (2016) consider this factor, and wastages are completely ignored in the 

reviewed studies. Chang and Morlok (2005) proved the economic advantage of maintaining a 

constant speed profile in land transport with level tangent paths. However, research that 

encapsulates vehicle speed decisions with major supply network decisions such as 

transportation flow, facility location, modal choices while simultaneously minimizing total 

supply network costs and emissions are meagerly found in literature and is still in its infancy. 

Transportation modes are addressed as multimodal (Zahiri et al., 2017; Liotta et al., 2015; 

Fattahi and Govindan, 2018) or intermodal (Maiyar and Thakkar, 2018), but most papers omit 

distinguishing between different modes. Most of the studies address vehicle hub capacities 

while very few studies are found to explore p-hub median constraints. Service-time violation 

constraints are addressed in five different studies while a higher number of studies formulated 

multi-period models. There is limited research that addresses sustainability issues in food 

supply chains (Pathak et al., 2010; Wakeland et al., 2012; Garnett, 2011). Real case studies 

pertaining to different countries reiterate the need for sustainability in food grain supply chains 

(O’Donnell et al., 2009, Maiyar and Thakkar, 2017). To the best of our knowledge, there is 

lack of studies that capture wastages across intermodal hubs while dealing with environmental 
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sustainability in food grain supply chain context. This, paper attempts to address this gap by 

focusing on intermodal hub location decisions subject to wastages, modal choices and 

transportation flow decisions in the presence of fixed vehicle speed decisions with focus to 

reduce total GHG emissions in Indian food grain supply chain. 

Multi-objective problems have been addressed by exact as well as meta-heuristic approaches. 

Dual lexicographic max–min (LMM) maximization, hybrid k-means and Tukeys statistical 

method, long range Lagrangian and Eulerian transport methods are some exact optimization 

approaches employed to solve green transportation problems (Niknamfar and Niaki, 2016; 

Velázquez-Martínez et al., 2016; Sundarakani et al., 2010).  Multi-objective metaheuristic 

optimization was pioneered by Deb et al. (2002) with their introduction of non-dominated 

sorting genetic algorithm (NSGA-II) to solve combinatorial and large scale NP-hard problems. 

In subsequent years several authors have proposed novel multi-objective metaheuristics by 

extending single objective versions of particle swarm optimization, genetic algorithm, tabu 

search, variable neighborhood search, simulated annealing and chemical reaction optimization 

(Vahdani and Zandieh 2010, Li and Li. 2015, Mogale et al. 2018). Particle swarm optimization 

based metaheuristics are well known global minimizers and are highly promising for 

generating solutions in the close vicinity of global optimum (Epitropakis et al. 2012). The 

global optimality of its multi-objective variant MOPSDE was validated by benchmarking with 

NSGA-II algorithm by Su and Chi (2017) for different problems. Considering the case of 

evolutionary metaheuristic optimization, Hanne (1999) concludes that although the global 

optimality condition is theoretically not proven, in practice, these algorithms may perform 

much better than the ones whose global convergence can be proven. Therefore, it is more  
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Table 1. Comparative study of relevant literature that address environment sustainability with present work  

* NLP- Non-linear problem, MILP- Mixed integer linear problem, MINLP- Mixed integer nonlinear problem, IM- Intermodal, MM- Multimodal 

Study Transportation 
cost 

Hub/Facility 
location cost 

Vehicle speed 
decision 

Wastages Service/lead 
time restriction 

p-hubs 
constraint 

Intermodal 
/multimodal 

Vehicle/hub 
capacity  

Multi 
period 

Model 

Zhalechian et al. 
(2016) 

✓ ✓      ✓ ✓ MINLP* 

Zahiri et al. (2017) ✓ ✓   ✓  MM ✓ ✓ MILP* 
Chavez et al. 
(2018) 

✓ ✓      ✓ ✓ MILP 

Liotta et al. (2015) ✓    ✓  MM ✓  MILP 
Wang et al. (2011) ✓ ✓      ✓  MILP 
Fattahi and 
Govindan (2018) 

✓ ✓     MM ✓ ✓ MILP 

Harris  et al. (2011) ✓  ✓       Simulation 
Maiyar and 
Thakkar (2018) 

✓ ✓    ✓ IM ✓ ✓ MINLP 

De et al. (2017) ✓  ✓  ✓   ✓ ✓ MINLP 
Kumar et al. (2016) ✓    ✓  ✓   ✓ ✓ MINLP 
van der Vorst et al. 
(2009) 

✓    ✓   ✓  Simulation 

Sahebjamnia et al. 
(2018) 

✓ ✓      ✓  MILP 

Saberi (2018) ✓        ✓ NLP* 
Lee et al. (2010) ✓ ✓        ✓  MILP 
Present study ✓ ✓ ✓ ✓ ✓ ✓ MM ✓ ✓ MINLP 
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important that the performance of the algorithm is verified through benchmarking with 

standard meta-heuristic counterparts which is an effective surrogate to validate the global 

optimality, especially for real and complex problems as in the present case. This paper extends 

the multi-objective algorithm proposed by Su and Chi, (2017) by incorporating constraint 

violation based penalty allocation scheme for achieving faster convergence rates. 

A critical review of the aforementioned literature reveals that there is an immense need of 

integrated models that simultaneously capture wastages in synergy with transportation, hub 

location and vehicle speed decisions for minimizing the overall cost with specific focus of 

reducing GHG emission in food grain supply chain. The underpinning contributions of this 

paper are three fold. Firstly, a multi-objective mathematical model is developed to analyze the 

trade-off between total supply network costs and total GHG emissions in the presence of modal 

choices and food grain wastages considering Indian food grain supply chain context. The first 

objective minimizes the total supply network costs which includes total transportation cost, 

total hub location cost, and total service time violation cost, whereas, the second objective 

minimizes the total GHG emissions emitted through transportation of vehicles (rail and road) 

and food grain wastages due to handling at facilities. Therefore the main contribution in this 

particular part of the study is to develop an environmentally conscious wastage aware and 

economically convenient multi-objective mathematical model for a food grain transportation 

network with intermodal as well as multi-modal setups while incorporating decisions 

pertaining to movement quantity, movement route, modal choice and vehicle speeds. The 

second contribution of this study lies in devising a self-tailored version of multi-objective 

particle swarm optimization algorithm which includes a new penalty allocation scheme for 

dealing with constraint violations. Thirdly, a hub closure impact index is proposed to capture 

the economic impact of closing intermodal hubs on the economic and environmental 

objectives. 
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3. Problem environment  

As discussed earlier, the transportation problem addressed in this paper is inspired from Indian 

food grain supply chain network that connects two states, Andhra Pradesh and Tamil Nadu, 

belonging from Southern part of the country. The states are geographically divided in to finite 

number of regions. The food grains to be transported from one state to the other (inter-state 

shipment) are lifted from central pool stock stored in the warehouses owned by Food 

Corporation of India (FCI). Each region consists of a finite number of warehouses. A fixed 

number of such warehouses are designated as potential intermodal transfer hubs from where 

the incoming flow of food grains from trucks are transferred to trains. Thus, the food grain 

warehouses present in each region are categorized in to two types: (1) Intermodal hub 

warehouses and (2) Non-hub warehouses.  Intermodal hub warehouses are the warehouses 

which are capable of facilitating intermodal transfer operations, whereas non-hub warehouses 

are the ones that are used for only storing the food grains and do not handle intermodal 

transfers. The flow of food grains either originate from a non-hub warehouse or from an 

intermodal hub warehouse of the surplus (origin) state and continues to reach the designated 

non-hub warehouse or intermodal hub warehouse of the deficit (destination) state passing 

through the origin and destination intermodal hub warehouses. The two types of warehouses 

are allowed to be connected either by road or rail. Fig. 1 displays the structure of food grain 

supply network chosen for addressing the green transportation problem with the multimodal 

links, connecting distinct nodal elements such as hub and non-hub warehouses situated within 

the regions of the origin and destination states.  

Significant portion of the food grains is lost while handling at intermodal hubs. In this paper, 

the food grain wastages are quantitatively captured by estimating the amount of food grains 

lost as a fixed proportion of the total quantity handled at the transfer facility. The proportion of 

food grains wasted varies with respect to each facility and is denoted by ok  and dm , where 
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ok H , and  dm H . oH  and dH  are the set of potential hubs in origin and destination states 

respectively. Fig. 2 illustrates the transfer logistics associated with shipment quantity from 

origin to destination warehouse through the intermodal hubs considering food grain wastages 

for a simple example of three origin and three destination intermodal hubs. Imagining that 100 

units of food grain reaches the first origin node as shown in Fig.2, the total units of food grains 

wasted at this node is equal to 1100 o , where 1o  is the fraction of food grains wasted at the 

first origin node. The total amount of food grains that flow out of the node equals 1100(1 )o−

units. Based on the routing decision, this quantity is further split and is transported through 

different destination nodes. Given that 50% of the outflow from first origin node reaches first 

 

Fig. 1. Overview of food grain supply network 

destination node, and similarly the amount of food grains reaching the same node from second 

and third origin nodes are 210(1 )o−  and 335(1 )o−  units respectively, the total wastages at 

this hub will amount to  1 1 2 350(1 ) 10(1 ) 35(1 )d o o o   − + − + −  units, where 1d  is the 

fraction of food grains wasted at the first destination node. The second term represents the total 
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amount of food grains reaching the first destination node from all the origin intermodal nodes. 

The total outgoing quantity of food grains from first destination node after accounting for 

wastages at origin and destination nodes is given by

 1 1 2 3(1 ) 50(1 ) 10(1 ) 35(1 )d o o o   − − + − + −  as shown in Fig. 2. The following section 

delineates the mathematical model with its underlying assumptions and detailed description of 

objective function and constraints. 

Fig. 2. Intermodal hub transfer linkages considering wastages 

4. Mathematical model 

The proposed model replicates the transportation activities of Indian food grain context where 

the demand and supply are known prior to start of planning process. Thus, the instantaneous 

variation in problem parameters is not practically relevant to the problem under study to the 

best of our knowledge. Previously, authors have dealt with food grain supply chains under 

deterministic scenario (Mogale et al. (2017), Asgari et al. (2013)). The reason for such 

treatment is mainly attributed to the following important aspects. The food grain demand is 

almost constant and is extrapolated from population census data, whereas the abundance in the 

food grain yield nearly classifies the supply to be of deterministic nature. On the other hand, 

food grain distribution from abundantly available supply to deterministic demand points with 
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efficient utilization of various resources is a striking challenge in Indian context owing to 

geographically widespread yields. Thus we believe, enforcing probability of different scenarios 

into the current model would hamper the stated purpose and would reduce the computational 

efficiency of the proposed approach. Thus the problem aims to streamline sustainable 

transportation operations under disruption with effective utilization of facility and vehicle 

resources with deterministic parameters and variables. Hence, the green supply network 

problem is formulated with following important assumptions: 

• All parameters and variables are deterministic in nature 

• Homogenous fleet of vehicles is used 

• Time consumed for loading/unloading operation is relatively small in comparison 

with total travel time.   

• Food grain wastage due to transportation is considered negligible 

• The distance between truck unloading station and train loading station at the 

intermodal hub is negligible 

The symbolic notations consisting of various indices and sets followed for defining various 

parameters and decision variables of the mathematical formulation are described as follows:  

The food grain transportation model is formulated as a constrained multi-objective 

optimization problem with two objectives 1f  and 2f  representing the total supply network cost 

and total GHG (CO2 equivalents) emissions respectively. The functions, 1f  and 2f  are 

minimized simultaneously in order to obtain the optimal set of values for warehouse wise 

shipment quantities, modal choice, vehicle speed and facility allocations. The total supply 

network cost, 1f  is expressed as the summation of total transportation cost, total hub location 

cost, total handling cost at facilities, and total penalty cost of violating service time restrictions. 
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The total transportation cost is calculated by splitting the length of the journey in to three 

sections and subsequently aggregating the cost incurred for each section of the journey. The 

transportation cost for the initial section is the cost incurred to transport the food grain material 

from the origin warehouses to the origin hubs either by rail or by road and is represented by 

Eq. (1) . The transportation cost for the intermediate section is the cost incurred for inter-hub 

transportation of food grains by rail from origin state hubs to the destination state hubs, 

mathematically represented by Eq. (2), where, ok  is fraction of food grain quantity lost while 

handling at origin hub k , where, o
k H . Finally, transportation cost for the last section of 

journey is the cost incurred for shipping the food grain quantity from the destination hubs to 

the warehouses in the destination state. It is represented by Eq. (3), where dm  is fraction of 

food grain quantity lost while handling at destination hub m , where, d
m H . The aggregated 

total transportation cost is obtained by the summation of Eqs. (1), (2), and (3). 

, , , , ,

( )o o o o o o jq

ipk ipk ipkt ipk ipk ipkt ipkmt

t k i p m j q

C a C a x
      +         (1) 

, , , , ,

(1 ) od od jq

ok km km ipkmt

t m k i p j q

C a x −          (2) 

, , , ,

(1 ) (1 ) ( )d d d d d d jq

dm ok mjq mjq mjqt mjq mjq mjqt ipkmt

t m k i p j q

C a C a x
        − − +       (3) 

Eq. (4) determines the total cost of locating intermodal hub facilities at both the origin and 

destination states. The unit hub location cost for a single facility in this paper is calculated as a 

sum of cost incurred for land acquisition, construction of storage facilty and infrastructure 

(railway sidings, weighing bridge and electrification). This is derived based on the availability 

of data for conducting this study (https://dfpd.gov.in/ppp-storage-scheme.htm). The cost of 

operations is included in the broader spectrum of food grain handling costs incurred by a single 

facility which accounts for labour wages, maintaining the equipment and imminent repairs, 



13 
 

electricity consumption, and quality control involved for handling the food grains as a linear 

function of quantity handled at the intermodal hub facility. Thus, the total handling cost for the 

whole shipment is expressed as shown in Eq. (5).  

, ,
k kt m mt

k t m t

A z A w+            (4) 

, , , , , , , , , , ,

(1 )jq jq

h ipkmt ok ipkmt

t k i p m j q t m k i p j q

C x x
 

+ − 
 
          (5) 

The time required to reach the destination warehouse j  of region q  for a food grain 

consignment starting from origin warehouse i  of region p routed through origin hub k  and 

destination hub m  in time period t  is given by,  

, , , , , , ,
o o o o d d d dod od
ipk ipkt ipk ipkt mjq mjqt mjq mjqtjq km kmt

ipkmt

a a a aa
i p k m j q t

v v v v v

       

    

     = + + + +         (6) 

where, od

kmt
  indicates if there is a positive shipment between origin hub ( )ok k H  and 

destination hub | dm m H  in time period |t t T . od

kmt
  is directly dependent on 

, , ,

jq

ipkmt

i p j q

y  

and is equal to 
, , , , , ,

/ 1 , ,jq jq

ipkmt ipkmt

i p j q i p j q

y y k m
  

+    
   
   and t . Given that, jqtT  is the service 

time upper limit for the food grain demand at warehouse |
q

j j W   of region |
d

q q R , the 

total supply network cost, 1f   for the first objective is formulated as,  

Minimize 1f =
, , , , , , , , , ,

( ) (1 )o o o o o o jq od od jq

ipk ipk ipkt ipk ipk ipkt ipkmt ok km km ipkmt

t k i p m j q t m k i p j q

C a C a x C a x
        + + −      

, , , , , ,

(1 ) (1 ) ( )d d d d d d jq

dm ok mjq mjq mjqt mjq mjq mjqt ipkmt k kt m mt

t m k i p j q k t m t

C a C a x A z A w
        + − − + + +      

 
, , , , , , , , , , , , , , , , ,

(1 )jq jq jq

h ipkmt h ok ipkmt p ipkmt jqt

t k i p m j q t m k i p j q t i p k m j q

C x C x C T 
+

+ + − + −       (7)

  

where,  jq

ipkmt jqtT
+

− =max ( )0, , , , , , , ,jq

ipkmt jqtT i p k m j q t −        . The second objective 

minimizes the total GHG emissions, 2f . In the context of this paper, transportation by vehicles 
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and food grain wastages due to improper handling at facilities are primarily held responsible 

for causing emissions. For simplicity, the fleet of trucks are assumed to be fueled by single fuel 

(diesel) and the fleet of trains are hauled by electric locomotives. Estimating the GHG 

emissions (equivalent grams of CO2 released) from vehicles is carried out in three steps. In the 

first step, calculation of amount of fuel consumed by trucks and conversion of the fuel 

consumed to equivalent grams of CO2 emission for transportation in the origin and destination 

states is carried out for trucks. In the second step, electric fuel consumed by trains while 

conducting transportation in the origin state, destination state and in between the origin and 

destination states is evaluated. Subsequently in this step, the conversion of fuel consumed to 

associated CO2 emissions is carried out. The last step calculates the total transportation 

emissions by all the trucks and trains selected for realizing the food grain demand by 

aggregating individual emissions for the whole journey.  

The liters of fuel consumed by trucks to travel from warehouse i  of region p  to hub k , oF   

in the origin state is obtained by rewriting Eq. (B.1) as Eq. (8).  Similarly, liters of fuel 

consumed by trucks to travel from hub m  to warehouse i  of region p , dF   in the destination 

state is obtained by rewriting Eq. (B.1) as Eq. (9). The amount of fuel consumed is converted 

to equivalent grams of CO2 emissions using Eqs. (10) and (11) respectively for origin and 

destination states, where e  is the truck emission conversion factor expressed in gCO2/l. 

2, , ,

, ,
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o
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 
+ 

 =
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

,  

where 
, ,

, , , ,
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m j q
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ipkt ipkt
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l i p k t
C C

 
  

 
 =     +  


      (8) 
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,
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, , , ,
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 
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 
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o oe F   =            (10) 

d de F   =            (11) 

The total electric fuel consumed during rail transport for the current problem in the first, second 

and third sections of the journey is derived using Eq. (C.1) and Table C.1 as shown in Eqs. 

(12), (13), and (14) respectively. The coefficients of fuel consumption equation for the case of 

multiple wagons and multiple trains are estimated by extending the single wagon case. The 

dependent variables that capture number of trains or trucks passing through a given arc in the 

first and third sections, ipktl  and mjqth  are defined earlier in Eqs. (8) and (9) respectively.  The 

number of trains passing through an arc in the second section is equal to 

, , ,

(1 ) /jq

ok ipkmt

i p j q

x C
 

− 
 

  and is denoted by kmtn . The weight of shipment, shipW  is obtained by 

converting the total quantity of food grains transported through the arc to equivalent weight (in 

N). The quantity shipped in the first section of the journey from origin warehouse i  of region 

p  to origin hub k  is equal to 
, ,

jq

ipkmt

m j q

x . The food grain shipment quantities from origin hub 

k  to destination hub m  in the second section, after subtracting the wastages at origin hubs is 

equal to 
, , ,

(1 ) jq

ok ipkmt

i p j q

x−  . Similarly, the shipment quantities corresponding to the third 

section from destination hub m  to destination warehouse j  of region q  after considering 

wastages at origin and destination hubs is equal to 
,

(1 ) (1 ) jq

dm ok ipkmt

k i p

x − −  . The fuel 
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consumed by trains is converted to equivalent grams of CO2 by following Eqs. (15), (16), and 

(17), where e  emission conversion factor for rail transport expressed in gCO2/kWh. 
o , 

od , and 
d  are the equivalent CO2 emissions for the first, second and third sections of the 

journey respectively. Finally, the actual transportation emissions from trucks and trains for the 

whole journey, tran  is the summation of individual emission components as shown in Eq. 

(18).  

2

, , ,

( )or os oc o o

o ipkt ipkt ipkt ipk ipkt

t k i p

F R u u v u v a
 

   = + +        (12) 

2

, ,

( )od od od od od

od kmt kmt kmt km kmt

t k m

F R u u v u v a  = + +        (13) 

2

, , ,

( )d d d d d

d mjqt mjqt mjqt mjq mjqt

t m j q

F R u u v u v a
 

   = + +       (14) 

o oe F   =            (15) 

od ode F =            (16) 

d de F   =            (17) 

tran o o od d d    =  + + + +         (18) 

Emissions due to wastages at facilities is estimated using Eq. (19), where, e is the CO2 

emissions conversion factor for unit quantity of food grains wasted at intermodal hub facilities 

and fac is the total equivalent grams of CO2 emissions due to wastages at both origin and 

destination hubs. 

, , , , , , , , ,

(1 )jq jq

fac ok ipkmt dm ok ipkmt

t k i p m j q t m k i p j q

e x x  
 

 = + − 
 
          (19) 

Combining Eqs. (18) and (19), the second objective is formulated as,  

Minimize 2f = tran fac +          (20) 
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The constraint set for this problem is described in Eqs. (21)-(48). Eq. (21) ensures that there is 

positive quantity of food grains flowing through a route if and only if there exists a route in 

that direction. The least integer function defined in Eq. (22) avoids empty vehicle transport 

between the origin and destination warehouses. Eqs. (23) and (24) state that the route link 

between the decision variables that determine interstate food grain shipment quantity and 

location of intermodal hub facilities. Eq. (25) and (26) enforce constraints that only one mode 

of transport is allowed to be selected for a route which exists between a warehouse and a hub. 

However, through these constraints the model accommodates for the possibility to choose 

between rail or road provided there exists a full route between origin and destination 

warehouses. The restriction on maximum number of hubs that can be allocated in any time 

period is imposed by Eqs. (27) and (28). Eq. (29) ensures that demand of food grains at the 

destination warehouses is satisfied after considering the wastage occurred at intermodal hubs. 

Eq. (30) represents the set of constraints which ensure that the food grain quantity dispatched 

to all the warehouses in a particular time period is less than the available inventory in that 

period. Eq. (31) represents flow balance constraints.  

 , , , , , , ,jq jq

ipkmt ipkmtx My i p k m j q t               (21) 

, , , , , , ,
1

jq

ipkmtjq

ipkmt jq

ipkmt

x
y i p k m j q t

x

 
=        

+  
      (22) 

, , , , 1 1

, ,
o oR R

jq

ipkmt p d p kt

i p m j q p q

y W H W z k t
= =

 
    
 

        (23) 

, , , , 1 1

, ,
o dR R

jq

ipkmt p o q mt

i p k j q p q

y W H W w m t
= =

 
    
 

       (24) 

, , , , , , ,jq o o

ipkmt ipkt ipkty i p k m j q t
   +               (25) 

, , , , , , ,jq d d

ipkmt mjqt mjqty i p k m j q t
   +              (26) 



18 
 

,kt o

k

z b t=             (27) 

,mt d

m

w b t=            (28) 

,

(1 ) (1 ) , , ,jq q

dm ok ipkmt jt

m k i p

x D j q t − −              (29) 

, , ,

, , ,jq

ipkmt ipt

k m j q

x I i p t             (30) 

( 1)
, , ,

, , ,jq

ipt ip t ipt ipkmt

k m j q

I I P x i p t−= + −           (31) 

Eqs. (32) and (33) enforce maximum handling capacity restriction at origin and destination 

hubs respectively. Eq. (34) states that the total wastages occurred at intermodal hubs should 

not be crossing a fixed upper limit. It is important to adhere to vehicle capacity restrictions.  

Thus. Eqs. (35), (36) and (37) are written to take care of this concern for origin warehouses, 

origin hubs and destination hubs respectively. The binary parameter, ip (defined in Appendix 

A) is incorporated in Eq. (35) to establish the difference between hub nodes and non-hub nodes. 

o

ipt

  and d

mt

  are binary variables which are equal to one if there exists at least one truck route 

that starts from origin non- hub warehouse, i  of region p and destination hub m  respectively. 

Similarly, o

ipt

  and d

mt

 are binary variables which are equal to one if there exists at least one 

train route that starts from a origin non- hub warehouse, i  of region p and destination hub m  

respectively. Eqs. (38) and (39) ensure that there is no transport in between the hubs in the 

origin and destination state respectively. Finally, Eqs. (40)-(48) indicate non-negativity and 

integrality constraints for all continuous and binary variables.  

, , , ,

, ,jq

ipkmt k kt

i p m j q

x U z k t            (32) 

, , ,

(1 ) , ,jq

ok ipkmt m mt

k i p j q

x U w m t−            (33) 

, , , , , , ,

(1 ) ,jq jq

ok ipkmt dm ok ipkmt

k i p m j q m k i p j q

x x K t  + −            (34) 
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, , ,

(1 ) jq o o o o

ip ipkmt ipt ipt ipt ipt

k m j q

x C C
   

     −  + ,  

where, 
1

o

ipkt
o k
ipt o

ipkt

k











 
 =  +
  




 and , , ,
1

o

ipkt
o k
ipt o

ipkt

k

i p t











 
 =    +
  




      (35) 

, , , ,

(1 ) , ,jq

ok ipkmt kt kt

i p m j q

x z C k t −           (36) 

, , ,

(1 ) (1 ) jq d d d d

dm ok ipkmt mt mt mt mt

k i p j q

x C C
   

      − −  +  ,  

where, ,

,

1

d

mjqt

j qd

mt d

mjqt

j q











 
 =  +  




 and ,

,

, ,
1

d

mjqt

j qd

mt d

mjqt

j q

m t











 
 =   +  




    (37) 

0, , , , , , (( , ), )jq

ipkmt ox i p j q t i p k H=              (38) 

0, , , , , , (( , ), )jq

ipkmt dx i p j q t j q m H=              (39) 

0, , , , , , ,jq

ipkmtx i p j q k m t                 (40) 

, 0v v              (41) 

 0,1 , , , , , , ,jq

ipkmty i p j q k m t               (42) 

 0,1 , ,ktz k t             (43) 

 0,1 , ,mtw m t             (44) 

 , 0,1 , , , ,o o

ipkt ipkt i p k t
                (45) 

 , 0,1 , , , ,d d

mjqt mjqt m j q t
                (46) 

 , 0,1 , , ,o o

ipt ipt i p t
                (47) 

 , 0,1 , , ,d d

jqt jqt j q t
                (48) 

The following unique aspects of the proposed formulation sets the problem apart from the 

previous studies in green supply chain literature. Firstly, the quantitative modelling of GHG 

emissions in food grain supply chain context with simultaneous focus to minimize the total 

supply network costs and total cost GHG emissions in the presence of wastages is newly 

incorporated in this study. Secondly, the idea of reducing food grain wastages is captured in 
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this model by inclusion of an explicit constraint in Eq. (34). Further, demand constraints, hub 

capacity restrictions, flow balance equations, vehicle capacity restrictions, and multi-modal 

considerations are specifically modelled to address the practical food grain transportation 

problem. 

5. Solution methodology 

The solution for a nonlinear multi-objective optimization problem is found to be increasingly 

computationally intractable for growingly larger instances. The green supply network 

optimization formulated in this work is a generalization of two different class of problems 

which are NP-hard, pollution routing problem (Kumar et al. 2016) and p-hub median problem 

(Ishfaq and Sox, 2011). Further, it includes additional complexities with respect to multi-modal 

allocations and food grain wastages. Therefore, by inference the proposed problem is NP hard 

and cannot be solved in polynomial time using the existing set of exact optimization 

approaches. Given the highly complex nature of the proposed formulation, probability of 

achieving higher computational times and inaccurate solutions on further decomposition and 

linearization of the objective function and constraints of the aforementioned problem is 

considerably high. These shortcomings and inability of exact solution approaches to deal with 

large problems in real time narrow down the scope of their applicability to solve mixed integer 

non-linear multi-objective problems. Su and Chi, (2017) proposed and demonstrated the 

superiority of multi-objective particle swarm optimization with differential evolution 

(MOPSODE) over other metaheuristics for solving nonlinear large scale multi-objective 

problems. The governing principles of PSODE and MOPSODE are provided in Appendices D 

and E respectively. Section 5.1 delineates detail description of modified MOPSODE algorithm 

employed in this paper.  
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5.1 MOPSODE with new constraint violation based penalty allocation 

The modified MOPSODE version proposed in this paper incorporates a new constraint 

violation based search guidance scheme to enhance the random search process. The global 

fitness, ( )iG  of th
i  objective for a given solution vector   is evaluated according to Eq. (49). 

Here, ( )nV  is the degree of violation of th
n  constraint, n  is penalty for violating the 

constraint, and ( )iY  is the value of th
i  objective function. 

( ) ( ) ( ),i i n n

n

G Y V i =  +            (49) 

Given that ( )l lH B   and ( )m mH B =  are the set of inequality and equality constraints of 

the problem respectively, ( )nV   is calculated differently for each of these cases as shown in 

Eq. (50) 

 ( )   if 
( )

( )     if 

l l

n

m m

H B n l
V

H B n m

+  − = = 
 − =

        (50) 

The basic MOPSODE version handles violated constraints according to mid-point reflection 

rule (Eq. (D.6)). Attributed to high difference in violated and corrected offsprings, mid-point 

reflection performs significantly well in the initial stages of execution, however fails to 

accurately converge in the penultimate phases of the search process. Selecting a finer constraint 

handling strategy in the final stages would facilitate accurate learning of near optimal pareto 

fronts. In this respect, for every unsatisfied constraint l  in iteration t , a refined constraint 

handling technique as shown in Eq. (51) is used in this work. For each violated constraint l , 

t

l
w  in Eq. (51) represents the maximal element of the set that contains all continuous decision 

variables having positive correlation with degree of violation, where, k  is used to represent 

any element of the set and lN  is the total number of elements in that set.  
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Fig. 3. Flow diagram for MOPSODE 

The flow diagram in Fig. 3 presents the step wise implementation of modified MOPSODE and 

Fig. 4 narrates its pseudocode. Fig. 5 illustrates the solution encoding of a single particle chosen 

from the population swarm for medium size problem (described in Appendix E). 

According to Eq. (51), the value of maximal element ( t

l
w ) is reduced by %p  for the next 

iteration. Setting too high value for p  would result to excessive scattering of solutions, 

No 

No 

Yes 

Yes 

No 

Yes 

Start 

Initialize swarm of 
population

Input problem 
and algorithm 

parameters 

Modulate the solution vector with 
feasibility check and binary discretization

 If  iteration > 
Max. iteration 

Print pareto optimal 
solutions, individual 
costs and total costs

End 
Update position and 
velocity using PSO

Evaluate pbest and gbest 
fitnesses considering constraint 
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 Is new pbest 
> old pbest ? 

Update pbest

Perform non-
dominated sorting

 Is new gbest 
< old gbest ? 
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Perform mutation, 
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Differential evolution

Modulate the solution 
vector with feasibility 

and binary discretization

Update pbest and gbest

Iteration = 
Iteration + 1 
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whereas on the contrary, a lower value would reap insignificant benefits. Thus, it is found that 

p  should be chosen appropriately in the range [15 20].  

' 1 , ,
100

t t

l l

p
w w k l

 = −   
 

, where  
1

max
lN

t t

l kl

k

w w
=

 
=  

 
     (51) 

Fig. 4. Pseudocode for modified MOPSODE 

The advantages of the proposed approach are enlisted as follows. First, it requires lesser 

number of iterations to arrive at quality solutions as the particle best rapidly betters itself owing 

guided by efficient constraint violation and feasible boundary restriction schemes. Second, the 

hybrid approach escapes local entrapment by virtue of embedded mutation strategies and 

constraint handling schemes which help to maintain adequate solution diversity and accuracy 

in the random search process.  

Modified MOPSODE 

Initialize 1 1 2 3 4 5 1 2 1 2 3 4 5, , , , , , , , , , , , ,pop n n n n n c c r r r r r   

Set 2 1pop pop=  

2 2_ _ ( )pop convert to feasible pop=  

Set iter = 0 

dowhile iter < Maximum iteration 

     foreach member afirst half of 1pop  

           calculate pbest , objective function value(f) and constraint penalties(G) 

           update position and velocity using PSO 

          Deploy constraint violation based mutation on current population 

           if f(new pbest )+G(new pbest )< f(old pbest )+G(old pbest )  

          2 ( )pop a = new pbest  

     end for 

Perform non-dominated sorting and update pareto optimal set 

     Set 2( )gbest gbest pop=    

     foreach member  2b pop  

             perform mutation, crossover and selection using DE 

            2 2_ _ ( )pop convert to feasible pop=  

             update pbest  

     end for 

     Compare and update gbest 

     Perform non-dominated sorting and update pareto optimal set 

     iter=iter+1 
end 
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Fig. 5. Solution encoding of single particle for medium size data set.  

5.2 Time complexity 

The time complexity of particle swarm optimization as well as differential evolution algorithms 

are of the order ( )O ND , where  N  is the population size and D  is the dimension. Therefore 

the combined version also solves the problem within ( )O ND . However, in the multi-objective 

version the complexity in time is dominated by the calculation of crowding distance and non-

dominated sorting operations. The crowding distance is calculated for each member of the 

archive that stores the set of non-dominated individuals of the current iteration. For a problem 

with M  objectives, the complexity at which it is computed is a non-linear function of total 

number of members in the archive set, A  which is given by ( log )O MA A . The time consumed 

by non-dominated sorting operation is of the order 2( )O MN , given that the scheme of sorting 

follows 2( )O N  for a single objective problem. The above computational complexities have 

been calculated for a given size of problem. Increasing the problem size would drastically effect 

the time complexity. Therefore, it is important to analyze the complexity in time as a function 

different problem inputs. Given that, for a particular instance of the problem, 1n , 2n , 3n , 4n , 

and 5n  denote the number of origin warehouses, origin hubs, destination hubs, destination 

warehouses and time periods respectively,  the general expressions for aggregated total number 

of variables 1( )   and constraints 2( )  for the problem instance are shown in Eqs. (52) and 

   

4969 - 5103 4915 - 4968 2431 - 4860 1 - 2430 

  

4861 - 4914 

   

5264 5263 5239 - 5247 5104 -5238 

  

5248 - 5262 
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(53). For each instance, the problem has to deal with 1 2 3 4 5( )O n n n n n  variables and constraints 

respectively. 

1 5 1 2 3 4 1 2 3 4 2 3(2 2 2 ) 2n n n n n n n n n n n = + + + + +       (52)

2 5 1 2 3 4 1 2 3 4 3 4 1 2(6 4( ) 2 2 2 3) 4n n n n n n n n n n n n n = + + + + + + + +      (53) 

The composition of number variables and constraints for the problem sets considered are shown 

in Table 2. 

Table 2 Problem set description 

Problem  
set  

Origin  
regions 

Destination 
regions 

Configuration 

1 2 3 4 5( , , , , )n n n n n   

Number of 
variables  

Number of 
constraints 

Small 3 3 (5, 3, 3, 5, 2) 1034 2938 
Medium 3 4 (6, 3, 5, 9, 3) 5264 15193 
Large 3 4 (10, 4, 4, 10, 3) 10142 29569 

6. Experiments 

The data for experimentation is inspired from food grain transportation scenario in Southern 

India. Geographically, the country is divided into a number of states which are home to millions 

of people who majorly consume food grains as staple food. Consumption of wheat is dominant 

in the northern part of the sub-continent whereas rice in the southern part. Owing to the wide 

geographical spread of territories and significant imbalance between the supply and demand of 

food grains, an efficient transportation plan with aim to reduce the occurrence of food grain 

wastages across the Indian food grain supply network is much required. As discussed in the 

introduction, the need for sustainable design in the aforementioned context is imminent due to 

the projected rise in the temperature due to global warming and contribution of food grains 

towards total CO2 emissions (Parikh et al. 2009). The total movement of food grains in India 

is estimated to reach 45 million metric ton by 2020 (interpolated based on facts revealed by 

CAG Report, 2013). Considering the large scale of transportation and intermodal transfer 

operations pertaining to this shipment from food grain surplus to deficit regions, there is huge 
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scope for reducing wastages with simultaneous focus to minimize supply network cost and 

emissions. The proposed model is tested on different instances inspired from the 

aforementioned real case. For simulation, two geographical territories Tamil Nadu and Andhra 

Pradesh are chosen as origin and destination states. The demand for rice in Tamil Nadu is 

satisfied from the surplus stock available at Andhra Pradesh for multiple periods. The model is 

tested on three samples of data with increasing problem size (increasing number of variables). 

The data was collected from field visits and various online sources (http://fci.gov.in, 

http://pdsportal.nic.in/main.aspx,https://www.fois.indianrail.gov.in/foisweb/view/qry/TQ_Frg

tCalcIN.jsp, etc.). The region-wise distribution of warehouses for small, medium and large size 

instances are shown in Table F.1.  Table F.2 describes the numerical values adopted by different 

parameters of the problem.  

Further to this, the paper analyzes the effect of considering different levels of hub location, 

food grain wastages and intermodal hub capacities on the supply network cost and GHG 

emission through sensitivity analysis. Tables F.3 and F.4 describe the different level 

combinations adopted with respect to food grain wastage threshold and intermodal hub 

capacity in this study. Five different hub location levels are considered, the details of which, 

are deliberated in the subsequent section. In total, 14 experiments are conducted with varying 

levels of each one of the aforementioned factors while keeping the other fixed on medium size 

problem. All the experiments are undertaken with tuned parameter settings as listed in Tables 

F.5 and F.6. The detail discussion on results and insights gained through further analysis are 

presented in the next section.  

7. Result and discussion 

MOPSODE was implemented in MATLAB and executed on Windows 8, 64-bit Operating 

System consisting of 8 GB RAM and Intel Core i7 1.8 GHz processor. The experiments are 

conducted for small medium large size datasets (Table 2) using MOPSODE and NSGA-II. 

http://fci.gov.in/
http://pdsportal.nic.in/main.aspx
https://www.fois.indianrail.gov.in/foisweb/view/qry/TQ_FrgtCalcIN.jsp
https://www.fois.indianrail.gov.in/foisweb/view/qry/TQ_FrgtCalcIN.jsp
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Results verify that with slightly higher CPU time MOPSODE, guarantees higher quality of 

solution than NSGA-II (Table 3). The percentage decrease in total supply network cost and 

emissions obtained by the proposed approach was observed to be 13.67 and 6.63 for the small, 

7.03 and 1.45 for medium and, 8.01 and 10 for the large problems respectively. The 

computational time for MOPSODE over NSGA-II is found to increase at most by 19% amongst 

all the cases which is attributed to the greater number of evolutionary operators in the former 

approach than the later. The increase in computational time is a good compromise considering 

the ability of the metaheuristic to solve the complex problem in polynomial time. Figs. 6 (a), 

(b), and (c) show the highest ranked optimal pareto fronts obtained for all the three instances 

by MOPSODE and NSGA-II. The graphs indicate that the non-dominated front obtained by 

using MOPSODE significantly dominates the front obtained by using NSGA-II, thereby, 

validating the superiority of MOPSODE over NSGA-II for solving small, medium, and large 

scale problems.  Subsequently, the decision variables including shipment quantity, route 

selection, hub location and vehicle velocities pertaining to the global optimal pareto fronts are 

evaluated. The emphasis of the discussion carried out in this research is much focused towards 

simultaneous consideration of cost and environmental concerns.  To capture the economic 

impact of environmental objective, GHG emission is approximated as GHG emission cost by 

multiplying with a suitable cost conversion factor (carbon tax). The price of carbon tax for the 

conversion is chosen to lie between Rs 140 per ton of CO2. Subsequently, the average non-

dominated total cost pertaining to rank 1 solutions for all the instances is computed (Table 3) 

and is found to be less for MOPSODE as compared to NSGA-II by 7.25%, 10.77% and 13.95% 

respectively for the different problem sizes. 

In most cases, the appropriate choice of the compromising solution to a multi-objective 

problem depends primarily on the relative priority of individual objectives to the decision 

makers. The set of non-dominated pareto fronts plotted in Figs. 7 (a), (b) and (c) provides a 
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representative subset of solutions for each data set. The range of vehicle velocities were found 

to lie between 45-65 km/hr for trucks and 26-38 km/hr for trains in small case, 40-46 km/hr for 

trucks and 21-26 km/hr for trains in medium case, whereas 45-54 km/hr for trucks and 24-39 

km/hr in large case. Accordingly, the best three ranks (rank 1, rank 2, and rank 3) of pareto 

solutions generated using MOPSODE pertaining to problem sets 1-3 are reported in Table 4. 

For instance, choosing a point from the bottom right positions of the coordinate axes in Figs. 7 

(a), (b), and (c), would certainly ensure low GHG emission costs due to lower levels of vehicle 

velocity. Having said so, the advantages gained by achieving lower emissions are 

overshadowed by unaffordably high shipment costs. On the contrary, solution points to the 

upper left portion of the coordinate axes guarantee low shipment cost but fail to offer 

economically viable environmental benefits ascribed to higher vehicle velocity levels and 

corresponding high GHG emissions cost. In alignment with the set objectives, economic and 

environmental concerns are considered equally important in this paper to harbor holistic 

advantage. Thus, a compromising solution as highlighted in Figs. 7 (a), (b), and (c) is chosen 

to ensure environmentally conscious transport of food grain shipments. 

Table 3 MOPSODE and NSGA-II results 

Algorithm Problem 
set 

Supply network 
cost (bn Rs) 

GHG emissions 
(kt CO2) 

Average non-
dominated overall 
cost (bn Rs) 

CPU 
time (s) 

MOPSODE Small 51.7 12 57.6 127 
 Medium 1,365.6 204.7 1,387.4 1,335 
 Large 3,555.2 617.9 3,765.4 2,347 

NSGA-II Small 59.9 12.9 67 108 
 Medium 1,468.8 207.6 1,554.9 1,137 
 Large 3,864.9 686.4 4,060 1,967 
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Table 4 Pareto optimal costs obtained by MOPSODE for all problem sets  

Pareto 
solution  

Small Medium Large 

Front 
rank 

Supply network 
cost (bn Rs) 

GHG emission 
(kt CO2) 

Front 
rank 

Supply network 
cost (bn Rs) 

GHG emission 
(kt CO2) 

Front 
rank 

Supply network 
cost (bn Rs) 

GHG emission 
(kt CO2) 

1 1  44.1  13.6  1 1,263.4  205.2  1 3,936.3   610.2  
2 1  80.8  11.4  1 1,243.3  205.7  1 3,602.9   613.8  
3  1  51.7  12 1 1,365.6  204.7  1 3,851.2   612  
4 1  48.8  12.2  1 1,413  201  1 3,555.2   617.9  
5 1  54.3  11.9  2 1,508  204  1 3,432.3   767.3  
6 2  54.1  12.9  2 1,471.5  204.8  1 3,489.5   703.4  
7 2  53.2  13.6  2 1,279.7  208.6  2 3,581.4   619.1  
8 2  47.5  14.5  2 1,305.5  208.2  2 4,358.8   611.7  
9 2  60.3  12  2 1,409.4  205.3  2 4,017.9   612.2  
10 2  55.9  12.5  2 1,343  206  2 3,966.6   614.1  
11 2  46.7  15.2  2 1,386.8  205.9  3 3,713.6   622.8  
12 2  63.7  11  3 1,622.9  204.5  3 4,339.6   612.7  
13 2  50.3  13  3 1,584.7  205.1  3 4,078.3   614.6  
14 2  49.2  13  3 1,396  206.8  3 4,296.1   613.9  
15 3  59.2  12.7  3 1,362.2  207.2  3 4,032.6   617.5  
16 3  66.5  12.2  3 1,312.5  216.3  3 4,065.8   615.1  
17 3  60.4  12.3  3 1,515.1  206.1  3 3,632.8   672.2  
18 3  55.3  13.1  3 1,424.9  206.3  3 4,041.2   616.8  
19 3  56.8  12.9  3 1,455.1  206.2     
20 3  48.9  15.2  3 1,334.8  210.3     
21 3  51.2  14.3    205.2     
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Fig. 6 (a). Pareto dominance of MOPSODE over NSGA-II for small data set (5-3-3-5-2) 

 

Fig. 6 (b). Pareto dominance of MOPSODE over NSGA-II for medium data set (6-3-5-9-3) 
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Fig. 6 (c). Pareto dominance of MOPSODE over NSGA-II for large data set (10-4-4-10-3) 

 

Fig. 7 (a). Pareto optimal fronts obtained using MOPSODE for small data set (5-3-3-5-2) 
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Fig. 7 (b).  Pareto optimal fronts obtained using MOPSODE for medium data set (6-3-5-9-3) 

 

Fig. 7 (c).  Pareto optimal fronts obtained using MOPSODE for large data set (10-4-4-10-3) 
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The summary of decision variables for the given instances of the problem are presented in Tables 

H.1-H.5. Table H.1 summarizes the region-wise food grain shipment quantities, route selection 

and transportation mode selection between the origin and destination states for all the problem 

sets. The small data set consists of 3 regions and in the origin as well as the destination state (refer 

Appendix E). For small dataset, it is observed that selected quantity of shipments that minimize 

total supply network cost and GHG missions are majorly moved from origin regions 1 and 2 to all 

regions in the destination state as compared to the shipments from the third origin region. It is 

important to note that when there is higher quantity of transport involved, rail dominates the mode 

of transport indicated by last two columns of Table H.1. On the contrary, road mode of transport 

is majorly selected for smaller shipment sizes. Table H.2 presents the frequency and type of 

rail/road transport selected for realizing the defined shipments with in the origin state. The number 

of intermodal hubs ( k ) in the origin state for small and medium problems is 3 and for the large 

size is 4 (refer Appendix E). A value of zero in columns (4-11) of Table H.2 indicates that there is 

no route that corresponds to rail or road transport, whereas an integer value greater than zero 

represents the number of routes by rail or road, directed towards origin intermodal hubs from each 

origin region. The last four columns represent the total number of trucks or rakes used for 

transportation in this segment.  It is observed that in some cases, there is no rail or road selected 

for transport because of no movement of food grains within state from the corresponding region 

to the origin intermodal hub. A similar interpretation could be made for the transportation 

phenomenon in the destination state from Tables H.3 and H.4. Finally, Table H.5 provides 

description of rake allocation summary for the transport segment between origin and destination 

intermodal hubs along with the destination hubs allocated for all datasets.  Further to this, it is 

observed that all the origin intermodal potential hubs are selected to be opened whereas the 
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potential destination hubs, remained close in two instances for small dataset, three instances for 

medium and large datasets.   

The results obtained by MOPSODE converge faster when compared to NSGA-II because of the 

faster convergence speed of embedded particle swarm optimization.  In agreement with this, the 

velocity of the particle was found to be proportional to the size of problem indicating good 

performance (Domínguez et al. 2011) by MOPSODE. The convergence metric called generational 

distance (GD) employed by Su and Chi (2017) was adopted to evaluate the performance of the 

proposed metaheuristic. Generational distance measures the distance of the current pareto front 

obtained with respect to a given near optimal pareto front. It was observed that over a span of 20 

trial runs, the GD was found to vary with less than 1% deviation for all the problem sets which 

confirms the near optimality of the resulting pareto fronts. The graphical illustration of the near 

optimal solution obtained for small data set is shown in Fig. G.1. 

7.1 Impact of variation in hub location level  

As presented earlier in section 4, the current formulation incorporates the possibility of restricting 

the number of hubs located in a given instance of the problem. Haphazard selection of hub location 

level may prove to be beneficial in some cases, but detrimental in majority of the cases to broader 

objectives of the problem. Therefore, it is important to maintain an adequate level of hub location 

to ensure optimal flow of food grains. In this paper, the impact of closing the intermodal hubs on 

supply network cost and GHG emission is captured by hub closure impact index, I  evaluated as,

01 ( / )I C C= − , where C  is the average non-dominated total cost for a given configuration of hub 

location. 0C  is the average non-dominated total cost for the case with zero number of hub closures. 

The effect of level variations in destination intermodal hubs located while keeping the origin hub 

location level fixed on supply network cost and GHG emission is investigated through set of 
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experiments shown in Table 5. Fig. 8 shows the rank 1 pareto fronts obtained for different types 

of experiments conducted. The results shown in Table 5 and Fig. 8 correspond to medium size data 

set from where it can be verified that the value of I  increases as the hub location level decreases 

and is found to be the highest for experiment 4 (3 destination hubs closed) indicating the increasing 

level of impact on the overall cost with corresponding increase in the level of hub closures, 

following which, I  is found to deteriorate for experiment 5 (4 destination hubs closed). This 

reduction in the value of I  represents the sudden drop in the level of transport due to lower levels 

of food grain demand resulting from demand loss associated with closed hubs. On this basis, it is 

important that the decision maker choses a suitable level of hub location while adjusting the trade-

off between demands lost due to hubs closed with the overall cost.  

Table 5 Impact of hub closure on cost and emission 

 Experiment 

1 2 3 4 5 

Origin hub location 

level ( ob ) 

3 3 3 3 3 

Destination hub 

location level ( db ) 

5 4 3 2 1 

No. of destination hubs 
closed 

0 1 2 3 4 

Supply network cost 
(bn Rs) 

294.9 1,365.6 2,233.5 2,805.6 2,314.3 

GHG emission  
(kt CO2) 

191.3 204.7 213.8 388.9 203.3 

Average non-
dominated total cost 
(bn Rs) 

321.8 1,319.5 2,295.6 3,213.2 2,380 

Hub closure impact 
index 

0 0.76 0.86 0.9 0.87 
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Fig. 8. Pareto fronts generated while investigating the impact of varying hub location level  

7.2 Impact of variation in food grain wastage threshold 

This paper attempts to restrict the overall food grain wastages by setting a threshold on intermodal 

facility level wastages while realizing the total shipment quantity from origin to destination 

warehouses. Five experiments with distinct food grain wastage threshold levels described as earlier 

in section 6, while keeping remaining parameters fixed are conducted on medium size data set to 

explore the effect of their changing levels on the supply network cost and GHG emission. The first 

experiment corresponds to the highest wastage threshold setting and the subsequent experiments 

are conducted for decreasing level of wastage threshold settings as shown in Table F.3. Table 6 

records the maximum and minimum supply network cost and GHG emission observed for 

experiments conducted on medium size dataset with the aforementioned settings. Observations 

reveal that reducing the wastage threshold up to 50% causes reduction in supply network cost at 
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the cost of increasing levels of GHG emission. Further increasing the wastage threshold was found 

to cause damage to both supply network cost and GHG emission levels. Enforcing further 

restriction on the wastage cap generated only infeasible solutions. Fig. 8 captures rank 1 pareto 

optimal fronts for the each of the five experiments.   

Table 6 Effect of food grain wastage threshold on cost and emission 

Experiment Food grain 
wastage 
threshold level 

Minimum  
supply network 
cost (bn Rs) 

Maximum 
supply network 
cost (bn Rs) 

Minimum GHG 
emission  
(kt CO2) 

Maximum 
GHG emission  
(kt CO2) 

1 1   1,243.3  1,413  201  205.7  
2 2    1,110.9  1,370.2  203.8  205.7  
3 3       772  1,102.5  200.8  262.6  
4 4   1,204.9  1,554.5  204.8  210.4  
5 5    1,354.4  1,645.4  206  218.8  

 

 

Fig. 8.  Pareto fronts generated while investigating the impact of varying food grain wastage 

threshold 
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7.3 Impact of variation in intermodal hub capacity 

The level of intermodal hub capacities regulate the flow of food grains routed through the 

intermodal hubs. High capacity levels ensure routing of shipments through low cost hubs. 

However, in practical scenarios, some portion of the capacity often remains unutilized due to 

multiple reasons. In such cases, it becomes necessary to investigate the effect of different 

intermodal hub capacity levels in the presence of wastages on the supply network cost and GHG 

emission to recognize alternative solutions with subtle variation in cost and emission. To this end, 

four experiments with distinct hub capacity levels (Table F.3) are conducted while keeping all 

other parameters as fixed. Results indicate that for the given instance (medium size data set)  

 

Fig. 9.  Pareto fronts generated while investigating the effect of varying intermodal hub capacity 

 



39 
 

increasing the origin and destination hub capacities (experiments 2 and 3) individually was found 

to give a better spread of solution trade-offs (Table 7) but with lesser number of good compromise 

solutions (Fig. 9), while, maintaining the origin and destination hubs at higher capacity levels 

simultaneously (experiment 4) ensured reduced supply network costs at lower levels of GHG 

emission. Table 7 lists the pareto front boundaries in terms of maximum and minimum level 

realizations of both objectives for this study. Fig. 9 displays the optimal pareto fronts obtained for 

experiments 1-4 pertaining to this study. 

Table 7 Effect of intermodal hub capacity on cost and emission 

Experi-
ment 

Intermodal 
hub capacity 
level 

Minimum supply 
network 
cost (bn Rs) 

Maximum 
supply network 
cost (bn Rs) 

Minimum GHG 
emission  
(kt CO2) 

Maximum GHG 
emission  
(kt CO2) 

1 1 1,244.1  1,325  202.1  221.4  
2 2 1,244.1  1,370.7  199.7  212.6  
3 3 1,197.1  1,456.5  200.8  235.1  
4 4 1,243.3  1,413  201  205.7  

Table 8 Decrease in GHG emission versus increase in supply network cost for all problem sets  

Problem 
set 

Supply network 
cost (bn Rs) 

GHG emissions  
(kt CO2) 

Percentage 
decrease in GHG 
emissions 

Percentage increase in 
supply network cost  

Small 44.1  13.6  - - 
48.8  12.2  10.090 10.622 
51.7  12  1.387 5.933 
54.3  11.9  1.326 4.979 
80.8  11.4  3.979 48.916 

Medium 1,243.3  205.7  - - 
1,263.4  205.2  0.231 1.609 
1,365.6  204.7  0.245 8.090 
1,413  201  1.323 3.546 

Large 1,413  592.5  - - 
1,422.7  592.2  0.038 0.685 
1,436.8  592.1  0.056 1.686 
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8. Conclusion 

This paper provides an effective decision support tool for solving environmentally focused real 

time food grain transportation problem considering wastages at the facility level with minimization 

of total supply network cost and GHG emission as a bi-objective formulation. The unique 

contributions of this work are three fold. Firstly, a mixed integer environmentally conscious, 

wastage aware and economically convenient non-linear optimization model is formulated with 

simultaneous consideration towards economic and environmental objectives in the food grain 

transportation domain. In this regard, the idea of reducing food grain wastages is mathematically 

captured at intermodal facility level while restricting the total food grain wastage within a specified 

threshold. The model adequately captures real time transportation constraints with respect to 

vehicle capacities, intermodal hub capacity restrictions, multi-modal considerations and available 

inventory in addition to food grain wastages. Secondly, a modified version of multi-objective 

particle swarm optimization with differential evolution algorithm with a new penalty allocation 

scheme is proposed to tackle the computationally complex constrained optimization problem. 

Thirdly, a hub closure impact index is proposed to quantify the impact of hub closures on economic 

and environmental objectives. The proposed model is tested on three differently sized problem 

instances inspired from food grain industry in Indian context. Benchmarking results validate the 

superiority of MOPSODE over NSGA-II for small, medium and large instances of the problem 

with subtle variations in computational time. Subsequently, the importance of identifying 

compromising solution is illustrated by examining the trade-offs through pareto analysis in 

relevance to the considered instances. Specific insights are developed through sensitivity analysis 

to explore the effect of changing levels of hub location level, food grain wastage threshold and 

intermodal hub capacities on the supply network cost and GHG emission. Observations reveal that 
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significant amount of wastage reduction is achieved at an expense of minimal increase in the total 

supply network cost much to the interest of decision makes and stakeholders. 

The managerial implications with respect to the cost-emission tradeoffs observed for various 

configurations of the current problem are derived as follows. First, for the small and medium size 

problem  (Fig. 7 (a) and Fig. 7 (c)), the rate of reduction in total GHG emission with respect to 

increase in the total supply network cost is found to increase initially and later decrease drastically. 

Whereas, for the medium case (Fig. 7 (b)), the rate of reduction is found to decrease initially and 

later increase. Table 8 summarizes the percentage decrease in GHG emissions achieved against 

the corresponding percentage increase in total supply network costs.  Second, the insights gained 

by capturing the impact of variation in hub location level on the supply network cost and GHG 

emission are of crucial value to managers for deciding the adequate level of hub location. It is 

recommended that hub location level must be kept lower than the breakeven point that defines the 

tradeoff between demands lost due to hubs closed and the overall cost. Further, this model helps 

the stakeholders in staying well informed with respect to the achievable levels of wastage 

thresholds while ensuring the check on cost and emission.  The paper provides numerical evidence 

to showcase pros and cons of augmenting the intermodal hub capacities. The aforementioned 

trade-offs are instrumental for stakeholders and decision makers while making an intuitive choice 

of sustainable strategy for food grain shipments considering wastages. 

The current work holds immense potential to be extended towards strengthening the triple bottom 

line approach by considering social objectives in terms of customer and employee satisfaction. 

Further, exploring the effect of quality degradation especially with respect to wheat and other 

perishable food grain products remains a necessary and important open research question. The 

current formulation can be further enriched by incorporating deterministic and probabilistic 
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disruptions while being addressed by enhanced decomposition and relaxation schemes embedded 

with evolutionary optimization.  
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Appendix A. Symbols and Notations 

Indices 

o  Origin state 

d  Destination state 

i  Origin FCI warehouse 

j  Destination FCI warehouse 

p  Origin region 

q  Destination region 

k  Origin hub 

m  Destination hub 

  Road 

  Rail/Rake 

t  Time period 

Sets 
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o
R  Set of regions in origin state o  

d
R  Set of regions in destination state d  

pW  Set of FCI warehouses in origin region p  

q
W  Set of FCI warehouses in destination region q   

o
H  Set of potential hub locations in origin state o , 

1

oR

o p

p

H W
=

  

d
H  Set of potential hub locations in destination state d , 

1

dR

d q

q

H W
=

  

T  Set of time periods 

Parameters 

o

ipk
C

  Unit cost of transportation by road from origin warehouse i  of region p  to origin hub k  

where, pi W , o
p R , o

k H  

o

ipk
C

  Unit cost of transportation by rail from origin warehouse i  of region p  to origin hub k , 

where, pi W , o
p R , o

k H  

od

km
C  Unit cost of transportation by rail from origin hub k  to destination hub m , where,

o
k H , d

m H  

d

mjq
C

   Unit cost of transportation by road from destination hub m  to warehouse j of region q , 

where, d
m H , qj W , d

q R  

d

mjq
C

   Unit cost of transportation by rail from destination hub m  to warehouse j of region q , 

where, d
m H , qj W , d

q R  

jq

ipkmtC  Unit cost of total transport from warehouse i of region p to warehouse j of region q  

through origin hub k and destination hub m  in time period t ,where, pi W , o
p R , 

qj W , d
q R , o

k H , d
m H , t T  

o

kt
A  Cost of locating warehouse facility at origin hub k in time period t , where, o

k H , 

t T  

d

mt
A  Cost of locating warehouse facility at origin hub m in time period t , where, d

m H , 

t T  
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hC  Unit cost of handling food grains at intermodal hub  

pC  Unit penalty cost for violating service time restrictions 

o

ipka
  Road distance from warehouse i  of region p  to origin hub k , where 

pi W , op R , 

ok H    

o

ipka
  Rail distance from warehouse i  of region p  to origin hub k , where 

pi W , op R , 

ok H  

od

kma  Rail distance from origin hub k  to destination hub m , where ok H , dm H  

d

mjqa
  Road distance from destination hub m  to warehouse j  of region q , where dm H , 

qj W , dq R    

d

mjqa
  Rail distance from destination hub m  to warehouse j  of region q , where dm H , 

qj W , dq R    

jqt  Service time upper limit for the food grain demand at warehouse j  of region q , where 

qj W , d
q R  

  Transportation cost consolidation factor 

  Travel time consolidation factor 

qtD  Demand for food grains at region q  in time period t , where, d
q R , t T  

0ipI  Initial food grain inventory (inventory at the end of 0t = ) at warehouse i  of region p , 

where, pi W , o
p R    

iptP  Food grain procurement at warehouse i  of region p  realized in time period t , where, 

pi W , op R , t T  

ob  Number of origin hubs allowed to open in any time period. 

db  Number of destination hubs allowed to open in any time period. 

kU  Capacity of origin hub k , where, o
k H  

mU  Capacity of destination hub m , where, d
m H  

ok  Fraction of food grain quantity lost at origin hub k , where, o
k H  
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dm  Fraction of food grain quantity lost at destination hub m , where, d
m H  

C   Unit truck load capacity 

C  Unit train load capacity 

o

ipt

  Number of trucks available for loading in origin warehouse i  of region p  in time period 

t , where, pi W , o
p R , t T    

o

ipt

  Number of rakes available for loading in origin warehouse i  of region p  in time period 

t , where, pi W , o
p R , t T    

kt  Number of rakes available in origin hub k  in time period t , where, o
k H , t T    

d

mt

  Number of trucks available for loading in destination hub m  in time period t , where, 

d
m H , t T  

d

mt

  Number of rakes available for loading in destination hub m  in time period t , where, 

d
m H , t T  

ip  =1, if warehouse i  of region p is a potential hub, where pi W , o
p R , 0 otherwise 

M  Large number 

Decision variables 

jq

ipkmtx  Quantity of food grains to be dispatched from origin warehouse i  of region p  towards 

destination warehouse j  of region q  through origin hub k  and destination hub m  in 

time period t , where, pi W , o
p R , qj W , d

q R , o
k H , d

m H , t T  

iptI  Food grain inventory available at warehouse i  of region p  at the end of time period t , 

where, pi W , o
p R , t T    

ipktl  Number of trucks or rakes used to transport food grains from warehouse i  of region p  to 

hub k  in time period t , where, pi W , o
p R , o

k H , t T  

kmtn  Number of rakes used to transport food grains from origin hub k  to destination hub m  in 

time period t , where, o
k H , d

m H , t T  
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mjqth  Number of trucks or rakes used to transport food grains from destination hub m  to 

destination warehouse j  of region q  in time period t , where, qj W , d
q R , d

m H , 

t T , 0 otherwise 

jq

ipkmty  = 1, if there is positive quantity of flow from origin warehouse i  of region p  to 

destination warehouse j  of region q  through origin hub k  and destination hub m in 

time period t , where, pi W , o
p R , qj W , d

q R , o
k H , d

m H , t T , 0 

otherwise 

o

ipkt

  =1, if road is selected as mode of transport for shipping the quantity, jq

ipkmtx  from origin 

warehouse i  of region p  to origin hub k  in time period t , where, pi W , o
p R , 

o
k H , t T , 0 otherwise 

o

ipt

  =1, if road is selected as mode of transport for shipments starting from origin warehouse 

i  of region p  in time period t , where, pi W , o
p R , t T , 0 otherwise 

o

ipkt

  =1, if rail is selected as mode of transport for shipping the quantity, jq

ipkmtx  from origin 

warehouse i  of region p  to origin hub k  in time period t , where, pi W , o
p R , 

o
k H , t T , 0 otherwise 

o

ipt

  =1, if rail is selected as mode of transport for shipments starting from origin warehouse i  

of region p  in time period t , where, pi W , o
p R , t T , 0 otherwise 

d

mjqt

  =1, if road is selected as mode of transport for shipping the quantity, jq

ipkmtx  from 

destination hub m  to destination warehouse j  of region q  in time period t , where, 

qj W , d
q R , d

m H , t T , 0 otherwise 

d

mt

  =1, if road is selected as mode of transport for shipments starting from destination hub m  

in time period t , where, d
m H , t T , 0 otherwise 

d

mjqt

  =1, if rail is selected as mode of transport for shipping the quantity, jq

ipkmtx  from 

destination hub m  to destination warehouse j  of region q  in time period t , where, 

qj W , d
q R , d

m H , t T , 0 otherwise 

d

mt

  =1, if rail is selected as mode of transport for shipments starting from destination hub m  

in time period t , where, d
m H , t T , 0 otherwise 
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kmt  =1, if there is positive shipment quantity of shipment from origin hub k  to destination 

hub m  in time period t , where, o
k H , d

m H , t T , 0 otherwise 

ktz  = 1, if hub k  is open in time period t , 0 otherwise 

mtw  = 1, if hub m  is open in time period t , 0 otherwise 

v  Truck speed (km/hr) 

v  Train speed (km/hr) 

Appendix B. Truck fuel consumption 

According to Demir et al., (2014), the total amount of fuel consumed ( F ) by a truck carrying load 

f  to travel a fixed distance a  with speed v  is given by,   

( )3( , , )
a

F v a f BV w v fv v
v

    = + + +        (B.1) 

where, 



= and 
1

1000 tf


 

=  are constants.   is the conversion factor for unit of fuel from 

g/s to l/s, sin cosrg gC   = + +  is truck arc specific constant, where, , rC , and   are 

acceleration of the truck, coefficient of rolling resistance and road angle respectively. 
2

dC A =  

is the truck specific constant, where, dC ,  , and A  indicate aerodynamic drag coefficient, air 

density and truck frontal surface area respectively. B ,  , V ,  , tf , and w  represent engine 

speed, fuel-air ratio, engine displacement, engine friction factor, truck drive train efficiency and 

empty curb weight in kilograms respectively.   and   are fuel specific constants. 

Appendix C. Rail fuel consumption 

Chang and Morlok, (2005) formalized the fuel energy consumed by a locomotive or a wagon in 

rail transport with level paths in quadratic form as a function of speed and distance as shown in 

Eq. (C.1), where, 
az  is fuel consumed (in kWh) for traversing through arc a , R  is the fuel rate 
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(in kWh/N-km), aL is length of arc a  in km and v  is train speed (km/hr). Formulae used to 

estimate algebraic coefficients, r

a
u , s

a
u , and c

a
u  as given by Chang and Morlok, (2005) for single 

wagon case are shown in Table C.1. 

2( )r s c

p p p p pz RL u u v u v = + +          (C.1) 

Table C.1 Velocity coefficients single and multiple vehicle types 

Vehicle type r

a
u  

s

a
u  

c

a
u  

Single vehicle 
(locomotive or wagon) 

1.5( )

18

e shipW W

N

+

+  
0.03( )eW  

CA  

Single train  
(multiple locomotives 
or wagons) 

1.5( )

18( )

w w l l ship

w l

n W n W W

n n N

+ +

+ +  

0.03( )w w l l shipn W n W W+ +  w w w l l ln C A n C A+  

Multiple trains 1.5 ( )

18 ( )

a w w l l

ship a w l

l n W n W

W l n n N

+

+ + +
 

0.03 ( )a w w l l

ship

l n W n W

W

+

+ 
 

(
)

a w w w

l l l

l n C A

n C A+  

eW = Empty weight of vehicle, wW = Empty weight of wagon, lW = Weight of locomotive, shipW = 

Weight of shipment, N = Number of axles in vehicle, C = Air drag Coefficient of vehicle, wC = 

Air drag Coefficient of wagon, lC = Air drag Coefficient of locomotive, A  = Frontal cross sectional 

area of vehicle, wA  = Frontal cross sectional area of wagon , lA  = Frontal cross sectional area of 

locomotive wn = number of wagons, ln = number of locomotives, al = number of trains passing 

through arc a . 

Appendix D. Particle swarm optimization with differential evolution (PSODE) 

Amalgamating the procedures of Particle Swarm Optimization (PSO) and Differential Evolution 

(DE), a versatile variant of these two approaches was proposed by Liu et al. (2010) for constrained 

single objective optimization problems and later generalized by Epitropakis et al. (2012). In this 

approach, the hybrid algorithm is initialized with two different equal sized populations, 1pop  and 

2pop . The particle best from 1pop is stored in 2pop . The members of 1pop  are sorted according 

to constraint violations in descending order and the members of 2pop  are mapped according to 

their particle best values. However, both the populations evolve separately, and the position and 
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velocity of  50% population of 1pop  are updated according to PSO procedure. Violating 

individuals are redirected to the feasible region by using reflection operator as shown in Eq. (D.1) 

'

0.5( ( ) ),     if ( )

0.5( ( ) ),    if ( )

,    otherwise

t t

ij ij

t t t

ij ij ij

t

ij

l j x x l j

x u j x x u j

x

 + 
= + 



        (D.1) 

Next step includes deployment of DE procedure on 2pop . For a given individual t

i
X =

1 2{ , , ,..., }t t t t

i i ij inx x x x , such that, {1, 2,3,..., }i D  of 2pop , three new offsprings based on the Eq. 

(D.2), (D.3), and (D.4) are generated, where, 1r , 2r , 3r , 4r , 5r  are uniformly distributed random 

numbers in the range  1, D .  ( [0, 2])   is an amplification factor defined according to Eq. 

(D.5), where, 1i , 2i , and 3i  are uniformly distributed  random numbers in between  1, D  and 

1 2 3i i i  .  

1 2 3

' ( )t t t t

ij r j r j r jx x x x= + −           (D.2) 

1 2

'
( )( ) ( )t t t t t t

ij ij best j ij r j r jx x x x x x = + − + −        (D.3) 

1 2 3 4 5

' ( ) ( )t t t t t t

ij r j r j r j r j r jx x x x x x = + − + −        (D.4) 

1 2 3
(0,0.5)( )i i i iN   = + −          (D.5) 

Boundary violations are repaired by treating the violated individuals with Eq. (D.6), where t

ijw  and 

't
ijw  are violated and corrected offsprings respectively. Later, the selection procedure of DE is 

applied on the offsprings to update the particle best members of 2pop  at the end of iteration t  

according to Eq. (D.7), where ( )G X  function evaluates the constraint violations of candidate 

solution X .  
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'

2 ( ) ),     if ( )

2 ( ) ),    if ( )

,    otherwise

t t

ij ij

t t t

ij ij ij

t

ij

l j w w l j

w u j w w u j

w

 − 
= − 



        (D.6) 

1
,          if   ( ) ( ) ( ) ( )

,    otherwise

t t t t t

i i i i it

i t

i

W f W f pbest G W G pbest
pbest

pbest

+
   = 


    (D.7) 

The stepwise flow of PSODE algorithm for single objective problems with its pseudocode is 

extensively described in Liu et al. (2010). They further enumerate benefits of its adoption to a wide 

range of practical problems and demonstrate their ability to outclass elementary PSO and DE 

procedures.  

Appendix E. Multi-objective PSODE (MOPSODE) 

Exploiting the dexterity of PSODE in solving single objective problems, Su and Chi, (2017) 

extended the hybrid swarm intelligence technique to solve multi-objective problems. Higher the 

diversity of solutions in the pareto optimal set, better is the quality of solution to a multi-objective 

problem. The advantages of Multi-objective PSODE (MOPSODE) strongly aligns with the 

interests of computational time and solution quality. The tailoring of PSODE for solving multi-

objective problems engages minor modifications and assimilation of multi-objective optimization 

concepts with the single objective procedure. The following sub-sections delineate certain 

concepts essential for clear understanding of MOPSODE algorithm. 

E.1 Non-dominated sorting 

A solution   belongs to the non-dominated set , if it strictly dominates ' , where ' is any 

feasible solution to the master multi-objective problem. The distinguishing feature that 

differentiates the multi-objective algorithm from its single objective counterpart is the computation 

of non-dominated individuals. Several benchmark multi-objective algorithms accommodate 

sorting of non-dominated solutions after evaluating non-dominated solutions (Demir et al. 2014). 



51 
 

Non-dominated sorting ensures the transfer of elite solutions in the solution space to subsequent 

iterations and contributes to significant reduction in computational time. Sorted individuals are 

stored in the pareto optimal set, P , where P  .  NSGA-II (Deb et al., 2002) is considered as a 

pioneering bench mark that incorporates sorting to arrive at near optimal pareto fronts. The 

solution diversity among the elements of P  is maintained by screening the sorted individuals 

based on crowding distance (a metric used to measure distance between non-dominated solutions). 

In addition to this, MOPSODE impregnates high quality of solution diversity amongst selected 

non-dominated individuals, by virtue of using the hybrid technique, PSODE which retains the 

capability of exploring diverse set of solutions.  

E.2 Selection of pbest and gbest 

In PSODE, pbest and gbest iteratively capture the particle best and global best solutions 

respectively. According to the nature of the objective function, for minimization or maximization 

objectives, as the case may be, pbest and gbest in PSODE are updated as identical to PSO. 

However, in the case of multi-objective problems, pbest and gbest must be selected from a pool of 

non-dominated solutions. The choice of decision maker plays a critical role in selecting the most 

effective iteration best values to be carry forwarded to the next iteration. For each particle i  in the 

th
t  iteration, pbest and gbest update rules adopted by Su and Chi, (2017) are represented by Eqs. 

(E.1) and (E.2) respectively. The index j  in Eq. (E.2) represents a randomly selected non-

dominated individual and is defined as  1,2,3,..., tj , where t  is the set of non-dominated 

solutions in iteration t .  

1

1

,          if  dominates 

, else

t t t

i i it

i t

i

x x pbest
pbest

pbest

−

−

= 


        (E.1) 
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1,        if  dominates 

, else

t t t

ij ij it

i t

i

x x gbest
gbest

gbest

−= 


       (E.2) 

E.3 Execution 

The first step of execution in MOPSODE procedure involves initialization of parameters specific 

to PSO and DE algorithms. In the second step, particles of the swarm are initialized randomly. 

However, guided initialization may be adopted to kick start the search process in the right 

direction.  The third step involves calculation of fitness and evaluation of non-dominated 

individuals. In the next step, current particle is updated based on PSODE update mechanism. In 

the fifth step, pareto optimal set is updated based on crowding distance. If the termination criteria 

is met, in the last step the results are plotted and stored for further analysis. The detailed list of 

parameters and step wise flow diagram for the algorithm are provided in Su and Chi, (2017). 

Appendix F. Data 

Table F.1 Region wise warehouse distribution 

Problem set State Warehouse 
type 

Region 1 Region 2 Region 3 Region 4 

Small  Origin   Hub  1 1 1 - 
Non hub  1 1 0 - 

Destination  Hub  1 1 1 - 
Non hub  0 1 1 - 

Medium  Origin  
  

Hub  1 1 1 - 
Non hub  1 2 0 - 

Destination  Hub  1 1 2 1 
Non hub  0 2 1 1 

Large  Origin   Hub  1 2 1 - 
Non hub  2 2 2 - 

Destination  Hub  1 1 2 0 
Non hub  0 2 1 3 
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Table F.2 Numerical description of problem parameters 

Parameter Value Parameter Value 

o

ipk
C

  Rs. 4/km/MT* K  6,500 – 50,000 MT 

o

ipk
C

  Rs. 2.5/km/MT 
qtD  2,000 – 20,000 MT 

od

km
C  Rs. 2.5/km/MT 

0ipI  25,000 – 100,000 MT 

d

mjq
C

  Rs. 4/km/MT 
iptP  10,000 – 50,000 MT 

d

mjqC
  Rs. 2.5/km/MT 

ob  3-5 

o

kt
A   Rs. 5 x 105  – Rs. 10 x 105   

db  3-5 

d

mtA  Rs. 8 x 105  – Rs. 12 x 105   
kU  2 x 105 MT – 4 x 105 MT 

hC  Rs 7850 /MT  
mU  1.5 x 105 MT – 3 x 105 MT 

pC  Rs 100,000 
ok  0.04 – 0.06 

o

ipka
  75 km – 1,000 km 

dm  0.05 – 0.07 

o

ipka
  75 km – 1,000 km C  15 MT 

od

kma  100 km – 1,500 km C  4,000 MT 

d

mjqa
  50 km – 500 km o

ipt

  1,000 – 5,000 

d

mjqa
  50 km – 500 km o

ipt

  10 – 40 

jqt  1000 –  3000 h 
kt  20 – 45 

  0.8 d

mt

  1,000 – 5,000 

  0.8 d

mt

  10 – 40 

 

Table F.3 Food grain wastage threshold levels for sensitivity analysis 

Level Percentage decrease in wastage 
threshold 

Food grain wastage threshold ( K ), MT* 

1  0 450,000 
2  30 315,000 
3 50 225,000 
4 70 135,000 
5 80 90,000 

*MT - Metric ton 
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Table F.4 Intermodal hub capacity levels for sensitivity analysis 

Level Origin intermodal hub capacity, MT* Destination intermodal hub capacity, MT 

1  400,000 (Low) 620,000 (Low) 
2  850,000 (High) 620,000 (Low) 
3 400,000 (Low) 920,000 (High) 
4 850,000 (High) 920,000 (High) 

*MT - Metric ton 

Table F.5 MOPSODE parameter setting 

Parameter Value 

Population size, N  200 
Number of iterations, E  200 
Inertia weight, w   0.9 

Local learning factor, 1c   0.1 

Global learning factor, 2c   0.98 

Number of objectives 2 

Table F.6 NSGA II parameter setting 

Parameter Value 

Population size, N  200 
Number of iterations, E  200 

cp   0.9 

mp  0.1 

Number of objectives 2 
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Appendix G. Graphical illustration 

 

Fig. G.1 (a). Graphical illustration of sample pareto optimal shipment quantity in between states 

and modes selected within states for small dataset. 

 

Fig. G.1 (b). Graphical illustration of sample pareto optimal rake allocation plan in between states 

for small dataset. 
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Appendix H. Decision variable result summary 

Table H.1 Region wise food grain shipment, route selection and transportation mode selection summary of sample pareto solution for all problem 
sets 

Problem 
set 

Origin 
region  
( p ) 

Time 
period  
( t ) 

Food grain shipment quantity reaching region 
q (MT) 

No. of routes directed towards 
region q  

No. of warehouses 
initiating road/rail 
transport in region p  

1q =  2q =  3q =  4q =  1q =  2q =  3q =  4q =  Road Rail 

Small 1 1 11,448 20,235 69,942 - 3 7 3 - 1 2 
2 12,966 21,371 16,892 - 3 6 3 - 0 2 

2 1 975.1 9,216.1 183.1 - 3 8 1 - 2 1 
2 4,092.7 7,976.2 3,353.7 - 2 4 2 - 0 2 

3 1 0 0 191 - 0 0 1 - 1 0 
2 887.74 0 0 - 1 0 0 - 1 1 

Medium 1 1 0 43,215 12,505 20,780 0 28 18 10 2 2 
2 4,429.9 30,318 18,658 713 3 13 14 7 1 1 
3 4,829.9 11,532 18,138 13,891 2 10 10 9 1 2 

2 1 0 15,945 53,978 5,531 0 33 20 12 2 1 
2 15,902 29,903 43,492 22,975 4 27 20 13 3 2 
3 27,493 17,545 66,199 28,183 6 32 20 19 3 3 

3 1 0 92.4 1,925.1 7.96 0 7 5 3 1 1 
2 1.45 9,988.3 2.5 123.97 1 5 5 2 0 1 
3 102.68 7,369 665.4 39.37 1 6 4 4 1 1 

Large 1 1 18,936 34,988 21,784 7,133 7 31 12 44 3 3 
2 9,198 41,413 23,611 16,190 7 38 21 57 3 3 
3 37,791 58,053 26,889 18,577 4 24 13 28 3 1 

2 1 439.6 26,159 9,333.3 6,967 3 31 9 44 4 4 
2 69.6 36,148 1,831.9 30,214 7 52 23 66 4 4 
3 9,415.4 18,509 8,335.3 11,548 8 46 26 54 4 4 

3 1 2,675 9,961 1,127 15,744 7 34 9 40 2 3 
2 23,189 6,744 32,988 11,730 5 39 19 51 3 2 
3 20,932 20,372 21,402 21,098 6 34 17 44 3 2 
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Table H.2 Region wise summary of transportation mode selection directed towards hub k  for all problem sets 

Problem 
set 

Origin 
region 
( p ) 

Time-
period 
( t ) 

No. of road routes  No. of rail routes  No. of trucks (rakes) 

1k =  2k =  3k =  4k =  1k =  2k =  3k =  4k =  1k =  2k =  3k =  4k =  

Small 1 1 0 1 0 - 0 0 1 - 0 (0) 1,848 (0) 0 (3) - 
2 0 0 0 - 0 1 1 - 0 (0) 0 (6) 0 (6) - 

2 1 0 1 0 - 1 0 1 - 0 (1) 56 (0) 0 (2) - 
2 0 0 0 - 1 1 0 - 0 (2) 0 (3) 0 (0) - 

3 1 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 
2 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 

Medium 1 1 0 1 0 - 1 0 1 - 0 (10) 1,055 (0) 0 (6) - 
2 0 1 1 - 0 0 0 - 0 (0) 396 (0) 3,108 (0) - 
3 0 0 0 - 1 0 1 - 0 (2) 0 (0) 0 (6) - 

2 1 1 1 0 - 1 1 1 - 478 (12) 18 (1) 0 (6) - 
2 1 1 1 - 0 1 0 - 3,260 (0) 1,346 (1) 341 (0) - 
3 1 0 1 - 1 2 1 - 2,228 (4) 0 (16) 1,066 (1) - 

3 1 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 
2 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 
3 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 

Large 1 1 0 0 2 1 1 1 0 1 0 (1) 0 (6) 558 (0) 2,821 (2) 
2 0 2 1 1 1 0 1 1 0 (2) 970 (0) 435 (6) 481 (9) 
3 0 0 0 2 0 1 1 0 0 (0) 0 (10) 0 (2) 4,775 (0) 

2 1 0 1 1 0 1 0 1 1 0 (1) 1,379 (0) 148 (2) 0 (3) 
2 0 2 1 2 1 0 1 0 0 (1) 1,105 (0) 572 (11) 9 (0) 
3 1 1 1 1 1 1 0 1 597 (2) 1,418 (1) 59 (0) 100 (1) 

3 1 1 0 0 0 1 1 2 1 23 (2) 0 (2) 0 (2) 0 (1) 
2 1 1 1 2 1 1 0 1 48 (4) 1,834 (1) 349 (0) 15 (7) 
3 1 1 0 1 1 0 1 0 140 (14) 161 (0) 0 (1) 1,464 (0) 
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Table H.3 Region wise summary transportation mode selection in destination state for small and medium problem sets 

Problem 
set 

D-hub 
( m ) 

Time-
period 
( t ) 

No. of road routes directed 
towards region q  

No. of rail routes directed 
towards region q  

No. of trucks (rakes) directed 
towards region q  

Destination hubs 
initiating 
road/rail transport 

1q =  2q =  3q =  4q =  1q =  2q =  3q =  4q =  1q =  2q =  3q =  4q =  Road Rail 

Small 1 1 0 1 1 - 0 0 0 - 0 (0) 147 (0) 462 (0) - 1 0 
2 0 1 0 - 0 0 1 - 0 (0) 0 (0) 0 (5) - 1 1 

2 1 0 1 0 - 0 0 0 - 0 (0) 908 (0) 0 (0) - 1 0 
2 0 1 0 - 0 0 0 - 0 (0) 902 (0) 0 (0) - 1 0 

3 1 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 0 0 
2 0 0 0 - 0 0 0 - 0 (0) 0 (0) 0 (0) - 0 0 

Medium 1 1 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 
2 0 1 0 1 0 0 1 0 0 (0) 1038 (0) 0 (2) 6 (0) 1 1 
3 0 0 1 1 0 1 0 0 0 (0) 0 (1) 61 (0) 948 (0) 1 1 

2 1 0 0 1 1 0 1 0 0 0 (0) 0 (2) 8 (0) 215 (0) 1 1 
2 0 0 1 0 0 2 0 1 0 (0) 0 (6) 952 (0) 0 (4) 1 1 
3 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 

3 1 0 0 0 0 0 2 0 1 0 (0) 0 (3) 0 (0) 0 (1) 0 1 
2 0 0 1 0 0 1 0 0 0 (0) 0 (1) 611 (0) 0 (0) 1 1 
3 0 1 0 1 0 1 1 0 0 (0) 501 (3) 0 (2) 24 (0) 1 1 

4 1 0 1 0 0 0 1 1 0 0 (0) 330 (1) 0 (4) 0 (0) 1 1 
2 0 0 0 0 0 2 0 1 0 (0) 0 (2) 0 (0) 0 (2) 0 1 
3 0 2 0 1 0 0 0 0 0 (0) 835 (0) 0 (0) 1 (0) 1 0 

5 1 0 1 0 0 0 1 1 0 0 (0) 166 (1) 0 (1) 0 (0) 1 1 
2 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 
3 0 1 0 1 0 0 0 0 0 (0) 44 (0) 0 (0) 1 (0) 1 0 
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Table H.4 Region wise summary of transportation mode selection in destination state for large problem set 

D-hub 
( m ) 

Time-
period 
( t ) 

No. of road routes directed 
towards region q  

No. of rail routes directed 
towards region q  

No. of rakes or trucks directed towards 
region q  

No. of 
destination hubs 
initiating 
road/rail 
transport 

1q =  2q =  3q =  4q =  1q =  2q =  3q =  4q =  1q =  2q =  3q =  4q =  Road Rail 

1 1 0 0 0 2 0 2 0 1 0 (0) 0 (3) 0 (0) 247 (2) 1 1 
2 0 2 0 3 0 0 1 0 0 (0) 39 (0) 0 (4) 1,111 (0) 1 1 
3 0 1 0 1 0 1 1 2 0 (0) 229 (2) 0 (3) 1,347 (5) 1 1 

2 1 0 0 0 2 0 2 0 1 0 (0) 0 (6) 0 (0) 779 (1) 1 1 
2 0 1 0 1 0 1 0 2 0 (0) 1,681 (7) 0 (0) 272 (5) 1 1 
3 0 0 1 3 0 2 0 0 0 (0) 0 (6) 35 (0) 621 (0) 1 1 

3 1 0 0 0 1 0 1 1 1 0 (0) 0 (2) 0 (3) 120 (1) 1 1 
2 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 
3 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 

4 1 0 0 0 0 0 0 0 0 0 (0) 0 (0) 0 (0) 0 (0) 0 0 
2 0 1 1 0 0 1 0 3 0 (0) 104 (1) 740 (0) 0 (6) 1 1 
3 0 1 1 1 0 1 0 2 0 (0) 8 (1) 258 (0) 1 (2) 1 1 
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Table H.5 Inter-state transport rake allocation and destination hub location summary of sample pareto solution for all problem sets 

Problem 
set 

O-hub 
( k ) 

Time-
period 
( t ) 

Rail routes open between hubs k  and m  No. of rakes directed towards destination 
hub m  

Destination hubs open 

 ( mtw ) 

1m =  2m =  3m =  4m =  5m =  1m =  2m =  3m =  4m =  5m =  

Small 1 1 1 1 0 - - 1 1 0 - - 
11 1w = , 21 1w = , 31 0w = , 

12 1w = , 22 1w = , 32 0w = .  
2 1 1 0 - - 2 3 0 - - 

2 1 1 1 0 - - 6 3 0 - - 
2 1 1 0 - - 4 4 0 - - 

3 1 1 1 0 - - 1 2 0 - - 
2 1 1 0 - - 4 3 0 - - 

Medium 1 1 0 1 1 1 1 0 5 4 9 5 
11 0w = , 21 1w = , 31 1w = , 

41 1w = , 51 1w = , 21 1w = , 

22 1w = , 32 1w = , 42 1w = , 

52 0w = , 13 1w = , 23 0w = , 

33 1w = , 43 1w = , 53 1w = . 

2 1 1 1 1 0 1 8 1 5 0 
3 1 0 1 1 1 2 0 8 5 4 

2 1 0 1 1 1 1 0 4 1 1 1 
2 1 1 1 1 0 5 8 3 2 0 
3 1 0 1 1 1 8 0 5 4 3 

3 1 0 1 1 1 1 0 2 3 6 1 
2 1 1 1 1 0 6 6 4 1 0 
3 1 0 1 1 1 4 0 5 4 1 

Large 1 1 1 1 1 0 - 2 1 1 0 - 
11 1w = , 21 1w = , 31 1w = , 

41 0w = , 12 1w = , 22 1w = , 

32 0w = , 42 1w = , 13 1w = , 

23 1w = , 33 0w = , 43 1w = . 

2 1 1 0 1 - 1 3 0 3 - 
3 1 1 0 1 - 8 5 0 5 - 

2 1 1 1 1 0 - 3 8 3 0 - 
2 1 1 0 1 - 6 4 0 5 - 
3 1 1 0 1 - 7 7 0 2 - 

3 1 1 1 1 0 - 2 2 3 0 - 
2 1 1 0 1 - 3 14 0 3 - 
3 1 1 0 1 - 3 2 0 1 - 

4 1 1 1 1 0 - 4 7 7 0 - 
2 1 1 0 1 - 7 6 0 5 - 
3 1 1 0 1 - 14 10 0 6 - 
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