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ABSTRACT 

One of the challenges in formulating useful nanocomposites is creating materials that 

are both tough and strong. Here, we review results of computational studies on a new class of 

nanocomposites that exhibit these desirable properties. The fundamental unit in these 

materials is a polymer grafted nanoparticle (PGN), which encompasses a rigid core and a 

corona of end-grafted polymers. We focus on a concentrated solution of these PGNs; the 

solution is assumed to be a good solvent for the grafted chains, which are in the semi-dilute 

regime. The free ends of the grafted chains encompass chemically reactive groups. Hence, 

with the overlap of the coronas on neighboring nanoparticles, the reactive end groups can 

form labile or more stable (“permanent”) bonds, leading to the creation of a “dual cross-

linked” network. To predict the mechanical properties of these dual cross-linked PGN 

networks, we developed a multi-scale model that captures interactions occurring over the 

range of length and time scales that characterize the performance of the system. Namely, the 

model integrates the essential structural features of the polymer grafted nanoparticles, the 

interactions between the overlapping coronas, the kinetics of bond formation and rupture 

between the reactive end-groups and the response of the entire sample to mechanical 

deformation. Using this computational approach, we determined the effect of the labile bond 
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energy, the fraction of permanent bonds and the introduction of high-strength bonds on the 

ductility and toughness of the PGN network. Furthermore, we determined the strain recovery 

and self-healing behavior of the material after it was allowed to relax from an applied tensile 

force. Through these studies, we isolated critical parameters that control the mechanical 

response and rejuvenation of dual cross-linked PGN networks. Our findings allow researchers 

to understand how variations in these key parameters can lead to changes in the materials’ 

mechanical behavior and thus, can facilitate the fabrication of the next generation of 

nanocomposites with novel and technologically useful properties. 

 

Keywords:  Dual cross-linked networks, polymer grafted nanoparticles, self-healing 

nanocomposites, strain recovery. 
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1. Introduction 

 A diverse array of animals, from fish, reptiles and some mammals, can respond to 

predators by morphing their skin into a protective “armor” that shields them from harm.1 The 

advent of adaptive synthetic materials that dynamically form an analogous armor would 

significantly extend the lifetime and sustainability of manufactured goods. Namely, it would 

be highly beneficial to design coatings that respond to mechanical impact by self-organizing 

into a strong, tough layer that shields the underlying material from damage. Natural armor, 

such as the armadillo’s shell, can provide useful design concepts for the fabrication of such 

adaptive coatings. Notably, the armadillo’s skin encompasses two salient features.1 First, the 

animal’s outer skin is composed of rigid segments that are interconnected by soft 

biopolymers; these soft components impart the structure with vital flexibility and a means of 

absorbing and dissipating energy. Second, the entire dermal armor encompasses a complex 

hierarchical structure, providing reinforcement over a range of length scales. Based on the 

performance of the armadillo’s skin, it could be argued that flexibility and structural 

hierarchy are key components for creating synthetic materials that can emulate the desirable 

properties of natural armor. 
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 Here, we describe our recent computational studies 2-4 on designing materials that 

encompass these fundamental elements and thus, exhibit remarkable strength and toughness 

in response to mechanical deformation. As in the above example, our system contains both 

hard and soft components; the fundamental unit is a hard, spherical nanoparticle that is coated 

with end-grafted polymers, which constitute the soft component. This entire unit is referred to 

as a polymer-grafted nanoparticle or PGN. Importantly, the free ends of the grafted polymers 

contain chemically reactive groups, which bind the PGNs into a macroscopic network. Figure 

1 illustrates these different components and highlights the hierarchical structure of the 

material.   

Place Figure 1 here. 

 As seen at the top of Fig. 1, the reactive end groups constitute the smallest length 

scale in the system. These species enable the polymer “arms” on neighboring PGNs to form 

either weak, labile bonds, which readily reform after they have broken, or stronger, more 

“permanent” bonds, which are less chemically reactive and thus, do not reform after they are 

ruptured. At this length scale, our model details the kinetics of bond formation and rupture 

between the reactive end groups. At the next, larger length scale, the model describes the 

polymeric corona surrounding the nanoparticles, capturing the interactions between 

neighboring coronas. The interconnected macroscopic sample forms the largest length scale 

in the system and at this length scale, the model describes the global response of the network 

to an applied force. As will be seen below, the components of this system are highly 

integrated, so that the rupture and formation of bonds between the reactive end groups 

controls the response of the entire sample to large-scale deformation and imbues the material 

with superior mechanical properties.   

 In these studies, we specifically focused on PGN networks prepared by cross-linking a 

concentrated solution of PGNs; the solution is assumed to be a good solvent for the grafted 
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chains, which are in the semi-dilute regime. After cross-linking, the system behaves as a soft 

solid. The presence of the solvent makes these composites relatively new materials;5,6 

previous experimental studies involving interconnected, coated nanoparticles focused 

primarily on neat systems or those mixed with free polymer chains.7-15 The solvent in such 

systems facilitates the motion of the chains and nanoparticles that, in turn, enables the 

material to dynamically reconfigure in response to the deformations. As indicated above, the 

particles are bound by both labile and permanent bonds and thus, we say that the system 

displays “dual cross-linking”. In this respect, the PGN networks resemble the double-network 

gels,16,17 which involve both strong and weak connections to enhance the strength and 

toughness of the materials. On the other hand, the double-network gels involve a distinct 

topology, which consists of interpenetrating networks of stronger and weaker chains that are 

cross-linked randomly and break irreversibly.18,19 Thus, these gels are quite different from the 

networks considered here. 

 Below, we first summarize our multi-scale computational approach for modeling the 

PGN networks and then discuss the specific studies we undertook to optimize the design of 

composites that show a remarkable ability to recover from mechanical deformation. In 

particular, we first examine how the energies of the labile bonds and the fraction of 

permanent bonds affect the response of the materials to tensile deformation. With this 

information in hand, we then examine how the system responds when the applied force is 

released and thereby determine the optimal conditions for achieving maximal recovery of the 

materials properties. 

2. Modeling polymer grafted nanoparticle networks 

2.1. Theoretical and computational approach 

In our model for the dual cross-linked PGNs,2-4 the individual nanoparticles are 

composed of a rigid core of radius 0r  and a corona of grafted polymers whose thickness is 
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given by 0qrH  . To capture the interactions in this system, our model integrates the 

essential structural characteristics of the polymer-grafted nanoparticles, the interactions 

between the overlapping coronas, and the kinetics of bond formation and rupture between the 

reactive groups on the chain ends. Here, we provide a brief description of this multi-scale 

approach. The length scales in the ensuing discussion are given with respect to the core radius 

0r  and hence, a PGN has a core radius of unity and corona thickness q . 

 The interaction between two PGNs is described by a sum of energy potentials 

linkcohrepint UUUU  . The first term characterizes the repulsive interactions between the 

coated spherical particles in a good solvent. We assume that the repulsion between the 

particles is due solely to the interaction between the thickly grafted corona chains. At a small 

degree of overlap between the coronas, the repulsion between two PGNs is similar to that 

between two multi-arm star polymers having the same size and number of arms as the PGNs. 

Thus, we describe the repulsion between the coated particles through the effective interaction 

potential between multi-arm star polymers given by:20,21 

Urep (R)

kBT


5

18
f

3 / 2 
ln(R /)  (1 f

1/ 2 /2)1 , R 

(1 f
1/ 2 /2)1( /R)exp[ f

1/ 2(R ) /2] , R 





 (1) 

Here, f  is the number of arms, R is the center-to-center inter-particle separation and 

12/1 )21)(1(2  fq  is the range 21,22 of the potential. The attractive cohesive interaction 

between the coated nanoparticles is described by a pseudo-potential  RUcoh , which is 

constant for small values of R and balances the repulsion at the corona edges to allow for 

overlap between neighboring coronas.23 It is chosen to have the following form,23: 

1]}/)exp[(1{)(  BARCRU coh       (2) 
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where C is an energy scale, and A and B are length scales that determine the respective 

location and width of the attractive well in the potential. Notably, the shape of this potential 

well has a flat bottom and smooth wall. 

The term linkU  describes the attractive interaction between the particles linked by the 

bonded polymer arms. The attractive force acting between the two bonded particles is: 

 rrNrF blink )()(                                                                 (3) 

where bN  is the number of bonds formed between the given pair of particles, and )(r  is the 

spring stiffness, which increases progressively with the chain end-to-end distance 2 Rr . 

We use the following equation, obtained for a worm-like chain24, to calculate )(r : 

 }])2(1[21{)( 2222
0

  LrRTkr B                            (4) 

Here, L2  is the contour length of the chain formed by bonding two polymer arms of length 

L , LlR p42
0   is the mean-square end-to-end distance of the latter chain, and pl  is its 

persistence length.24 At small deformations Lr 2 , eq. (4) gives the spring constant of a 

Gaussian chain: 2
03)(  RTkr B . The chain stiffens significantly ( )(r  increases 

noticeably) when r  becomes comparable to L2 (see eq. (4)). 

The value of bN  in eq. (3) depends on the extent of overlap between the coronas of 

the nanoparticles, and on the kinetics of bond formation and rupture.2-4 We use the Bell 

model 25-28 to describe the rupture and reformation of individual bonds. In our model, both 

the permanent (p) and labile (l) bonds can rupture, but only the labile bonds can reform after 

they are ruptured. The rupture rate increases when the force F  is applied to the bond, so that 

)exp( 0
),(

0
),(

Fkk
lp

r
lp

r  ,25-28 where )/exp( ),(
0

),(),(
0 TkUk B

lplplp
r   is the rupture rate at no force, 

and ),(
0

lp
U  is the bond energy. For reversible bond formation in the zero force limit, the ratio 

of the formation to rupture rate is given by )/exp(/ )(
0

)(
0

)(
0 TkUkk B

ll
r

l
f  .26,27 In general, the rate 
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constant of bond formation decreases under an applied force.28 For simplicity, we neglect the 

dependence of the rate constant of bond formation on force and consider it to be constant, 

k0 f

(l ).2-4  

 The evolution of the number of bonds is described by:2-4 

 2])()[()()( bmaxfcbr
b NRNRkRPNRk

dt

dN
  . (5) 

where )(RNmax  is the maximal number of bonds that can be formed between two 

nanoparticles at the center-to-center distance R , and )(RPc  is the probability of contact of 

two chain ends. For a single polymer arm, the probability p  to have a bond with an arm 

belonging to a neighboring PGN is described by an equation similar to eq. (5): 

 )1]()()[()()( pNRNRkRPpRk
dt

dp
bmaxfcr   . (6) 

At a given R , both )(RNmax  and )(RPc  depend on the number of grafted chains per particle 

f  and the corona thickness q . We make the simplifying assumption that there is negligible 

distortion of the two coronas when they overlap. Then, purely geometric considerations are 

used to determine the value of )(RNmax .2-4  

 The probability of contact between chain ends, )(RPc , depends on the free-end 

distribution in the corona of the spherical PGNs that is characterized by the distribution 

function )(rg , with r  being the distance from the particle center. The function )(RPc  is 

calculated by numerical integration of the product of the individual free-end distributions in 

each corona over the volume of overlap, i.e., rrrR dggRP
overlap

c   |)(||)(|)( . We use 

the expression for )(rg  obtained from self-consistent field theory for a single spherical PGN 

in a good solvent.29 The same self-consistent field theory is used to determine the contour 
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length L  at given values of nanoparticle radius 0r , number of grafted arms f , and corona 

thickness 0rqH  .2-4  

The dynamics of the system is assumed to be in the overdamped regime, with the 

equation of motion of each particle being: totdtd Fx / , where  is the mobility and totF  is 

the total force on the polymer-grafted particle. Here, extinttot U FxF  / , where extF is 

the external force acting on the edge particles of the particle array. The equation of motion is 

solved numerically in two steps since the polymer spring force within totF  depends on the 

number of bonds between particles. In the first step, we determine the number of bonds at any 

given time, )(tNb , by numerically evolving eq. (5) through an explicit Euler scheme. Note 

that the numerical evolution of eq. (5) yields a real number, whereas the number of bonds 

)(tNb  should take discrete integer values. In order to determine the integer value, we 

compare the fractional part of the numerical result, )}({ tNb , with a random number   

distributed uniformly between 0 and 1. If )}({ tNb , then we truncate the result; otherwise, 

we increment the integer part of the result by 1. In the second step, we use this value to 

calculate the spring force (see eq. (3)) in the above equation of motion and then numerically 

integrate this dynamic equation using a fourth-order Runge-Kutta algorithm. 

2.2. Initial setup and model parameters 

 The equations describe three-dimensional spherical nanoparticles with a 3D corona of 

chains. We solved these equations in 2D, representing a plane through this material. The 

initial state of the system is generated using the following five-step procedure. In the first 

step, the nanoparticles are placed in an array such that their centers are separated by a 

horizontal spacing of )1(8.1 q  and a vertical spacing of )1(62.1 q , with a horizontal offset 

position of )1(855.0 q  between adjacent rows. In the second step, we hold the sample in the 
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initial configuration for 0
3104 T  units of time to allow for the formation of the labile bonds. 

In the third step, we equilibrate the sample by allowing the particles to move for a period of 

time equal to 0
3106 T . During equilibration, the stressed labile bonds are broken and new 

bonds are formed between the adjacent PGNs according to eq. (5). The equilibration process 

was monitored through the evolution of the average number of labile bonds and the sample 

length. We observed that the equilibration was essentially complete after the first 0
310 T  of 

the equilibration time. During the remainder of equilibration step, the number of labile bonds 

and sample length changed by less than 1%. In the equilibrated sample, the PGNs formed a 

hexagonal lattice (as observed in recent experimental studies on a comparable system 13). 

This hexagonal lattice is a stable configuration and alternative initial configurations of square 

and face centered square lattices spontaneously transformed to the hexagonal lattice during 

equilibration. In the fourth step, we establish the permanent bonds with the probability P . In 

this step, if two particles are linked with bN  bonds, then with the probability P , one of the 

bonds is designated as “permanent”, so that the two particles become linked with ( 1bN ) 

labile bonds and one permanent bond. In this fifth step, the resultant sample composed of a 

dual-network of permanent and labile bonds is equilibrated for 0
410 T  and then subject to 

tensile deformation by stretching at a constant velocity of 3.55 nm/s. The latter value of 

velocity is similar to that used in single molecule pulling experiments.30 

The model parameters used in the simulations are listed in Table 1. For example, we 

considered a particle of core radius r0  50  nm with f 156  polymer chains grafted onto its 

surface such that the corona of grafted arms is of thickness H  qr0. The value of f  is used to 

determine the strength of repulsion (see eq. (1)) and the extent of bond formation between 

any two interacting particles through )(RNmax (see eq.(5)). In eq.(2), we set A 1.15 , 

08.0B , and C  60kBT ; at these values, the equilibrium distance between an isolated pair 
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of PGNs without interconnecting bonds corresponds to %1~  corona overlap. (The overlap 

increases in the presence of bonds between the polymer arms.)  

Place Table 1 here. 

We examined labile bond energies, )(
0
lU that varied from 33 to 39 kBT and set the 

permanent bond energies, )(
0

p
U , to 45 kBT. These bond energies lie in the range relevant to 

disulfide bonds,30-35 which can undergo exchange and “shuffling” reactions that enable the 

material to exhibit substantial structural rearrangements,36,37 which in turn can impart self-

healing behavior in polymer networks.38-40  In the final example, we considered the effect of 

adding high-strength bonds (corresponding to bond energies of 100 kBT ) to the dual cross-

linked network, and in this manner, designed materials that exhibit remarkable resistance to 

deformation. 

2.3. Bond rupture between an isolated pair of particles 

The response of the dual cross-linked PGN networks to mechanical deformations and 

the ultimate properties of the networks (e.g., strain at break and toughness) depend on the 

dynamics of breaking the strained inter-particle bonds. By considering the behavior of an 

isolated pair of interconnected PGNs, we can obtain valuable insight into the effect of various 

structural or dynamical features on the bond breakage and hence, the mechanical behavior of 

the samples. To this end, we considered the rates of rupture for a single bond, dtdp / , as 

function of strain   calculated according to eq. (6) for a system of two PGNs, which are 

pulled apart with a constant velocity. Here, the strain   is calculated as the ratio of the change 

in the center-to-center distance between the particles to the equilibrium particle separation. 

Figure 2 shows the rates of rupture for the weaker labile ( TkU B

l 33)(
0  , red line), stronger 

labile ( )(
0

lU TkB39 , blue line) and the permanent ( TkU B
p 45)(

0  , black lines) bonds. 

Specifically, Fig. 2a shows the rupture rates at the corona thicknesses of q 0.75 and 1.25 
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and the velocity of 0001.0 vv  . As can be seen, the corona thickness (chain length) has very 

little effect on the rate of rupture for the weaker labile bonds, whereas the stronger labile 

bonds and permanent bonds break at a notably larger strain within the thicker corona. Figure 

2b shows the rate of rupturing a single bond as two PGNs are pulled apart at two different 

velocities and the corona thickness of q 0.75. The dashed and solid lines in Fig 2b 

correspond to the velocities of v 0.001 and 0005.0 v , respectively, and show that the bonds 

rupture at larger strains as the velocity of pulling increases. 

Place Figure 2 here. 

We also compared the rupture behavior of labile ( TkU B
l 37)(

0  ), permanent 

( TkU B
p 45)(

0  ), and high-strength ( TkB100 ) bonds by focusing on a single pair of particles, 

which have the corona of thickness q 0.75 and are pulled apart at a constant velocity of 

0001.0 vv  . First, we used eq. (6) to obtain the bond rupture rate, )/( dtdp , as a function of 

strain,  , for a single bond of these different types (Fig 3a). Notably, the high-strength bonds 

rupture only at strains that are significantly higher and distributed within a narrower range of 

  than the strains at break for the labile and permanent bonds. Then, using the simulation 

approach described above, we determined the normalized total force as a function of strain 

for a pair of particles that are initially connected by all three bond types and placed at the 

equilibrium separation distance. As shown in Fig. 3b, small strains are sufficient to rupture 

multiple labile bonds, with the last labile bond failing at 84.0 . The permanent bond 

survives up to a much higher strain of 95.1 . Finally, the high-strength bond ruptures at a 

large strain of 86.3 . Figures 3a and 3b demonstrate that the strains at break obtained in 

the simulations (Fig. 3b) are similar to the single bond predictions obtained by solving eq. 

(6). Moreover, given that )/( dtdp  for the high-strength bond is negligibly small at the 

strains leading to the rupture of labile and permanent bonds, it is a reasonable to treat the 
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high-strength bonds as unbreakable in our simulations. The latter simplifying assumption is 

used to obtain the results discussed further below. 

Place Figure 3 here. 

3. Ductility and toughness of dual cross-linked PGNs 

 Using the simulations described above, we analyzed the material’s response to a 

tensile deformation, where the sample is stretched at a constant velocity (strain-controlled 

deformation). 2,4 In particular, we determined the resulting force, F , on the sample and the 

number of bonds per particle as a function of the strain,  . The strain   is calculated as the 

ratio of the extension of the sample to the original length. The velocity at which the sample is 

stretched is similar to the values used in single molecule pulling experiments.30 The ductility 

of the sample is characterized by the strain at break, b , which is determined as the strain 

where the force required for deformation exhibits a sharp drop, indicating that the sample has 

fractured into separate sections. The work done by the external force to fracture the sample 

(work-to-break) is a measure of the toughness of the material. We defined toughness, W , as 

the work-to-break per particle. W  is determined by integrating the force-extension curve, and 

dividing the resulting work by the number of nanoparticles in the sample, PGNN . 

The behavior of the dual cross-linked PGNs was found to be highly dependent on the 

strength of the labile bonds and the fraction of permanent bonds within the network. The 

energies of the labile bonds were chosen so that for the weaker labile bonds ( TkU B
l 33)(

0  ), 

the bond rupture rate is of the same order of magnitude as the tensile deformation strain rate, 

whereas for the stronger labile bonds ( TkU B
l 39)(

0  ), the rupture rate is approximately two 

orders of magnitude lower than the strain rate. As described in the previous section, for 

10  P , the inter-particle links encompass a single permanent bond in addition to the 

existing labile bonds. The energy of the permanent bond was taken to be TkU B
p 45)(

0  , 
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which corresponds to a bond rupture rate that is approximately five orders of magnitude 

lower than the strain rate. 

We first examined the material properties of dual cross-linked PGNs that have a 

corona thickness of 75.0q  and are subjected to a strain-controlled tensile deformation 

applied at a constant velocity of 3100.1 v  (corresponding to roughly 3.55 nm/s). Figures 

4a and 4b show the respective force-strain curves for the samples having the weaker 

( TkU B
l 33)(

0  ) and stronger ( TkU B
l 39)(

0  ) labile bonds at the fractions of permanent 

bonds of P = 0, 0.6, and 1. Each curve corresponds to a single run of the simulations. The 

arrows pointing downwards indicate sample breakage.  

Place Figure 4 here. 

 Figures 4a and 4b indicate that the behavior of the dual cross-linked PGNs under 

tensile deformation is similar to that of ductile polymeric materials.41,42 Namely, at the 

smaller strains, dual cross-linked PGNs behave as elastic materials. At a strain of about 15-

20%, the samples reach a yield point, after which the force F  decreases. (Recall that this 

force represents the resistance of the material to deformation.) After the yield point, the 

material exhibits two distinct behaviors, which depend quite markedly on P . Specifically, 

the force can reach a local minimum and then increases before the breakage, as seen in at Fig 

4a at P = 0.6 and 1 and in Fig 4b at P = 1. The latter force-strain behavior is characteristic of 

polymeric materials that exhibit cold-drawing and necking.41,42 Alternatively, the force can 

continue to decrease until the sample breaks, as seen in Fig. 4a at P = 0 and Fig. 4b at P = 0 

and 0.6.  

Figures 4a and 4b also reveal the significant effect that the energy of labile bonds has 

on the mechanical performance of dual cross-linked PGNs. The weaker labile bonds cannot 

withstand deformation without the presence of permanent bonds; namely, the force F  varies 

around some low value at 0P  (Fig. 4a). The sample becomes elastic only after a sufficient 
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amount of permanent bonds is added, so that at 1P , the yield strain and force are about 

15% and 10F0, respectively. In contrast, the sample having the stronger labile bonds 

with 0P  exhibits the yield point at 20% strain, and the force at yield is of 038FF   (Fig 

4b). Introducing the permanent cross-links to the PGNs linked by the stronger labile bonds 

increases the yield force up to 050FF   at 1P , and modifies the post-yield behavior so 

that the sample exhibits quite pronounced cold-drawing/necking at 1P  (Fig 4b).  

From plots such as those in Fig 4, we obtained the results in Fig 5 that show the strain 

at break b  (Fig. 5a) and toughness W  (Fig 5b) of the samples, which contain the weaker 

(curves 1) and stronger (curves 2) labile bonds, as functions of the fraction of permanent 

bonds P . The data points and error bars shown in Fig 5 were obtained by averaging over 

eight independent simulation runs. By contrasting curves 1 and 2 in the plots in Fig. 5, it is 

clear that the presence of the permanent cross-links is crucial for improving mechanical 

performance if the labile bonds are weak. At lower fractions of permanent bonds, the PGNs 

having the weaker labile bonds exhibit a strain at break of about 0.25 (curve 1 in Fig. 5a at 

2.0P ) and very low toughness (curve 1 in Fig. 5b at 4.00  P ). At higher values of P , 

the permanent bonds form an elastic skeleton in the latter system that leads to a notable 

improvement in the material properties. Namely, ductility of the system having the weaker 

labile bonds increases to 0.1b  at 5.0P , and toughness of the system exhibits an 

increase from 001 rFW   at 5.0P  to 005.3 rFW   at 1P . 

Place Figure 5 here. 

In contrast, the PGNs linked with the stronger labile bonds produce a ductile, tough 

material even in the absence of the permanent bonds, i.e., at 0P (see curves 2 in Fig. 5). 

The introduction of permanent bonds into the system does not affect the strain at break, 
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which remains at 0.1b  for 10  P . The permanent bonds, however, do improve the 

toughness of the material; namely, 007 rFW   at 0P  is increased to  0011 rFW   at 1P .  

It is noteworthy that at 1P , the toughness of the sample with the stronger labile 

bonds is three times greater than that of the sample with the weaker labile bonds (Fig 5b), 

whereas the strain at break is the same in the two systems (Fig 5a). This behavior, as well as 

the overall effect of dual cross-linking on the mechanical properties of PGNs, can be better 

understood from the more detailed analyses we performed on the materials’ tensile behavior, 

as discussed below.  

 In the course of sample deformation, the rupture of stressed labile bonds takes place 

simultaneously with the formation of new bonds within the overlapped coronas. Figures 6a 

and 6b show the respective numbers of labile bonds per particle in the systems having the 

weaker and stronger labile bonds as functions of the strain  . Initially, )(l
b

N  drops upon the 

tensile deformation of a sample. Then, after the sample yields, the number of bonds exhibits 

an increase; the latter behavior is especially noticeable in the system having the stronger 

labile bonds (Fig 6b). The increase in 
)(l

b
N indicates that the material is capable of self-

healing, particularly in the sample with the stronger labile bonds.   

Place Figure 6 here. 

 Figures 6a and 6b show that the number of labile bonds in the dual cross-linked PGNs 

is quite large. Specifically, at a strain of 50% and 1P , there are about 11 labile bonds per 

one particle in the case of weaker bonds (Fig 6a), and about 20 labile bonds/particle in the 

case of stronger bonds (Fig 6b). Besides the labile bonds, all the PGNs are linked by the 

permanent bonds at 1P . Figure 6c reveals that the relative contributions of the labile and 

permanent bonds to the force F  are different and depend on the strength of labile bonds. In 

Fig 6c, the force-strain curves for the dual cross-linked PGNs at 1P  are plotted together 
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with a curve for a system labeled “permanent only” where the links between particles are 

comprised solely of a single permanent bond. The latter system was prepared using the same 

procedure as describe above, but the formation of the labile bonds was prohibited both 

initially and in the course of deformation.  

It is evident from Fig 6c that the weaker labile bonds do not contribute to the force as 

curve 1 and the “permanent only” plots effectively coincide. On the other hand, the 

contribution of the stronger labile bonds to F  is quite remarkable (as can be seen by 

comparing the blue line with the red and black lines in Fig. 6c). Not all the stronger labile 

bonds, however, contribute to the force. The latter observation follows from Fig 6d, which 

shows the same force-strain curves as in Fig 6c but after normalization by the total number of 

bonds in the system, bNF / . As can be seen in Fig 6d, the force per one bond is lower in the 

dual cross-linked systems than that in the system containing only the permanent bonds. 

 Figures 6c and 6d indicate that the strain at break is controlled mostly by the 

permanent bonds. Indeed, after averaging over 8 runs, the values of b  for the systems shown 

in Fig. 6c and 6d were essentially equal. Namely, 04.095.0 b  in the case of permanent 

bonds only, and 06.007.1 b  and 08.00.1   in the respective cases of weaker and 

stronger labile bonds at 1P . These observations help explain the 1P  curves in Fig. 5a, 

which show that the strain at break is approximately the same in the two systems involving 

labile bonds. 

We obtained further physical insight into the data in Fig 6 by examining snapshots 

from simulations of the materials undergoing tensile deformation. Figure 7 shows samples 

containing the weaker (Fig. 7a) and stronger labile (Fig. 7b) bonds at 1P  for strains of   

0.95. These snapshots show just the particles and the labile bonds; for clarity, the permanent 

bonds are not displayed. The number of labile bonds in a link is indicated by the color code in 

Fig 7c.  
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Place Figure 7 here. 

Figure 7 reveals that the weaker labile bonds break easily in the direction of the 

tensile deformation; as can be seen, there are only a few horizontal links in Fig 7a. This 

tensile deformation is accompanied by the contraction of the sample in the transverse 

direction. As a result, the newly formed labile bonds are normal to the direction of stretching, 

so they do not contribute to the tensile force. At  0.95, the surviving weaker labile bonds 

form the prominent vertical “stripes”. 

The total number and distribution of stronger labile bonds in Fig 7b are quite different 

from the picture seen in Fig 7a. Specifically, Fig. 7b reveals that there are still many labile 

bonds along the stretching direction at  0.95 and the network is still dense relative to that 

formed by the weaker labile bonds (Fig. 7a). The bonds seen in Fig. 7b give rise to the large 

tensile forces observed in Fig. 6c for TkU B
l 39)(

0  .  

Finally, we note that samples having the weaker and stronger labile bonds exhibit 

different modes of failure. In the case of the weaker bonds, the sample fractures 

perpendicular to the direction of stretching (not shown). The sample having the stronger 

labile bonds breaks due to the formation and growth of a void, as indicated by the arrows in 

Fig. 7b. 

4. Improving tensile properties through addition of high-strength bonds 

Building on the above studies, we introduced a third type of bonding interaction into 

the dual cross-linked PGN networks in an attempt to enhance the materials’ resistance to 

significant mechanical deformation. Specifically, we introduced a fraction of high-strength 

interconnections between the nanoparticles, modeling polymer arms that are bound by bond 

energies of 100 TkB , which is comparable to a carbon-carbon bond. As discussed in Section 

2.3, in our simulations, these high-strength bonds can be assumed to be unbreakable. By 

focusing on the structural rearrangements within the material, we found that the addition of 
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just a small fraction of these unbreakable bonds can lead to a new mode of failure, which then 

led to dramatically improved mechanical properties and provided a powerful means of 

mitigating the effects of damage. 

In these simulations, we assigned the probability of an unbreakable chain between 

two bonded particles to be nP , with at most one unbreakable chain per pair. We varied this 

probability in the range 3.00  nP , aiming is to keep nP  sufficiently low that the randomly 

placed unbreakable bonds did not form a percolating network in the system. To distinguish 

between the different strong bonds in the networks, in this section we use pP  to describe the 

probability of a permanent bond ( TkU B
p 45)(

0  ) between nanoparticles (originally defined 

as P in the previous section). Figures 8a and 8b show the strain at break and toughness for a 

series of samples with unbreakable chains. Here, we specify the quantity, tP , which 

represents the sum of pP  and nP . The red curve in Fig. 8 characterizes samples where  

1pP  and nP is varied in the range specified above; hence, in these samples, 1 tP 3.1 . 

For comparison, we also display a series of samples where tP  varies in the same range, but 

here the system encompasses just permanent bonds with 3.11  pP and no unbreakable 

bonds (blue curve). 

Place Figure 8 here. 

 The data for samples lacking the unbreakable chains ( 0nP ) show that the strain at 

break remained approximately constant for increasing pP  (see Fig. 8a). There was, however, 

a slight increase in toughness with increases in pP  (see Fig. 8b).  

In contrast, the samples encompassing the unbreakable chains (with 1pP ) display a 

systematic increase for both b  and W  with increases in nP . The standard deviations around 

the average values, however, became progressively larger for larger values of nP  as seen in 
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Fig 8; thus, a significant improvement in mechanical properties was only achieved for 

25.0nP . Notably, for samples with the largest fraction of unbreakable chains ( 3.0nP ), 

the average values of b  and W  showed a two-fold increase relative to an equivalent system 

without unbreakable connections 3.1( pP and )0nP . 

  To understand the origin of the large standard deviations in the above red curves, we 

determined the histograms shown in Fig. 9a for the strain at break and in Fig. 9b for the 

toughness. The plots showcase the effect of adding unbreakable chains at 15.0nP  by 

displaying three sets of data: the base case 1pP , 0nP (the green bars), an increased 

number of permanent bonds 15.1pP , 0nP (the blue bars), along with an equivalent set 

with unbreakable chains 1pP , 15.0nP (the red bars). By comparing the green and blue 

bars, it is clear that the additional permanent bonds produce no difference in b  and only a 

marginal improvement to W ; the distribution profiles for both measurements are similar in 

width and shape. On the other hand, the introduction of unbreakable chains has a large 

impact, considerably widening the distribution for both b  and W . In fact, the inclusion of 

unbreakable bonds produces some samples that are able to survive strains far in excess of any 

networks without such bonds. In addition, there is a clear reduction in samples that break at 

small strain. 

Place Figure 9 here. 

 To gain further insight into the failure behavior, we examined snapshots of several 

networks. Figure 10 displays a series of snapshots at 45.0 , 90.0 , 35.1 , and 

80.1  for a network encompassing unbreakable chains that survives to a relatively large 

strain. At low strain, 45.0 , the network is still reasonably intact; by the next level of 

strain, 90.0 , several voids have formed within the structure. At further strain,  35.1 , 

the region labeled “A” has been severed, but the network remains connected via a single 
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thread. Finally, the sample ruptures at 80.1  with the label “B” pinpointing the bond that 

fails; by this point, the single thread that contains predominantly unbreakable links has grown 

in terms of length and the number of critical particles involved in the bridge. The formation 

of such thin filaments enables the network to potentially withstand high strain; this is a 

distinctive mode of failure and is not observed in networks without unbreakable chains. It is 

important to note that for larger sample sizes, the system will contain not just one long-lived 

interconnecting strand, but many such threads. The combined effect of these multiple strands 

would dramatically extend the value of b  relative to materials that do not contain the 

unbreakable bonds. 

Place Figure 10 here. 

5. Strain recovery and self-healing in dual cross-linked PGN networks 

Having examined factors that affect the response of the cross-linked PGNs to an 

applied force, we then utilized our computer simulations to investigate how a deformed 

material recovered when this applied force was removed. These studies involved a three-step 

process that is similar to the comparable experimental procedures.43,44 In the first step, the 

network was subjected to a strain-controlled tensile deformation by pulling the left edge of 

the sample at a constant velocity of 0
3101 vv
  until the desired maximal value of strain, 

max , was reached. The values of max  were chosen to be below anticipated values for the 

strain at break to ensure the sample remains intact. The external tensile force F  acting on the 

left edge of the sample was recorded as a function of   during the first step. In the second 

step, the force F  was relaxed to zero at a constant rate over the period of time 0
410 T , and the 

strain   was recorded (force-controlled strain relaxation). The inelastic component of the 

deformation was characterized by the residual strain, 0 , defined as the value of strain at the 

moment of time when F 0. Finally, in the third step, the relaxation of the residual strain at 
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zero external force was tracked over some period of time. To elucidate the mechanism of 

strain recovery, the samples were subjected to either a single or multiple cycles of the 

stretching and relaxation procedure. 

Via the above procedure, we determined how the key parameters of the system affect 

the strain recovery and self-healing in networks that are subjected to this type of tensile 

loading and unloading. We first describe our findings on the effect of varying the energy of 

the labile bonds, )(
0
l

U  in systems where the initial value of the average number of permanent 

bonds between a pair of neighboring PGNs was set equal to P 1.  

5.1. Effect of varying the bond energy of the labile bonds 

To gain an understanding of how the bond energy of our labile bonds influences the 

strain recovery process, we considered the deformation of samples with )(
0
l

U  33, 37, and 

39 kBT . As indicated in Fig. 11a, at 0
4105.20 Tt  , the samples were stretched at a 

constant strain rate until the strain reaches the maximal value of 53.0max  . Then, at 

0
4105.2 Tt  , the force F  was released at a constant rate such that F 0 at 

0
4105.3 Tt  . We use the term “recovery” for the relaxation processes that occur after 

F 0 is reached. From these simulations, we obtained the set of plots in Fig. 11, which 

shows the strain   (Fig. 11a) and number of labile bonds per particle PGN
l

b
NN /)(  (Fig. 11b) 

as a function of time t . 

Place Figure 11 here. 

Figure 11 clearly shows that the behavior of the dual cross-linked PGNs depends 

strongly on the strength of the labile bonds. In particular, Fig. 11a indicates that some part of 

this deformation is inelastic since the samples exhibit residual strain upon release of the 

external load; the residual strain is considerably lower in the sample having the weaker labile 
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bonds than in the other two samples (compare curve 1 with curves 2 and 3 in Fig. 11a). 

Additionally, Fig. 11a shows that the recovery of the residual strain in the unloaded samples 

at 0
4105.3 Tt   becomes slower as the energy of labile bonds increases from TkU B

l 33)(
0   

(curve 1) to 37 and TkB39  (curves 2 and 3, respectively).  

During the course of the deformation, the rupture of stressed labile bonds occurs 

simultaneously with the formation of new bonds within the overlapped coronas. Figure 11b 

shows that PGN
l

b
NN /)(  drops during the initial stretching of a sample, and this decrease 

slows down even though the stretching continues. The latter behavior indicates that the 

rupture of stressed bonds is balanced by bond formation. Further, Fig. 11b shows that owing 

to the bond formation, the labile bonds are restored in the samples during the release of force 

( PGN
l

b
NN /)(  increases at 0

4
0

4 105.3105.2 TtT  ), thus, clearly indicating that the 

material is capable of self-healing. Figure 11b indicates that during the strain controlled 

stretching there is greater number of the labile bonds in the samples with higher )(
0
l

U . 

The relaxation of strain and of the labile bonds continues in the system after the 

tensile force is released and the system reaches the F 0 state. To highlight this behavior, we 

specifically focused on the time frame around F 0 in Figs. 11c and 11d, where 0t  

corresponds to 0
4105.2 Tt  , the beginning of the controlled release of the force on the 

stretched sample. Note that Figs. 11c and 11d show the behavior of the system during the 

release of force and recovery ( 0
4105.2 Tt  ), as well as the dynamics of recovery at longer 

times (up to 0
5105 T ). From the latter plots, we clearly see that the rate and extent of 

recovery depend on the energy of the labile bonds. In the system having the weaker labile 

bonds ( TkU B
l 33)(

0  ), the recovery occurs during 0
4101~ T (see Fig. 11c). The residual 

strain, however, is not completely recovered and remains about 4% in this case. Additionally, 
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the number of labile bonds is lower than its initial value (as can be seen by comparing curve 1 

at t 0 in Fig. 11b and late times in Fig. 11d). In contrast, at the labile bond energies of 

37)(
0 l

U and TkB39 , the recovery is markedly slower than in the case of weaker bonds and 

takes about 0
5101 T  and 0

5105 T , respectively (see Fig. 11c). Furthermore, in these cases, 

the strain and the number of labile bonds exhibit a complete recovery that occurs in two 

distinct stages, as can be seen from curves 2 and 3 in Figs. 11c and 11d, respectively. At the 

first stage, the number of labile bonds relax close to the value before the deformation, while 

in the second stage, strain recovery happens around a constant value of PGN
l

b
NN /)( . 

Recovery of the residual strain and the labile bonds at F 0 and beyond occurs 

through local rearrangements of the PGNs. The motion of these nanoparticles relative to each 

other is limited by the rate of breakage of the labile bonds. Note that the labile bonds break 

less often as the bond energy is increased. Therefore, the rate of recovery decreases with an 

increase in )(
0
l

U . It is worth recalling that )(
0
l

U  also controls the degradation of the cross-

linked system in the course of deformation, as discussed in Section 3. An increase in the 

energy of labile bonds from 33 to 37kBT  and higher, prevents the formation of large voids, 

which cannot be healed during recovery. Hence, complete strain recovery is observed at 

37)(
0 l

U  and 39kBT . 

5.2. Role of permanent bonds in strain recovery 

Permanent bonds form an elastic skeleton in the dual cross-linked nanoparticle 

network; the presence of these bonds can lead to notable improvements in the toughness of 

the material as shown in Section 3. We found that the permanent bonds between the PGNs 

also play an important role in the strain recovery within the sample. Specifically, we varied 

the average number of permanent bonds between two particles over the range 21  P , 
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while fixing the labile bond energy at TkU B
l 37)(

0  , and applied a strain up to 53.0max  . 

We then monitored the behavior of the material during the force-controlled relaxation process 

(for 0
410 T ) and the subsequent the recovery period.  

We can obtain insight into the effect of permanent bonds by examining snapshots 

from simulations of samples in the process of recovery, i.e., after the force in the sample is 

released ( 0
410 Tt  ). Figures 12a,b and 12c,d show the nanoparticles and the labile bonds in 

the samples at 1P  and 2P , respectively, at 0
4105.1 Tt   and 0

4105.7 T , where 

0
410 Tt   corresponds to the moment of time when the force is totally released and the 

recovery begins. Figures 12a and 12b reveal that for 1P , there are a number of voids of 

various sizes distributed throughout the sample during recovery. In contrast, Figures 12c and 

12d show that upon unloading all the voids are healed by 0
4105.7 Tt   due to the increase 

in the number of permanent bonds from 1P  to 2P . 

Place Figure 12 here. 

5.3. Strain recovery under cyclic stretching and relaxation 

In the previous section, we showed that the extent of healing after a single strain and 

relaxation cycle depends on the fraction of the permanent bonds in the network. We also 

examined the recovery process for systems subjected to multiple cycles of strain and 

relaxation. We quantified the influence of P  on the properties of materials undergoing 

multiple deformations by calculating the hysteresis W , which is defined as the area 

confined within a force-strain loop. Figure 13 shows the material properties of samples that 

are subjected to repeated deformations where the maximal strain, max , is increased 

incrementally with each subsequent cycle. Namely, max= 0.1 in the first cycle and max= 0.53 

in the fifth cycle. As above, the consecutive cycles of strain-controlled tensile deformation 

are followed by the force-controlled relaxation during 104 T0 and the samples can recover for 
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5 104
T0  before the next cycle. Figures 13a and 13b show the respective force-strain curves 

for five consecutive cycles in systems with fractions of permanent bonds equal to 1P  and 

P  2. Each curve corresponds to a single simulation run at TkU B
l 37)(

0  . While the 

residual strain increases with each increase in max , the healing of both of the samples is 

complete for 42.0max  ; that is, the strain eventually goes back to   0. Above that value 

of strain, however, the recovery is incomplete in the P 1 sample (see Fig. 13a). Notably, the 

sample involving P  2 recovers completely after each cycle (Figure 13b). 

Place Figure 13 here. 

Figure 13c shows that the hysteresis W  increases with an increase in the maximal 

strain for all samples at 42.0max  . Furthermore, while the hysteresis of the samples at 

P  2  is slightly lower than that at P 1 at max  0.42  and continues to increase for 

increasing strains, the hysteresis for the P 1 samples levels off at max  0.31. The results 

indicate that there is greater energy loss with increasing maximum strain, in particular, due to 

the increase in the residual strain. In addition, at 31.0max  , the energy loss is greater at 

P 1 than that at P  2 . For greater strains, the deterioration of the sample that occurs at 

P 1 leads to a reduction in W  (see Fig. 13a and curve 1 in Fig. 13c). Thus, an increase in 

the fraction of permanent bonds provides a clear improvement in the self-healing ability of 

the PGN network, enabling enhanced recovery from mechanical damage even after multiple 

cycles of deformation. 

6. Conclusions 

The cross-linked PGN networks considered here have the potential for exhibiting a 

remarkable combination of flexibility, strength and toughness. In order to optimize the 

performance of these advantageous composites, we formulated a hybrid model that integrates 

the hierarchy of structural features and temporal events that characterize the behavior of these 
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materials. Namely, our model encompasses: 1) the structural details of each PGN, 2) the 

interaction between adjacent PGNs, 3) the kinetics of rupturing/forming individual bonds 

between the polymer arms on neighboring particles, and 4) the response of entire sample to 

mechanical deformation. Using this multi-scale model, we focused on systems of dual cross-

linked PGNs that are interconnected by both strong “permanent” bonds and weaker labile 

bonds, and determined the response of the material to tensile deformation. To establish the 

critical parameters controlling the material’s mechanical behavior, we varied the bond 

energies of the labile bonds, U0
l  , and the amount of permanent bonds P in the network. We 

also introduced a fraction of high-strength (“unbreakable”) bonds, nP  , in the system and 

determined how variations in nP  affected the materials’ tensile properties. In effect, these 

variables provided key parameters for tailoring the performance of the composites. 

We found that the presence of permanent bonds plays a critical role primarily in the 

material encompassing the weaker labile bonds, U0
l   33kBT . In these materials, increases in 

P led to significant improvements in the ductility and the toughness of the dual cross-linked 

network. In contrast, in the case of the stronger labile bonds, U0
l   39kBT , the PGN network 

formed a ductile, tough material even at 0P , and introduction of the permanent bonds 

primarily led to increases in the toughness. Notably, at 1P , the toughness of the sample 

with the stronger labile bonds was three times greater than that of the sample with the weaker 

labile bonds. Furthermore, within a network connected by a 1P  skeleton of permanent 

bonds, the mode of failure depended on the nature of the labile bonds. While the networks 

with the weaker labile bonds failed by rupturing in a direction perpendicular to the 

deformation, the network with the stronger labile bonds failed through the growth of cavities 

within the sample. These findings elucidate how the labile bond energies influence the 

performance of the entire cross-linked network.  
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It is noteworthy that at 1P , the strain at break, b , was controlled primarily by the 

permanent bonds in both of the materials containing the weaker and stronger labile bonds. 

Namely, for the both types of samples, it is ultimately the permanent bonds that bear the force 

from the deformation and ultimately, it is their rupture that determines the value of b . 

The above results indicate that the mechanical response of a dual cross-linked 

network can be controlled by modifying either the bond energies of the labile bonds or the 

fraction of permanent bonds in the network. Specifically, we showed that for a network with 

weaker labile bonds, an increase in fraction of permanent bonds can yield a tough network 

that behaves like a polymeric material, which exhibits cold drawing/necking. On the other 

hand, similar changes to the network with stronger labile bonds lead to an increase in 

toughness, with the network characteristics being similar to that of a purely ductile material.  

We also found that the inclusion of a small amount of unbreakable chains has a 

dramatic effect on the response of the network to mechanical deformation. Notably, a distinct 

fraction of samples with unbreakable links could survive strains far greater than any networks 

with just labile and permanent bonds. This behavior is evident from histograms for the strain 

at break and toughness, which exhibited a significant broadening relative to comparable 

networks without unbreakable connections. The presence of unbreakable links can lead to the 

formation of long thin threads that can hold the entire network intact. The latter behavior is 

due to the ability of unbreakable chains to extend over large gaps and hold tremendous loads 

without rupturing. These findings provide valuable guidelines for creating materials that 

display remarkable ductility and strength. 

Finally, we examined the strain recovery and healing behavior of the dual cross-

linked PGN networks. Our findings showed that the residual strain within the material 

decreases with an increase in the energy of the labile bonds. The increase in )(
0
l

U  did, 

however, also lead to an increase in the time needed for recovery; this is due to the resultant 
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decrease in the rate of bond breakage and the concomitant slowing down of the particle 

rearrangements. These results highlight a competition between the extent and the rate of 

recovery with variations in the energy of labile bonds. For the systems considered here, we 

determined that the value of U0
(l )  37kBT  led to an optimal compromise. Specifically, the 

latter samples displayed complete recovery, as opposed to the systems involving 

U0
(l )  33kBT  bonds, and achieved this recovery in a shorter time than systems encompassing 

the U0
(l )  39kBT bonds. 

By examining snapshots from the simulations, we found that during recovery 

networks containing the permanent bonds at P 2 displayed a more pronounced closure of 

the voids within the samples and hence, greater healing than the P 1 materials. We also 

examined how variations in the amount of permanent bonds in the system affect the extent of 

healing and recovery that occurs after the PGN networks were subjected to multiple cycles of 

stretching and relaxation. Using the hysteresis, W , as a measure of the extent of damage 

recovery, we found that the P 1 materials showed progressive deterioration with 

consecutive cycles of stretching and relaxation. In contrast, at a higher amount of permanent 

cross-links ( P 2), the networks recovered completely after consecutive cycles of stretching 

and relaxation. 

In summary, the results of these computer simulations reveal how choices in the 

design space (e.g., energy of labile bonds and fraction of permanent and high-strength bonds) 

affect the final mechanical performance of the material. Such models allow researchers to 

understand how variations in key parameters can be harnessed to tailor the behavior of the 

material and thus, facilitate the fabrication of the next generation of nanocomposites with 

novel and technologically useful properties. 
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Figure captions 

Fig. 1. Hierarchy of interactions in a network of dual cross-linked polymer grafted 

nanoparticles (PGNs). The grafted polymer chains contain reactive end groups, which 

interact to form labile, permanent, or unbreakable bonds and thus, the model captures 

phenomena on the scale of bond formation (and rupture). At the nanoscopic scale, each 

spherical nanoparticle is represented by a rigid core that encompasses a corona of grafted 

chains. The overlapping of the coronas on neighboring particles enables the formation of 
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multiple bonds between the nanoparticles. Finally, via the interactions between the PGNs and 

formation of bonds, the coated nanoparticles form an extended mesoscopic network. 

 

Fig. 2. Effect of corona thickness, q, and pulling velocity, v , on bond rupture rate, dp /dt , 

at bond energies U0
(l ) /kBT =33, 39, and 45 (red, blue, and black curves, respectively). (a) 

Bond rupture rate (dp /dt ) versus strain ( ) curves for q=0.75 and 1.25 (dashed and solid 

lines, respectively). (b) Bond rupture rate ( dp /dt ) versus strain ( ) curves for v=0.001 and 

0.005 (dashed and solid lines, respectively). 

 

Fig. 3. (a) Bond rupture rate,(dp /dt) , as a function of strain,  , for a single labile, 

permanent, and high-strength ( TkB100 ) bond, each with an initial equilibrium separation of 

21.30 R . Inset shows the plot for the high-strength bond in greater detail. (b) Force, F , 

versus strain,  , from a constant strain rate pulling simulation for a pair of particles 

connected by multiple labile (red) bonds ( 37kBT ) along with a single permanent (gray) bond 

( 45kBT ) and a high-strength (black) bond, beginning at an equilibrium separation of 

15.30 R . The downward arrow indicates complete rupture of all bonds. 

 

Fig. 4. Effect of fraction of permanent bonds, P , on mechanical response of network. (a) 

Force( F ) versus strain( ) curves at P =0, 0.6, and 1 (black, green, and red curves, 

respectively) for U0
(l ) /kBT  33  (b) Force ( F ) versus strain ( ) curves at P =0, 0.6, and 1 for 

U0
(l ) /kBT  39.  

 

Fig. 5. Effect of fraction of permanent bonds, P , and labile bond energy, U0
(l ) /kBT , on strain 

at break, b , and toughness, W , (red and blue lines denote TkU B
l /)(

0 =33 and 39, 
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respectively). (a) Strain at break, b , as a function of fraction of permanent bonds, P . (b) 

Toughness, W , as a function of fraction of permanent bonds, P . 

 

Fig. 6. Effect of labile bond energy, U0
(l ) /kBT  (a) Number of labile bonds/particle, 

Nb

(l ) /NPGN , as a function of strain,  , at P =0, 0.6, and 1 for U0
(l ) /kBT  33 . (b) Number of 

labile bonds/particle, Nb

(l ) /NPGN , as a function of strain,  , at P =0, 0.6, and 1 for 

U0
(l ) /kBT  39 . (c) Force ( F ) versus strain ( ) curves for U0

(l ) /kBT =33, 39, and in the 

absence of labile bonds (red, blue, and black curves, respectively). (d) Normalized force per 

bond, F /Nb , versus strain,  , curves for U0
(l ) /kBT =33, 39, and in the absence of labile bonds. 

 

Fig. 7. (a) Snapshot of weaker labile bonds (U0
(l ) /kBT  33) sample with P 1 at strain   = 

0.95. (b) Snapshot of stronger labile bonds (U0
(l ) /kBT  39) sample with P 1 at strain   = 

0.95. (c) The color of the lines indicates the number of labile bonds in the link. 

 

Fig. 8. (a) Strain at break, b , and (b) toughness, W , as a function of the average number of 

extra bonds per neighboring pair in the range 1 Pt  Pp  Pn 1.3. Networks with solely 

permanent bonds, (1 Pp 1.3, Pn  0), are compared with networks that contain added 

unbreakable chains ( Pp 1, 0  Pn  0.3). The average values and standard deviations were 

obtained according to the Weibull statistics. 

 

Fig. 9. Histograms of the (a) strain at break and (b) toughness for three different bond 

formation scenarios: the base case of permanent bonds with no unbreakable chains per pair 

( Pp 1, Pn  0), an increase in the average number of permanent bonds per pair 

( Pp 1.15, Pn  0), and an equivalent system with Pt 1.15  composed of permanent bonds at 
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Pp 1 and the unbreakable chains introduced at Pn  0.15. The average value and standard 

deviation obtained according to the Weibull statistics are shown for each distribution. The 

average value and standard deviation obtained from Weibull statistics are shown by the 

respective points and error bars for each of the cases (green ( Pp 1, Pn  0), blue 

( Pp 1.15 , Pn  0) and red ( Pp 1, Pn  0.15)). 

 

Fig. 10. Snapshots of sample with Pp 1, Pn  0.15 at strains   0.45 ,   0.90,  1.35, 

and  1.80 (at the point of rupture). The thick gray and black lines indicate the permanent 

bonds and unbreakable chains, respectively. The cores with an unbreakable connection are 

colored red, and those without an unbreakable connection are colored blue. 

 

Fig. 11: Effect of varying the labile bond energy, U0
l  kBT , on network response at P 1. 

The network is subject to tensile stretching at a constant velocity followed by a controlled 

linear force release and recovery at zero-force. (a) Strain ( ) versus time ( t ) curves for 

U0
l  kBT   33, 37, and 39. (b) Number of labile bonds per particle ( Nb

l  NPGN ) versus 

time( t ) curves for U0
l  kBT   33, 37, and 39. (c) Strain ( ) versus time (t ) curves, for 

U0
l  kBT   33, 37, and 39. (d) Number of labile bonds per particle ( Nb

l  NPGN ) versus 

time(t ) curves for U0
l  kBT   33, 37, and 39. Note in (c) and (d), the time t  0 

corresponds to t  2.5 104 T0, the beginning of the controlled force release on the stretched 

sample. 

 

Fig. 12: Snapshots of sample with U0
l  kBT  37  during recovery at (a)t 1.5 104

To and 

(b) t  7.5 104
T0 with fraction of permanent bonds P 1.0 , (c) t 1.5 104

To and  (d) 

t  7.5 104 T0  with fraction of permanent bonds P  2.0. 
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Fig. 13: Effect of strain-relaxation cycles on the recovery of the samples as the maximum 

strain is increased to max  0.1, 0.2, 0.31, 0.42, and 0.53 in consecutive cycles. Here, 

U0
l  kBT  37 . (a) Force ( F ) versus strain ( ) curves for repeated cycles at 1P . (b) Force 

( F ) versus strain ( ) curves for repeated cycles at 2P . (c) Hysteresis, W , as a function 

of number of cycles at P 1 and 2. Open circles indicate conditions where one of the eight 

samples fractured during the course of being strained. 
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Fig. 3. 
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Fig. 4. 

(a) 

P = 1 

P = 0 

P = 0.6  

F 

! ²

(b) P = 1 

P = 0 

P = 0.6  

F 

! ²



 5 

Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. 
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Fig. 11. 
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Fig. 12. 
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Fig. 13. 
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Table 1. Parameters used in the simulations 

 

Dimensional units 

Length: nanoparticle radius 0r  = 50 nm 

Time, t  0T  = 1.4110-2 s 

Velocity, v  1
000
 Trv  = 3.55 m/s 

Force, F  0F  = 2.98 pN 

Toughness, W  00rF  = 89.74 kJ/mol 

Bond parameters 
Weaker  

labile bond 
Optimal 

labile bond 
Stronger 

labile bond 
Permanent 

bond 

Bond energy, 0U  TkB33  37k
B
T  TkB39  TkB45  

Rupture rate at F =0, rk0  6.55 ´ 10- 4
T0

- 1

 
1.2 ´ 10- 5

T0
- 1

 
1.62 ´ 10- 6

T0
- 1

 
4.03 ´ 10- 9

T0
- 1

 

Formation rate, fk0  1
030 

T  1
030 

T  1
030 

T  0 

Bond sensitivity, 0  1
06 

F  1
06 

F  1
06 

F  1
06 

F  

Characteristics of polymer 

grafted nanoparticle (PGN) 

Corona thickness 

075.0 rH   
Corona thickness 

025.1 rH   

Kuhn length, pl  1 nm 

Number of grafted arms, f  156 

Arm contour length, L  089.8 r  035.16 r  

Chain spring constant, 0  1
00

21081.7  rF  1
00

21025.4  rF  

Repulsion parameter s  002.3 r  088.3 r  

Cohesion parameter A  15.1  

     B  08.0  

     C  TkB60  

Mobility of PGN,   1
0057.0 

Fv  1
0044.0 

Fv  

Pulling velocity, v  00 005.0and001.0 vv  

 


