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Abstract

Magnetomotive optical coherence tomography (MM-OCT) is an important tool for the 

visualization and quantitative assessment of magnetic nanoparticles in tissues. In this study, we 

demonstrate the use of MM-OCT for quantitative measurement of magnetic iron oxide 

nanoparticle transport and concentration in ex vivo muscle, lung, and liver tissues. The effect of 

temperature on the dynamics of these nanoparticles is also analyzed. We observe that the rate of 

transport of nanoparticles in tissues is directly related to the elasticity of tissues, and describe how 

the origin of the MM-OCT signal is associated with nanoparticle binding. These results improve 

our understanding of how iron oxide nanoparticles behave dynamically in biological tissues, 

which has direct implications for medical and biological applications of targeted nanoparticles for 

contrast enhancement and therapy.

Index Terms

Iron oxide; magnetic nanoparticles (MNPs); magnetomotive; optical coherence tomography 

(OCT)

I. Introduction

Metallic nanoparticles have recently been demonstrated as combined targeting, diagnostic, 

and therapeutic agents in cancer treatment [1]–[7]. Various researches have demonstrated 
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the use of magnetic nanoparticles (MNPs) as contrast agents in various imaging modalities 

such as MRI [8]–[10] and optical coherence tomography (OCT) [11]–[13]. Efforts to design 

protocols for an effective in vivo therapeutic outcome rely on the knowledge of the 

nanoparticle localization, concentration, and transport through various tissue structures. 

Efficient transport of nanoparticles into tumor sites remains a critical issue in the application 

of nanoparticles for various therapeutic and diagnostic applications. A high-resolution 

noninvasive in vivo method to determine interstitial transport and concentration of 

nanoparticles does not currently exist. In recent years, optical methods have widely been 

explored as noninvasive tools for diagnostic applications for various disease conditions. 

Among these, OCT is one of the leading modalities for in vivo studies. OCT reveals tissue 

microstructure up to a few millimeters deep into biological tissues, and generates images 

based on the optical scattering properties of the cells and tissue.

A model of nanoparticle transport in tissues would be useful for providing more insight into 

various factors that affect the distribution of nanoparticles in nonvascular regions of tissue, 

as well as for providing information into the design of efficient drug delivery vehicles. There 

has been intensive research during the past few decades in the use of nanoscale particles 

(100 nm or less) in medicine, especially for delivering chemotherapeutic agents to cancer 

cells [14], [15]. Nanoscale devices carrying chemotherapeutic drugs could extravasate from 

blood vessels, diffuse through the tissue, and target and enter tumor cells. Drug delivery via 

nanoparticles offers significant advantages over traditional delivery via systemic bolus 

injection. Graf and Wittrup [15] have carried out a theoretical analysis of antibody 

penetration in tumor spheroids based on a diffusion model accounting for various factors 

like binding, degradation, and plasma clearance. Goodman et al. [14] have proposed a 

mathematical model for drift–diffusion of nanoparticles in a 3-D multicellular tumor 

spheroid structure and attempted to analyze various factors that influence the nanoparticle 

penetration. Furlani and Ng [16], [17] have developed an analytical model of magnetic 

nanoparticle transport through blood and their capture in microvasculatures where they use 

an external magnetic field to transport the nanoparticles.

OCT is a 3-D microstructural biomedical imaging modality that utilizes the coherence 

property of light to optically range light scattering structures [10]–[13], [18], [19]. Various 

types of contrast agents have been developed for OCT that may enhance its biomedical 

utility by enabling molecular imaging [10], [18]–[21]. Magnetomotive OCT (MM-OCT) is 

accomplished using an electromagnet that modulates a magnetic field within the tissue 

during OCT imaging [22]–[26]. This provides a mechanical displacement at the locations of 

MNPs in the tissue, which is observed as a shift in the OCT interferogram. MM-OCT was 

first demonstrated in a 3-D-engineered tissue scaffold containing a mixture of microparticle-

labeled and microparticle-unlabeled macrophage cells [23]. Using MM-OCT, imaging of 

MNPs in the digestive tract of an in vivo African frog tadpole was demonstrated [24]. The 

main drawback of this early system was the three-step acquisition process of acquiring two 

successive axial scans with the magnetic field OFF and a third with the field ON. This was 

necessary for the rejection of physiological motion for in vivo imaging, comparing the signal 

changes between the ON and OFF scans (magnetomotion) with those between the two OFF 
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scans (physiological motion). Also, this method only tracked the amplitude of the OCT 

interference signal.

Recently, an MM-OCT system using a spectral-domain OCT configuration that provides 

sufficient phase sensitivity for phase-resolved imaging has been demonstrated [25]. In this 

system, the magnetic gradient force is modulated sinusoidally during a B-mode image 

frame, and background rejection is accomplished by acquiring an a priori image frame with 

the magnetic field OFF. In this paper, we demonstrate the biological application of this 

technology in studying the dynamics of MNPs in biological tissues. We demonstrate the use 

of MM-OCT for quantitative measurements of MNP transport and concentration in ex vivo 

tissues.

II. Principles of Magnetomotion in Biological Tissues

In this section, we will first describe the basic concept of magnetomotion of MNPs in 

biological media, and how it is effectively exploited in an OCT system to obtain useful 

information about the media, as well as the nanoprobes. A short explanation of how OCT is 

used to detect magnetomotion, and how the data is collected and processed to produce 

images with magnetomotive contrast follows. A detailed theory and a theoretical model of 

the system assuming a homogeneous distribution of MNPs in the tissues is presented in 

earlier papers [23]–[25] published by our group.

A spectral-domain OCT system is used for the experiments to extract the magnetomotive 

signal from the sample. In our MM-OCT system, the magnetic field is applied using a 

solenoid, and imaging is performed on the sample immediately below the solenoid bore. 

Within the imaging volume of the sample, the radial components of the magnetic field are 

negligible and the magnetic field gradient is predominantly in the axial direction. In contrast 

to other solenoid geometries [23], use of an air-core solenoid with a central bore allows the 

OCT sample arm to be focused onto the sample through the central bore, thus allowing in 

vivo imaging and imaging of thick tissues.

We perform 2-D B-mode imaging of the sample twice, once with the field OFF and once 

with the field ON. 2-D data is acquired with one axis as the axial (z) depth direction and the 

other axis as the coupled transverse/temporal dimension. We can couple the mechanical 

excitation with the B-mode OCT scanning by modulating the magnetic field several cycles 

during the time taken to mechanically scan the imaging beam spot over one resolution point. 

It should be noted that the axial line acquisition rate must be sufficiently fast to meet the 

Nyquist criterion for sampling the modulating magnetic field frequency. Also, the 

magnetomotive signal must be separated from the optical scattering changes in the x-

dimension. These conditions can be met by following:

(1)

where fz is the axial (z) line acquisition rate, Δx is the transverse resolution of the OCT 

system, and v is the velocity of the transverse scan. The latter criterion requires that more 

than one cycle of the magnetic field be completed in the time it takes to transversely scan 
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across one point scatterer. By following this method, we are encoding the coupled spatial 

and temporal channel (x-/t-dimension) with different frequency bands of the same “image.” 

To reconstruct the MM-OCT image, raw image data is bandpass filtered (BPF) about fB with 

a bandwidth of v/Δx followed by an inverse Fourier transformation.

A 2-D Fourier transform of the spectral interference pattern after background subtraction of 

the reference field intensity would give the 2-D B-mode image. This complex analytical 

signal can be expressed in the form

(2)

where Senv (x, z) and ϕ(x, z) indicate the B-mode image in the absence of magnetomotion. 

When the displacement Δz is small compared to the coherence length lc, Senv is unchanged 

and Δz only affects the phase term. The second phase term is caused by the displacement of 

the sample in the elastic regime, due to the magnetomotive force. This can be expressed as

(3)

where the magnetic field is sinusoidally modulated in time, A is the maximum amplitude of 

the displacement, and φ is the mechanical phase lag. If the viscosity of the medium can be 

ignored, the value of φ will equal zero for a paramagnetic system (aligned motion) and π for 

a diamagnetic system (opposed motion). However, even in media with significant viscosity, 

one would expect to observe a shift of π when comparing para-and diamagnetic media. It 

has been found experimentally that most of the biological tissues are inherently diamagnetic 

in nature [27] giving a π phase lag. In this way, φ can be used to determine the direction of 

the magnetomotive force.

The magnetomotive terms can be extracted from the B-mode data by computing the 

complex argument and taking a derivative of (2)

(4)

Phase unwrapping is performed to bring the total phase change to within 2π. The derivative 

contributes by removing unwanted low-frequency noise. The magnetomotive term 

modulated at fB can thus be extracted by applying a BPF to the Fourier transform of D along 

the transverse x/coupled temporal dimension about fB with an appropriate passband to 

preserve spatial x variations. The mechanical phase lag φ(x, z) is similarly extracted by 

computing the argument of the BPF D. From the measured mechanical phase lag φ for a 

position in the tissue r ⃑, a normalized cosine filter f ̂ that suppresses diamagnetic signals has 

been employed pointwise to the extracted MM-OCT signal given by
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(5)

Thus, the background-rejected magnetomotive signal Sm m in decibels can be written as 

follows:

(6)

where DON and DOFF are the measurements according to (4) acquired with the magnetic 

field modulated ON and OFF, respectively, and f ̂ON and f ̂OFF are the mechanical phase 

filters using (5) with φ measured from DON and DOFF, respectively. Sm m (x, z) that 

represents the magnetomotive signal in decibels is then displayed directly as the MM-OCT 

image.

III. Materials and Methods

A. Nanoparticles and Tissues

MNPs from two different sources (Sigma-Aldrich 544884-25G and Ocean NanoTech, 

Springdale, AR, SHP-20) with similar properties were used for the studies reported in this 

paper. The first type of MNPs are approximately 20–30 nm in diameter, composed of pure 

magnetite (Fe3 O4), and are without any surface coating. They are easily miscible in epoxies 

and oil-based solvents, and were used for preparation of epoxy samples for studying MM-

OCT dynamics. The second type of MNPs are monodisperse ~20 nm nanoparticles 

composed of a combination of magnetite/maghemite core (exact ratio proprietary) and a 

polymer coating with a hydrophilic COOH-terminated outer surface. These MNPs are stable 

in aqueous solutions (including physiological saline solutions), and were used for the tissue 

distribution studies.

Tissues were acquired from Wistar–Furth female inbred rats (The Jackson Laboratory, Bar 

Harbor, ME). The animal care and handling was performed under a protocol approved by 

the Institutional Animal Care and Use Committee (IACUC), University of Illinois at 

Urbana-Champaign. After euthanasia, the internal organs and tissues relevant for the studies 

were harvested and stored at −80 °C before imaging. MM-OCT imaging sequences began 

immediately after thawing the tissues. The tissues were immersed in a saline solution with 

~5 mg/g COOH-MNPs for different time intervals at room temperature, rinsed vigorously in 

pure saline for less than 1 min, and imaged using MM-OCT. The time needed for each MM-

OCT image acquisition was ~8 s, and the delays between each incubation period were kept 

as short as possible. Every effort was made to image the same tissue surface region; 

however, exact micrometer-scale registration between successive images was not 

maintained. For temperature-dependence studies, the tissues were incubated with the MNP 

solution in a temperature-controlled bath kept at three different temperatures.
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B. Experimental Settings

A spectral-domain OCT system with a Ti:Al2 O3 femtosecond laser (KMLabs, Inc.) 

producing 800 nm light with a bandwidth of 120 nm (providing lc ~3 µm axial resolution) 

was used for these studies. The laser was pumped by a frequency-doubled Nd:YVO4 laser 

(Coherent, Inc.) with 4.5 W of 532 nm light. The broadband light was launched into a 

single-mode fiber interferometer that was divided into the sample arm and a stationary 

reference arm. The sample beam was steered using galvanometer-mounted mirrors placed 

one focal length above a 30-mm achromatic imaging lens (providing Δx ~12 µm transverse 

resolution). A water-cooled electromagnet driven by a 250 W power supply was used to 

achieve a magnetic field of ~0.08 T and gradient of ~15 T/m within the sample imaging 

volume. The sample was scanned by the light beam through the central bore of the solenoid. 

The interference of the reference and sample beams was measured with a spectrometer 

described previously [24], composed of a grating, imaging lens, and line camera (Piranha 2, 

Dalsa, Inc.) with a capability of 33 kHz line acquisition rates. The spectrometer resolution 

was designed to provide an optical imaging depth of 2 mm.

The magnetic modulation frequency fB varied between 50 and 100 Hz for different tissue 

types, based on the best response (highest A) achieved from these samples. A lower axial 

scan rate of 1 kHz was chosen to avoid excessive oversampling. The camera exposure time 

was 250 µs. The rms phase noise measured from a stationary tissue specimen at 1 kHz 

without transverse scanning was 0.2 rad. B-mode scans over 2.5 mm of the sample were 

performed with a scan velocity v of 0.625 mm/s, corresponding to a right-hand term in (1) of 

104 Hz, and thus, satisfying the criterion for fB > 52 Hz. Each frame consisted of 4000 

pixels in width × 2048 pixels in depth, taking 4 s to acquire. Each image was acquired twice: 

once with the magnetic field modulated and once with the field OFF.

MM-OCT images were generated according to (6). The entire processing was carried out on 

a MATLAB platform. Initially, the data collected from the line camera was resampled to 

provide S(ω) evenly sampled in frequency ω. Median filtering of Sm m was performed over 

23 µm × 23 µm. The BPF width was chosen to pass transverse features of Sm m up to a 

spatial frequency of 1/(32 µm). All images were downsampled by a factor of fz/fB along x for 

portability and cropped to 800 pixels in z to avoid edge effects near the bottom and top of 

the image.

IV. Results and Discussions

We have investigated samples in different material phases to explain the response of 

different biological samples to the MM-OCT system. The first curve in Fig. 1 represents a 

hypothetical response expected from the MM-OCT system to different material states of the 

samples under study. The starting point (leftmost point) is a suspension of MNPs in a 

medium with no elastic or viscous restoring force. Hence, any magnetomotive force on the 

suspended MNPs will not yield any significant MM-OCT signal from the sample. The next 

regime is a viscoelastic regime where the MNPs are suspended in a viscous medium.

In the viscoelastic regime, there is a viscous drag on the MNPs and some varying amount of 

viscoelastic forces acting on the particles. If the medium is diamagnetic by nature, this will 
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also oppose the magnetomotive force, but neither the media nor the MNPs will regain their 

initial positions after removing the magnetomotive force. Hence, we expect this region to 

give some amount of MM-OCT signal, but the signal would contain a variable phase lag 

associated with this material property regime. Because of this uncertainty, we believe that 

the MM-OCT signal in this material property regime is not reliably quantitative for 

determining the concentration of the scatterers.

The next regime is representative of an ideal Hookean system that comprises most elastic 

solids and biological tissues. Here, the MM-OCT signal is an accurate estimate of the 

nanoparticle concentration, and is also related to the elastic modulus of the material. We 

would measure the strongest MM-OCT signal if the sample was excited at the resonant 

frequency of the material corresponding to its elastic modulus. The end (right-most) portion 

of the curve represents an ideal hard plastic solid with high elastic modulus. No 

displacement of MNPs, and hence, no MM-OCT signals would be expected from samples in 

this high plasticity regime.

Experimentally, the starting point of this curve, shown in Fig. 1, has been verified by 

suspending the MNPs in a phosphate buffer solution. As postulated, we did not observe an 

MM-OCT signal from this medium. The second curve in Fig. 1 represents experimentally 

observed MM-OCT signals from epoxy samples (Embed 812 Epoxy kit, for electron 

microscopy studies) acquired while the epoxy was setting and hardening. The epoxy had a 

characteristic setting time of 12 h at a temperature of 90 °C. We used an MNP concentration 

of 2.5 mg/g of the epoxy mixture to prepare the sample. MM-OCT was performed at time 

intervals of 1 h on the samples incubated at 90 °C for 24 h. As the epoxy slowly set, the 

MNPs bound to the matrix and the MM-OCT signal from the sample increased, 

quantitatively representing the MNP concentration. As expected, the MM-OCT signal 

magnitude decreased as the material hardened, and decreased to <0.4 dB in 24 h, indicating 

that no significant MM-OCT signal was present from fully hardened epoxy, since no 

magnetomotion of MNPs was possible. Transmission electron microscopy (TEM) of an 

epoxy section showing the MNPs embedded in the epoxy matrix is shown in Fig. 2(a). We 

conclude from this study that a significant MM-OCT signal is observed only when the 

MNPs undergo their nanoscale displacements within the sample.

We performed MM-OCT on different tissues, as explained in Section III. Representative 

MM-OCT images of muscle and lung tissues at different time intervals are shown in Figs. 3 

and 4. Fig. 5 shows a comparative plot of the total MM-OCT signal intensity (in decibels) 

versus time for different tissues. Each data point represents an average over ten samples, and 

the error bars indicate the variation in data for different experimental observations. The 

results show that the time for obtaining an MM-OCT signal of ~5 dB from the whole sample 

is around 45–60 min for muscle tissue, and around 20 min for lung tissue, whereas liver 

tissue becomes saturated with MNPs within 3–5 min. The rat skin remained impenetrable to 

the iron oxide nanoparticles even after over 8 h of immersion. This impermeability of the 

skin to MNPs agrees with similar studies conducted by Zvyagin et al. [28] on zinc oxide 

nanoparticle penetration in human skin. In this study, rat skin was embedded in paraffin wax 

with only the outer skin surface exposed to the MNP solution. The pattern of penetration of 

MNPs in Fig. 5 resembles a drift–diffusion process [12] that essentially depends on a 
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number of factors such as concentration gradient, diffusion coefficient, the viscoelastic 

forces in the tissue environment, various binding and affinity forces, size of particles, 

temperature, time of exposure, and clearance of particles. A TEM image of a muscle tissue 

sample incubated with MNPs for 60 min is shown in Fig. 2(b). The TEM shows the 

presence of MNPs dispersed within the fibrous structures of the muscle tissue. Standard 

protocols were used to prepare muscle tissues for TEM without any specific staining to 

visualize the MNP. We expect that the MNPs that are dispersed within the tissues and are 

bound to cellular surfaces and within interstitial spaces.

We have also investigated the temperature dependence of penetration of MNPs in muscle 

tissue by observing the MM-OCT signals at different time intervals for 27 °C, 37 °C, and 48 

°C. The pattern of temperature dependence is plotted in Fig. 6. This shows that the rate of 

diffusion has a linear dependence on temperature. The result shows that the penetration and 

transport of MNPs is faster with increasing temperature, which corresponds to more of a 

temperature-dependent diffusion-like process.

We have found that the rate of transport of particles through different tissue types is directly 

related to their elastic modulus. Listed in Table I are the reported values of elastic moduli of 

various tissues from different animal models [29] and a comparison with our experimentally 

observed time for nanoparticle saturation in corresponding rat tissues. The penetration of 

MNPs is faster in tissues with lower elastic moduli. This supports the hypothesis that the 

MNP transport process follows a drift–diffusion model with the diffusion coefficient 

inversely proportional to the viscosity and/or the elastic modulus of the material.

We also observed a direct correlation between the elastic modulus of the tissue and the 

experimentally measured mechanical resonant frequency [30] of the magnetic field that 

produces the strongest MM-OCT signal (also listed in Table I). This resonant frequency is 

the natural frequency of oscillation of each particular type of tissue and varies strongly with 

the elastic modulus of the sample. As shown in Table I, stiffer samples show higher resonant 

frequencies. The embedded MNPs can act as dynamic nanoprobes or nanotransducers that 

are actuated externally using a magnetic field to evaluate the viscoelastic properties of the 

medium in which they are dispersed. Further studies are underway to characterize the 

behavior of these nanoprobes that are highly localized in viscoelastic media like phantoms 

and tissues. We believe that this method would find applications in real-time nondestructive 

analysis of tissues and various polymers.

Finally, as demonstrated in Fig. 1, our technique is not sensitive in the regime where the 

MNPs are unbound and rapidly diffusing through tissues. As diffusion progresses, the MNPs 

become bound to cellular surfaces and within the extracellular matrix due to various binding 

forces, and to a reduction in the concentration gradient. Hence, the MM-OCT signal from 

MNPs in tissue increases over time, and eventually reaches a saturation value, which is a 

quantitative measure of the bound MNPs in the tissue. Though the time- and temperature-

dependence studies support that the process follows a drift–diffusion model, the 

microenvironment of the MNPs with various binding affinities and viscoelastic forces also 

affect MM-OCT signal.
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V. Conclusion

MM-OCT provides a novel method for tracking MNPs in tissue at the microscale level. We 

have demonstrated imaging of diffusing MNPs in several types of ex vivo tissues. We were 

able to quantitatively estimate how the MNPs dynamically pass through tissues over time, 

based on the MM-OCT signal intensity observed from the tissues. We have also shown the 

effect of temperature on MNP transport in tissues that support a diffusion model. We have 

found that the rate of transport of MNPs in tissues is also directly related to the elastic 

properties of tissues. We conclude based on our experimental observations that transport of 

these MNPs in tissues follows a drift–diffusion model that depends on several parameters of 

the media such as viscosity, elastic modulus of tissues, temperature, concentration gradient, 

and binding factors. However, a comprehensive mathematical model of this entire process is 

complex and beyond the scope of this paper. We believe that these studies are highly 

relevant in knowing the actual localization and accumulation of functionalized MNPs 

targeted to active tumor sites. This ex vivo model will be helpful for understanding the 

dynamics of MNPs in vivo for future diagnostic and therapeutic oncology applications. 

Ongoing studies are investigating in vivo MM-OCT imaging of functionalized MNPs that 

were targeted to tumors in preclinical animal models. Currently, we are able to perform 

MM-OCT on anesthetized animals after exposing the tumors and internal organs to the 

focused OCT beam and magnetic field. Just as has been developed for internal OCT 

imaging, we are also developing new MM-OCT catheters and endoscopes to access internal 

organs for in vivo MM-OCT.

Although these studies are directed toward understanding the MNP dynamics in biological 

tissues, extensive research into other important aspects like biocompatibility, biostability, 

and systemic biodistribution are further needed for the complete understanding of the 

dynamics of these MNPs.
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Fig. 1. 
MM-OCT signal intensity as a function of time. A predicted response curve is compared 

with experimental data from a hardening epoxy sample and from MNPs suspended in 

phosphate buffer.
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Fig. 2. 
TEM images of (a) iron oxide nanoparticles (Sigma Aldrich) embedded in hardened epoxy 

and (b) iron oxide nanoparticles (Ocean Nanotech) diffused into muscle tissue. Note the 

different size scales between images, and the appearance of the polymer coating on the 

MNPs shown in (b).
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Fig. 3. 
MM-OCT images of muscle tissue acquired at intervals of 0, 25, 40, and 60 min after 

immersion in the MNP solution. The MM-OCT signal is shown, superimposed over the 

structural OCT signal. (Appear in color online with green channel representing MM-OCT 

signal and red channel representing OCT signal.)
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Fig. 4. 
MM-OCT images of lung tissue acquired at intervals of 0, 10, 13, and 20 min after 

immersion in the MNP solution. The MM-OCT signal is shown, superimposed over the 

structural OCT signal. (Appear in color online with green channel representing MM-OCT 

signal and red channel representing OCT signal.)
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Fig. 5. 
MM-OCT signal intensity as a function of time for different tissues.
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Fig. 6. 
Time versus temperature plot for MNP transport through muscle tissue. The vertical axis 

denotes the time taken for obtaining a saturated MM-OCT signal and horizontal axis shows 

the temperature in degree Celsius.
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TABLE I

Comparison of Observed MNP Transport Time With Reported Values of Elastic Modulus for Different Tissue 

Types Along With Measured MM-OCT Resonant Frequency

Tissue Elastic modulus [29] Penetration time in rat tissue Resonant frequency

Fat (Human) 17 Pa <1 min 45 Hz

Liver (Human) 640 Pa 5 min 56 Hz

Lungs (G. Pig) 5–6 kPa 20 min 90 Hz

Muscle (Rat) 12–100 kPa 60 min 100 Hz

Kidney (Swine) 25 kPa ------ 100 Hz
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