
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Dimensionality Reduction for Categorical Data

Debajyoti Bera, Rameshwar Pratap, and Bhisham Dev Verma

Abstract—Categorical attributes are those that can take a discrete set of values, e.g., colours. This work is about compressing vectors

over categorical attributes to low-dimension discrete vectors. The current hash-based methods compressing vectors over categorical

attributes to low-dimension discrete vectors do not provide any guarantee on the Hamming distances between the compressed

representations. Here we present FSketch to create sketches for sparse categorical data and an estimator to estimate the pairwise

Hamming distances among the uncompressed data only from their sketches. We claim that these sketches can be used in the usual

data mining tasks in place of the original data without compromising the quality of the task. For that, we ensure that the sketches also

are categorical, sparse, and the Hamming distance estimates are reasonably precise. Both the sketch construction and the Hamming

distance estimation algorithms require just a single-pass; furthermore, changes to a data point can be incorporated into its sketch in an

efficient manner. The compressibility depends upon how sparse the data is and is independent of the original dimension – making our

algorithm attractive for many real-life scenarios. Our claims are backed by rigorous theoretical analysis of the properties of FSketch

and supplemented by extensive comparative evaluations with related algorithms on some real-world datasets. We show that FSketch

is significantly faster, and the accuracy obtained by using its sketches are among the top for the standard unsupervised tasks of

RMSE, clustering and similarity search.

Index Terms—Dimensionality Reduction, Sketching, Feature Hashing, Clustering, Classification, Similarity Search.

✦

1 INTRODUCTION

Of the many types of digital data that are getting recorded
every second, most can be ordered – they belong to the
ordinal type (e.g., age, citation count, etc.), and a good pro-
portion can be represented as strings but cannot be ordered
— they belong to the nominal type (e.g., hair colour, country,
publication venue, etc.). The latter datatype is also known
as categorical which is our focus in this work. Categori-
cal attributes are commonly present in survey responses,
and have been used earlier to model problems in bio-
informatics [1], [2], market-basket transactions [3], [4], [5],
web-traffic [6], images [7], and recommendation systems [8].
The first challenge practitioners encounter with such data is
how to process them using standard tools most of which are
designed for numeric data, that too often are real-valued.

Two important operations are often performed before
running statistical data analysis tools and machine learning
algorithms on such datasets. The first is encoding the data
points using numbers, and the second is dimensionality
reduction; many approaches combine the two, with the final
objective being numeric vectors of fewer dimensions. To the
best of our knowledge, the approaches usually followed are
ad-hoc adaptations of those employed for vectors in the real
space, and suffer from computational inefficiency and/or
unproven heuristics [9]. The motivation of this work is to

• D. Bera is with the Department of Computer Science and Engineering,
Indraprastha Institute of Information Technology (IIIT-Delhi), New Delhi,
India, 110020.
E-mail: see http://www.michaelshell.org/contact.html

• R. Pratap and B. D. Verma are with the Indian Institute of Technology,
Mandi, Himachal Pradesh, India.

• Emails: dbera@iiitd.ac.in, rameshwar@iitmandi.ac.in and
d18039@students.iitmandi.ac.in.

Manuscript accepted for publication by IEEE Transactions on Knowledge and
Data Engineering. Copyright 1969, IEEE.

provide a solution that is efficient in practice and has proven
theoretical guarantees.

For the first operation, we use the standard method
of label encoding in this paper. In this a feature with c
categories is represented by an integer from {0, 1, 2, . . . c}
where 0 indicates a missing category and i ∈ {1, 2, . . . , c}
indicates the i-th category. Hence, an n-dimensional data
point, where each feature can take at most c values, can be
represented by a vector from {0, 1, 2 . . . c}n — we call such
a vector as a categorical vector. Another approach is one-
hot encoding (OHE) which is more popular since it avoids
the implicit ordering among the feature values imposed
by label-encoding. One-hot encoding of a feature with c
possible values is a c-dimensional binary vector in which
the i-th bit is set to 1 to represent the i-th feature value.
Naturally, one-hot encoding of an n-dimensional vector will
be nc dimensional — which can be very large if c is large
(e.g., for features representing countries, etc.). Not only label
encoding avoids this problem, but is essential for the crucial
second step – that of dimensionality reduction.

Dimensionality reduction is important when data points
lie in a high-dimensional space, e.g., when encoded us-
ing one-hot encoding or when described using tens of
thousands of categorical attributes. High-dimensional data
vectors not only increase storage and processing cost, but
they suffer from the “curse of dimensionality” that points to
the decrease in performance after the dimension of the data
points crosses a peak. Hence it is suggested that the high-
dimensional categorical vectors be compressed to smaller
vectors, essentially retaining the information only from the
useful features. Baraniuk et al. [10] characterised a good
dimensionality reduction in the Euclidean space as a compres-
sion algorithm that satisfies the following two conditions for
any two vectors x and y.

1) Information preserving: For any two distinct vectors x
and y, R(x) 6= R(y).

ar
X

iv
:2

11
2.

00
36

2v
1

 [
cs

.L
G

]
 1

 D
ec

 2
02

1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

2) ǫ-Stability: (Euclidean) distances between all the points
are approximately preserved (with ǫ inaccuracy).

We call these two conditions the “well-designed” condi-
tions. To obtain their mathematically precise versions, we
need to narrow down upon a distance measure for cate-
gorical vectors. A natural measure for categorical vectors is
an extension of the binary Hamming distance. For two n-
dimensional categorical data points x and y, the Hamming
distance between them is defined as the number of features
with different attributes in x and y, i.e.,

HD(x, y) = Σn
i=1dist(x[i], y[i]), where

dist(x[i], y[i]) =

{
1, if x[i] 6= y[i],

0, otherwise.

Problem statement: The specific problem that we ad-
dress is how to design a dimensionality reduction algo-
rithm that can compress high-dimensional sparse label-
encoded categorical vectors to low-dimensional categorical
vectors so that (a) compressions of distinct vectors are
distinct, and (b) the Hamming distance between two un-
compressed vectors can be efficiently approximated from
their compressed forms. These conditions, in turn, guaran-
tee both information-preserving and stability. Furthermore,
we would like to take advantage of the sparse nature of
many real-world datasets. The most important requirement
is the compressed vectors should be categorical as well,
specifically not over real numbers and preferably not binary;
this is to allow the statistical tests and machine learning
tools for categorical datasets, e.g. k-mode, to run on the
compressed datasets.

1.1 Challenges in the existing approaches

Dimensionality reduction is a well-studied problem [11]
(also see Table 8 in Appendix) but Hamming space does
not allow the usual approaches applicable in the Euclidean
spaces. Methods that work for continuous-valued data or
even ordinal data (such as integers) do not perform satis-
factorily for unordered categorical data. Among those that
specifically consume categorical data, techniques via feature
selection have been well studied. For example, in the case
of labelled data χ2 [12] and Mutual Information [13] based
methods select features based on their correlation with the
label. This limits their applicability to only the classifica-
tion tasks. Further, Kendall rank correlation coefficient [14]
“learns” the important features based on the correlation
among them. Learning approaches tend to be computation-
ally heavy and do not work reliably with small training
samples. So what about task-agnostic approaches that do
not involve learning? PCA-based methods, e.g., MCA is
popular among the practitioners of biology [11]; however,
we consider them merely a better-than-nothing approach
since PCA is fundamentally designed for continuous data.

A quick search among internet forums, tutorials and
Q&A websites revealed that the more favourable approach
to perform machine learning tasks on categorical datasets
is to convert categorical feature vectors to binary vectors
using one-hot encoding [15, see DictVectorizer] — a widely-
viewed tutorial on Kaggle calls it “The Standard Approach
for Categorical Data” [16]. The biggest problem with OHE

u = 220 −→ 10 · 10 · 00
v = 202 −→ 10 · 00 · 10
w = 201 −→ 10 · 00 · 01

}
}
Hamming=2

Hamming=2

{
{

Hamming=2

Hamming=1

Fig. 1. An example showing that the Hamming distances of one-hot
encoded sparse vectors are not functionally related to the distances
between their unencoded forms. If a feature, say country, is missing,
libraries differ in their handling of its one-hot encoding. In this paper, we
follow the common practice of using the c-dimensional all-zero vector
as its encoding. This retains sparsity since the number of non-missing
attributes in the original vector equals the number of non-zero bits in the
encoded vector.

is that it is impractical for large n or large c followed
by a technical annoyance that some OHE implementations
do not preserve the Hamming distances for sparse vectors
(see illustration in Figure 1). Hence, this encoding is used
in conjunction with problem-specific feature selection or
followed by dimensionality reduction from binary to bi-
nary vectors [17], [18], [19]. The latter is a viable heuristic
that we wanted to improve upon by allowing non-binary
compressed vectors (see Appendix A for a quick analysis of
OHE followed by a state-of-the-art binary compression).

Another popular alternative, especially when n × c is
large, is feature hashing [20] that is now part of most libraries,
e.g., scikit-learn [15, see FeatureHasher]. Feature hash-
ing and other forms of hash-based approaches, also known
as sketching algorithms, both encode and compress categor-
ical feature vectors into integer vectors (sometimes signed)
of a lower dimension, and furthermore, provide theoretical
guarantees like stability, in some metric space. The currently
known results for feature hashing apply only to the Eu-
clidean space, however, Euclidean distance and Hamming
distance are not monotonic for categorical vectors. It is
neither known nor straightforward to ascertain whether
feature hashing and its derivatives can be extended to the
Hamming space which lacks the continuity that is crucial
to their theoretical bounds. Other hash-based approaches
either come with no guarantees and are used merely be-
cause of their compressibility or come with stability-like
guarantees in a different space, e.g., cosine similarity by
Simhash [21]. Our solution is a hashing approach that we
prove to be stable in the Hamming space.

1.2 Overview of results

The commonly followed practices in dealing with categori-
cal vectors, especially those with high dimensions and not
involving supervised learning or training data, appear to
be either feature hashing or one-hot encoding followed
by dimensionality reduction of binary vectors [22, Chapter
5]. We provide a contender to these in the form of the
FSketch sketching algorithm to construct lower-dimensional
categorical vectors from high-dimensional ones.

The lower-dimensional vectors, sketches, produced by
FSketch (we shall call these vectors as FSketch too)
have the desired theoretical guarantees and perform well
on real-world datasets vis-à-vis related algorithms. Now
we summarise the important features of FSketch; in the
summarisation, p is a constant that is typically chosen to be
a prime number between 5-50.

Lightweight and unsupervised: First and foremost,
FSketch is an unsupervised process, and in fact, quite

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

lightweight making a single pass over an input vector and
taking O(poly(log p)) steps per non-missing feature. The
FSketch-es retain the sparsity of the input vectors and
their size and dimension do not depend at all on c. To
make our sketches applicable out-of-the-box for modern
applications where data keeps changing, we present an
extremely lightweight algorithm to incorporate any change
in a feature vector into its sketch in O(poly(log p))-steps per
modified feature. It should be noted that FSketch supports
change of an attribute, deletion of an attribute and insertion
of a previously missing attribute unlike some state-of-the-
art sketches; for example, BinSketch [17] does not support
deletion of an attribute.

Estimator for Hamming distance: We want to advocate
the use of FSketch-es for data analytic tasks like clustering,
etc. that use Hamming distance for the (dis)similarity metric.
We present an estimator that can approximate the Hamming
distance between two points by making a single pass over
their sketches. The estimator follows a tight concentration
bound and has the ability to estimate the Hamming dis-
tance from very low-dimensional sketches. In the theoretical
bounds, the dimensions could go as low as 4σ or even√
σ (and independent of the dimension of the data) where

σ indicates the sparsity (maximum number of non-zero
attributes) of the input vectors; however, we later show
that a much smaller dimension suffices in practice. Our
sketch generation and the Hamming distance estimation
algorithms combined meet the two conditions of “well-
designed” dimensionality reduction.

Theorem 1. Let x and y be distinct categorical vectors, and φ(x)
and φ(y) be their d-dimensional compressions.

1) φ(x) and φ(y) are distinct with probability ≈ HD(x, y)/d.
2) Let HD′(x, y) denote the approximation to the Hamming

distance between x and y computed from φ(x) and φ(y). If
d is set to 4σ, then with probability at least 1− δ (for any δ
of choice),

∣∣HD(x, y)−HD′(x, y)
∣∣ = O

(√
σ ln 2

δ

)
.

The proof of (1) follows from Lemma 3 and the proof of
(2) follows from Lemma 8 for which we used McDiarmid’s
inequality. The theorem allows us to use compressed forms
of the vectors in place of their original forms for data
analytic and statistical tools that depend largely on their
pairwise Hamming distances.

Practical performance: All of the above claims are
proved rigorously but one may wonder how do they per-
form in practice. For this, we design an elaborate array of
experiments on real-life datasets involving many common
approaches for categorical vectors. The experiments demon-
strate these facts.

• Some of the baselines do not output categorical vectors
(see Section 4). Our FSketch algorithm is super-fast
among those that do and offer comparable accuracy.

• When used for typical data analytic tasks like clus-
tering, similarity search, etc. low-dimension FSketch-
es bring immense speedup vis-a-vis using the original
(uncompressed) vectors, yet achieving very high ac-
curacy. The NYTimes dataset saw 140x speedup upon
compression to 0.1%.

• Even though highly compressed, the results of cluster-
ing, etc. on FSketch-es are close to what could be ob-
tained from the uncompressed vectors and are compa-
rable with the best alternatives. For example, we were
able to compress the Brain cell dataset of dimensionality
1306127 to 1000 dimensions in a few seconds, yet
retaining the ability to correctly approximating the pair-
wise Hamming distances from the compressed vectors.
This is despite many other baselines giving either an
out-of-memory error, not stopping even after running
for a sufficiently long time, or producing significantly
worse estimates of pairwise Hamming distances.

• The parameter p can be used to fine-tune the quality of
results and the storage of the sketches.

We claim that FSketch is the best method today to
compress categorical datasets for data analytic tasks that
require pairwise Hamming distances with respect to both
theoretical guarantee and practical performance.

1.3 Organisation of the paper

The rest of the paper is organised as follows. We discuss
several related works in Section 2. In Section 3, we present
our algorithm FSketch and derive its theoretical bounds.
In Section 4, we empirically compare the performance of
FSketch on several end tasks with state-of-the-art algo-
rithms. We conclude our presentation in Section 5. The
proofs of the theoretical claims and the results of additional
experiments are included in Appendix.

2 RELATED WORK

Dimensionality reduction: Dimensionality reduction has
been studied in-depth for real-valued vectors, and to some
extent, also for discrete vectors. We categorise them into
these broad categories — (a) random projection, (b) spectral
projection, (c) locality sensitive hashing (LSH), (d) other
hashing approaches, and (e) learning-based algorithms. All
of them compress high-dimensional input vectors to low-
dimensional ones that explicitly or implicitly preserve some
measure of similarity between the input vectors.

The seminal result by Johnson and Lindenstrauss [23] is
probably the most well known random projection-based al-
gorithm for dimensionality reduction. This algorithm com-
presses real-valued vectors to low-dimensional real-valued
vectors such that the Euclidean distances between the pairs
of vectors are approximately preserved, but in such a man-
ner that the compressed dimension does not depend upon
the original dimension. The algorithm involves projecting
a data matrix onto a random matrix whose each entry is
sampled from a Gaussian distribution. This result has seen
lots of enhancements, particularly with respect to generating
the random matrix without affecting the accuracy [24], [25],
[26]. However, it is not clear whether any of those ideas
can be made to work for categorical data and that too, for
approximating Hamming distances.

Principal component analysis (PCA) is a spectral
projection-based technique for reducing the dimensionality
of high dimensional datasets by creating new uncorrelated
variables that successively maximise variance. There are
extensions of PCA that employ kernel methods that try to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

capture non-linear relationships [27]. Multiple Correspon-
dence Analysis (MCA) [28] does the analogous job for the
categorical datasets. However, these methods perform di-
mensionality reduction by creating un-correlated features in
a low-dimensional space whereas our aim is to preserve the
pairwise Hamming distances in a low-dimensional space.

Another line of dimensionality reduction techniques
builds upon the “Locality Sensitive Hashing (LSH)” algo-
rithms. LSH algorithms have been proposed for different
data types and similarity measures, e.g., real-valued vectors
and the Euclidean distance [29], real-valued vectors and the
cosine similarity [21], binary vectors and the Jaccard simi-
larity [30], binary vectors and the Hamming distance [31].
However, generally speaking, the objective of an LSH is
to group items so that similar items are grouped together
and dissimilar items are not; unlike FSketch they do not
provide explicit estimators of any similarity metric.

There are quite a few learning-based dimensionality re-
duction algorithms available such as Latent Semantic Anal-
ysis (LSA) [32], Latent Dirichlet Allocation (LDA) [33], Non-
negative Matrix Factorisation (NNMF) [34], Generalized
feature embedding learning (GEL) [35] all of which strive
to learn a low-dimensional representation of a dataset while
preserving some inherent properties of the full-dimensional
dataset. They are rather slow due to the optimization step
involved during learning. T-distributed Stochastic Neigh-
bour Embedding (t-SNE) [36] is a faster non-linear di-
mensionality reduction technique that is widely used for
the visualisation of high-dimensional datasets. However,
the low-dimensional representation obtained from t-SNE

is not recommended for use for other end tasks such as
clustering, classification, anomaly detection as it does not
necessarily preserve densities or pairwise distances. An
autoencoder [37] is another learning-based non-linear di-
mension reduction algorithm. It basically consists of two
parts: An encoder which aims to learn a low-dimensional
representation of the input and a decoder which tries to re-
construct the original input from the output of the encoder.
However, these approaches involve optimising a learning
objective function and are usually slow and CPU-intensive.

The other hashing approaches randomly assign each
feature (dimension) to one of several bins, and then compute
a summary value for each bin by aggregating all the feature
values assigned to it. A list of such summaries can be viewed
as a low-dimensional sketch of the input. Such techniques
have been designed for real-valued vectors approximating
inner product (e.g., feature hashing [20]), binary vectors
allowing estimation of several similarity measures such
as Hamming distance, Inner product, Cosine, and Jaccard
similarity (e.g., BinSketch [17]), etc. This work is similar to
these approaches but for categorical vectors and only aiming
to estimate the Hamming distances.

Another approach in this direction could be to encode
categorical vectors to binary and then apply dimensionality
reduction for binary vectors; unfortunately, the popular
encodings, e.g. OHE, do not preserve Hamming distance for
vectors with missing features. Nevertheless, it is possible to
encode using OHE and then reduce its dimension. However,
our theoretical analysis led to a worse accuracy compared to
that of FSketch (see Appendix A for the analysis) and this
approach turned out to be one of the worst performers in

our experiments (see Section 4).
While our motivation was to design an end-task agnostic

dimensionality reduction algorithm, there exist several that
are designed for specific tasks, e.g., for clustering [38], for
regression and discriminant analysis of labelled data [39],
and for estimating covariance matrix [40]. Deep learning has
gained mainstream importance and several researchers have
proposed a dimensionality reduction “layer” inside a neural
network [41]; this layer is intricately interwoven with the
other layers and cannot be separated out as a standalone
technique that outputs compressed vectors.

Feature selection is a limited form of dimensionality
reduction whose task is to identify a set of good features,
and maybe learn their relative importance too. Banerjee
and Pal [42] recently proposed an unsupervised technique
that identifies redundant features and selects those with
bounded correlation, but only for real-valued vectors. For
our experiments we chose the Kendall-Tau rank correlation
approach that is applicable to discrete-valued vectors.

Sketching algorithm: The use of “sketches” for com-
puting Hamming distance has been explicitly studied in
the streaming algorithm framework. The first well-known
solution was proposed by Cormode et al. [43] where they
showed how to estimate a Hamming distance with high
accuracy and low error. There have been several improve-
ments to this result, in particular, by Kane et al. [44] where
a sketch with the optimal size was proposed. However, we
neither found any implementation nor an empirical evalua-
tion of those approaches (the algorithms themselves appear
fairly involved). Further, their objective was to minimise the
space usage in the asymptotic sense in a streaming setting,
whereas, our objective is to design a solution that can be
readily used for data analysis. This motivated us to com-
press categorical vectors onto low-dimensional categorical
vectors, unlike the real-valued vectors that the theoretical
results proposed. A downside of our solution is that it
heavily relies on the sparsity of a dataset unlike the sketches
output by the streaming algorithms.

TABLE 1
Notations

categorical data vectors x, y
their Hamming distance h

compressed categorical vectors (sketches) φ(x), φ(y)
j-th bit of a sketch φ(x) φj(x)
observed Hamming distance between sketches f

expected Hamming distance between sketches f∗

estimated Hamming distance between data vectors ĥ

3 CATEGORY SKETCHING AND HAMMING DIS-

TANCE ESTIMATION

Our technical objective is to design an effective algorithm
to compress high-dimensional vectors over {0, 1, . . . , c} to
integer vectors of a low dimension, aka. sketches; c can even
be set to an upper bound on the largest number of categories
among all the features. The number of attributes in the input
vectors is denoted n and the dimension of the compressed
vector is denoted d. We will later show how to choose d
depending on the sparsity of a dataset that we denote σ.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Family name starts with: Missing (0)

Colour of eye : grey (2)

Religion : Hindu (3)

(Indian) state of birth : Orissa (10)

Country of schooling : India (101)

Country of graduation : UK (7)

Country of post-graduation : Missing (0)

Country of current residence : India (101)

Nationality of spouse : Missing (0)

Favourite cuisine : Missing (0)

~x : [2, 3, 0, 10, 101, 7, 0, 101, 0, 0]

compressing to d = 3 with c = 195
using ρ as given in this table

1 → 2, 2 → 3

3 → 1, 4 → 1

5 → 2, 6 → 1

7 → 3, 8 → 2

9 → 1 10 → 3

& p = 67
& R = [37, 2, 56, 46, 17, 61, 26, 9, 12, 38]

φ1 = 0 · 56 + 10 · 46 + 7 · 61 + 0 · 12(mod 67)
φ2 = 2 · 37 + 101 · 17 + 101 · 9(mod 67)
φ3 = 3 · 2 + 0 · 26 + 0 · 38(mod67)

~φ = [16,20,6]

Fig. 2. An example illustrating how to compress a data point with
categorical features using FSketch to a 3-dimensional integer vector.
The data point has 10 feature values, each of which is a categorical
variable (the corresponding label encoded values are present inside the
brackets). c is chosen as 195 since the fifth, sixth, seventh, and eighth
features have 195 categories which is the largest. ρ, p and R are internal
variables of FSketch.

The commonly used notations in this section are listed in
Table 1.

Algorithm 1 Constructing d-dimensional FSketch of n-
dimensional vector x

1: procedure INITIALIZE

2: Choose random mapping ρ : {1, . . . n} → {1, . . . d}
3: Choose some prime p
4: Choose n random numbers R = r1, . . . , rn with each

ri ∈ {0, . . . p− 1}
5: end procedure

1: procedure CREATESKETCH(x ∈ {0, 1, . . . c}n)
2: Create empty sketch φ(x) = 0d

3: for i = 1 . . . n do
4: j = ρ(i)
5: φj(x) = (φj(x) + xi · ri) mod p
6: end for
7: return φ(x)
8: end procedure

3.1 FSketch construction

Our primary tool for sketching categorical data is a ran-
domised sketching algorithm named FSketch that is de-
scribed in Algorithm 1; see Figure 2 for an example.

Let x ∈ {0, 1, . . . c}n denote the input vector, and the i-
th feature or co-ordinate of x is denoted by xi. The sketch
of input vector x will be denoted φ(x) ∈ {0, 1, . . . p − 1}d
whose coordinates will be denoted φ1(x), φ2(x), . . . , φd(x).
Note that the initialisation step of FSketch needs to run
only once for a dataset. We are going to use the following
characterisation of the sketches in the rest of this section;
a careful reader may observe the similarity to Freivald’s
algorithm for verifying matrix multiplication [45].

Observation 2. It is obvious from Algorithm 1 that the sketches
created by FSketch satisfy φj(x) = (

∑
i∈ρ−1(j) xi · ri)

mod p.

3.2 Hamming distance estimation

Here we explain how the Hamming distance between x and
y denoted HD(x, y), percolates to their sketches as well.

The objective is derive an estimator for HD(x, y) from the
Hamming distance between φ(x) and φ(y).

The sparsity of a set of vectors denoted σ, is the max-
imum number of non-zero coordinates in them. For the
theoretical analysis, we assume that we know the sparsity
of the dataset, or at least an upper bound of the same. Note
that, for a pair of sparse vectors x, y ∈ {0, 1, . . . , c}n, the
Hamming distance between them can vary from 0 (when
they are same) to 2σ (when they are completely different).

We first prove case (a) of Theorem 1 which states that
sketches of different vectors are rarely the same.

Lemma 3. Let h denote HD(x, y) for two input vectors x, y to
FSketch. Then

Pr
ρ,R

[φj(x) 6= φj(y)] = (1− 1
p)(1− (1− 1

d)
h).

Proof. Fix a mapping ρ and then define Fj(x) as the vec-
tor [xi1 , xi2 , . . . : ik ∈ {1, . . . n}] of values of x that
are mapped to j in φ(x) in the increasing order of their
coordinates, i.e., ρ(ik) = j and i1 < . . . ik < ik+1. Since ρ
is fixed, Fj(y) is also a vector of the same length. The key
observation is that if Fj(x) = Fj(y) then φj(x) = φj(y)
but the converse is not always true. Therefore we separately
analyse both the conditions (a) Fj(x) 6= Fj(y) and (b)
Fj(x) = Fj(y).

It is given that x and y differ at h coordinates. Therefore,
Fj(x) 6= Fj(y) iff any of those coordinates are mapped to j
by ρ. Thus,

Pr
ρ
[Fj(x) = Fj(y)] = (1− 1

d)
h. (1)

Next we analyse the chance of φj(x) = φj(y) when
Fj(x) 6= Fj(y). Note that φj(x) = (xi1 · ri1 + xi2 · ri2 + . . .)
mod p (and a similar expression exists for y), where ris are
randomly chosen during initialisation (they are fixed for x
and y). Using a similar analysis as that in the Freivald’s
algorithm [46, Ch 1(Verifying matrix multiplication)],

Pr
ρ,R

[φj(x) = φj(y) | Fj(x) 6= Fj(y)] =
1
p . (2)

Due to Equations 1, 2, we have

Pr
ρ,R

[φj(x) 6= φj(y)]

= Pr
ρ,R

[φj(x) 6= φj(y) | Fj(x) 6= Fj(y)] · Pr
ρ,R

[Fj(x) 6= Fj(y)]

+ Pr
ρ,R

[φj(x) 6= φj(y) | Fj(x) = Fj(y)] · Pr
ρ,R

[Fj(x) = Fj(y)]

=(1− 1
p)(1− (1− 1

d)
h).

The right-hand side of the expression in the statement
of the lemma can be approximated as (1 − 1

p)
h
d which is

stated as case (a) of Theorem 1. The lemma also allows
us to relate the Hamming distance of the sketches to the
Hamming distance of the vectors which is our main tool to
define an estimator.

Lemma 4. Let h denote HD(x, y) for two input vectors
x, y to FSketch, f denote HD(φ(x), φ(y)) and f∗ denote
E[HD(φ(x), φ(y))]. Then

f∗ = E[f] = d
(
1− 1

p

)(
1−

(
1− 1

d

)h)
.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 3. The distributions of Hamming distances for some of the datasets used in our experiments are shown in blue — the Y-axis shows the frequency
of each distance. The black points represent the actual Hamming distances and the red points are the estimates, i.e., a red-point plotted against a
Hamming distance d (on the X-axis) shows the estimated Hamming distance between two points with actual Hamming distance d. Observe that the
Hamming distances follow a long-tailed distribution and that most distances are fairly low — moreover, our estimates are more accurate for those
high frequent Hamming distances.

The lemma is easily proved using Lemma 3 by applying
the linearity of expectation on the number of coordinates j
such that φj(x) 6= φj(y). We are now ready to define an
estimator for the Hamming distance.

Using D =
(
1− 1

d

)
and P =

(
1− 1

p

)
, we can write

f∗ = dP (1−Dh) and h = ln
(
1− f∗

dP

)
/ lnD. (3)

Our proposal to estimate h is to obtain a tight approxi-
mation of f∗ and then use the above expression.

Definition 5 (Estimator of Hamming distance). Given
sketches φ(x) and φ(y) of data points x and y, suppose f rep-
resents HD(φ(x), φ(y)). We define the estimator of HD(x, y)

as ĥ = ln
(
1− f

dP

)
/ lnD if f < dP and 2σ otherwise.

Observe that ĥ is set to 2σ if f ≥ dP . However, we shall
show in the next section that this occurs very rarely.

3.3 Analysis of Estimator

ĥ is pretty reliable when the actual Hamming distance is

0; in that case φ(x) = φ(y) and thus, f = 0 and so is ĥ.

However, in general, ĥ could be different from h. The main
result of this section is that their difference can be upper
bounded when we set the dimension of FSketch to d = 4σ.

The results of this subsection rely on the following
lemma that proves that an observed value of f is concen-
trated around its expected value f∗.

Lemma 6. Let α denote a desired additive accuracy. Then, for
any x, y with sparsity σ,

Pr
[
|f − f∗| ≥ α

]
≤ 2 exp (−α2

4σ).

The proof of the lemma employs martingales and Mc-
Diarmid’s inequality and is available in Appendix B. The
lemma allows us to upper bound the probability of f ≥ dP .

Lemma 7. Pr[f ≥ dP] ≤ 2 exp(−P 2σ).

The right-hand side is a very small number, e.g., it is of
the order of 10−278 for p = 5 and σ = 1000. The proof is a
straightforward application of Lemma 6 and is explained in
Appendix B. Now we are ready to show that the estimator

ĥ, which uses f instead of f∗ (refer to Equation 3) is almost
equal to the actual Hamming distance.

Lemma 8. Choose d = 4σ as the dimension of FSketch and
choose a prime p and an error parameter δ ∈ (0, 1) (ensure that

1 − 1
p ≥ 4√

σ

√
ln 2

δ — see the proof for discussion). Then the

estimator defined in Definition 5 is close to the Hamming distance
between x and y with high probability, i.e.,

Pr
[
|ĥ− h| ≥ 32

1−1/p

√
σ ln 2

δ

]
≤ δ.

If the data vectors are not too dissimilar which is some-
what evident from Figure 3, then a better compression is
possible which is stated in the next lemma. The proofs of
both these lemmas are fairly algebraic and use standard
inequalities; they are included in Appendix B.

Lemma 9. Suppose we know that h ≤ √
σ and choose d =

16
√
σ ln 2

δ as the dimension for FSketch. Then (a) also f < dP

with high probability and moreover we get a better estimator. That

is, (b) Pr
[
|ĥ− h|

]
≥ 8

1−1/p

√
σ ln 2

δ

]
≤ δ.

The last two results prove case (b) of Theorem 1 which
states that the estimated Hamming distances are almost
always fairly close to the actual Hamming distances. We
want to emphasise that the above claims on d and accuracy
are only theoretical bounds obtained by worst-case analysis.
We show in our empirical evaluations that an even smaller
d leads to better accuracy in practice for real-life instances.

There is a way to improve the accuracy even further by
generating multiple FSketch using several independently
generated internal variables and combining the estimates
obtained from each. We observed that the median of the
estimates can serve as a good statistic, both theoretically
and empirically. We discuss this in detail in Appendix H.

3.4 Complexity analysis

The results in the previous section show that the accuracy

of the estimator ĥ can be tightened, or a smaller probability
of error can be achieved, by choosing large values of p
which has a downside of a larger storage requirement. In
this section, we discuss these dependencies and other factors
that affect the complexity of our proposal.

The USP of FSketch is its efficiency. There are two
major operations with respect to FSketch— construction
of sketches and estimation of Hamming distance from two
sketches. Their time and space requirements are given in the
following table and explained in detail in Appendix C.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 2
Space savings offered by FSketch on an example scenario with 220 data points, each of 210 dimensions but having only 27 non-zero entries

where non-zero entry belongs to one of 23 categories. FSketch dimension is 29 (as prescribed theoretically) and its parameter p is close to 25. (*)
The data required to construct the sketches is no longer required after the construction.

Uncompressed Compressed
Naive Sparse vector format FSketch construction (*) Storage of sketches

220 × 210 × 3 220 × 27 × (log 23 + log 210) 210 × (log 29 + log 25) + 5 220 × log(25)

Construction Estimation
time per sketch O(n) time per pair O(d log p)
space per sketch O(d log p)

We are aware of efficient representations of sparse data
vectors, but for the sake of simplicity we assume full-size
arrays to store vectors in this table; similarly, we assume
simple dictionaries for storing the internal variables ρ,R
and p. While it may be possible to reduce the number of
random bits by employing k-wise independent bits and
mappings, we left it out of the scope of this work.

Both the operations are quite fast compared to the
matrix-based and learning-based methods. There is very
little space overhead too; we explain the space requirement
with the help of an example in Table 2 — one should keep
in mind that a sparse representation of a vector has to store
the non-zero entries as well as their positions in it.

Apart from the efficiency in both time and space mea-
sures, FSketch provides additional benefits. Recall that
each entry of an FSketch is an integral value from 0 to
p−1. Even though 0 does not necessarily indicate a missing
feature in a compressed vector, we show below that 0 has
a predominant presence in the sketches. The sketches can
therefore be treated as sparse vectors that further facilitates
their efficient storage.

Lemma 10. If d = 4σ (as required by Lemma 8), then the
expected number of non-zero entries of φ(x) is upper bounded
by d

4 . Further, at least 50% of φ(x) will be zero with probability
at least 1

2 .

The lemma can be proved using a balls-and-bins type
analysis (see Appendix D for the entire proof).

3.5 Sketch updating

Imagine a situation where the categories of attributes can
change dynamically, and they can both “increase”, “de-
crease” or even “vanish”. We present Algorithm 2 to in-
corporate such changes without recomputing the sketch afresh.
The algorithm simply uses the formula for a sketch entry as
given in Observation 2.

Most hashing-based sketching and dimensionality re-
duction algorithms that we have encountered either require
complete regeneration of φ(x) when some attributes of x
change or are able to handle addition of previously missing
attributes but not their removal.

4 EXPERIMENTS

We performed our experiments on a machine having In-
tel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 94 GB RAM,
and running a Ubuntu 64-bits OS.

We first study the effect of the internal parameters of
our proposed solution on its performance. We start with the

Algorithm 2 Update sketch σ(x) of x after i-th attribute of
x changes from v to v′

input: data vector x and its existing sketch φ(x) =
〈φ1(x), φ2(x), . . . φd(x)〉

input: change xi : v 7→ v′ ⊲ v′ can be any value in
{0, 1, . . . , c}

parameters: ρ,R = [r1 . . . rn], p (same as that was used
for generating the sketch)

1: j = ρ(i)
2: update φ(x) =

(
φj(x) + (v′ − v) · ri

)
mod p

3: return updated φ(x)

effect of the prime number p; then we compare FSketch

with the appropriate baselines for several unsupervised
data-analytic tasks (see Table 5) and objectively establish
these advantages of FSketch over the others.

(a) Significant speed-up in the dimensionality reduction
time,

(b) considerable savings in the time for the end-tasks (e.g.,
clustering) which now runs on the low-dimensional
sketches,

(c) but with comparable accuracy of the end-tasks (e.g.,
clustering).

Several baselines threw out-of-memory errors or did not
stop on certain datasets. We discuss the errors separately in
Section F in Appendix.

4.1 Dataset description

The efficacy of our solution is best described for high-
dimensional datasets. Publicly available categorical datasets
being mostly low-dimensional, we treated several integer-
valued freely available real-world datasets as categorical.
Our empirical evaluation was done on the following seven
such datasets with dimensions between 5000 and 1.3 mil-
lion, and sparsity from 0.07% to 30%.

• Gisette Data Set [47], [48]: This dataset consists
of integer feature vectors corresponding to images
of handwritten digits and was constructed from the
MNIST data. Each image, of 28 × 28 pixels, has been
pre-processed (to retain the pixels necessary to disam-
biguate the digit 4 from 9) and then projected onto a
higher-dimensional feature space represented to con-
struct a 5000-dimension integer vector.

• BoW (Bag-of-words) [47], [49]: We consider the
following five corpus – NIPS full papers, KOS blog
entries, Enron Emails, NYTimes news articles, and
tagged web pages from the social bookmarking site
delicious.com. These datasets are “BoW”(Bag-of-
words) representations of the corresponding text cor-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3
Datasets

Datasets Categories Dimension Sparsity No. of points
Gisette [47], [48] 999 5000 1480 13500
Enron Emails [47] 150 28102 2021 39861
DeliciousMIL [47], [49] 58 8519 200 12234
NYTimes articles [47] 114 102660 871 10000
NIPS full papers [47] 132 12419 914 1500
KOS blog entries [47] 42 6906 457 3430
Million Brain Cells from E18 Mice [50] 2036 1306127 1051 2000

TABLE 4
13 baselines

1. SSD Sketching via Stable Distribution [51]
2. OHE One Hot Encoding+BinSketch [17]
3. FH Feature Hashing [20]
4. SH Signed-random projection/SimHash [21]
5. KT Kendall rank correlation coefficient [14]
6. LSA Latent Semantic Analysis [32]
7. LDA Latent Dirichlet Allocation [33]
8. MCA Multiple Correspondence Analysis [28]
9. NNMF Non-neg. Matrix Factorization [34]

10. PCA Vanilla Principal component analysis
11. VAE Variational autoencoder [52]
12. CATPCA Categorical PCA [53]
13. HCA Hierarchical Cluster Analysis [53]

pora. In all these datasets, the attribute takes integer
values which we consider as categories.

• 1.3 Million Brain Cell Dataset [50]: This
dataset contains the result of a single cell RNA-
sequencing (scRNA-seq) of 1.3 million cells captured
and sequenced from an E18.5 mouse brain 1.
Each gene represents a data point and for every
gene, the dataset stores the read-count of that gene
corresponding to each cell – these read-counts form
our features.

We chose the last dataset due to its very high di-
mension and the earlier ones due to their popularity in
dimensionality-reduction experiments. We consider all the
data points for KOS, Enron, Gisette, DeliciousMIL, a 10, 000
sized sample for NYTimes, and a 2000 sized samples for
BrainCell. We summarise the dimensionality, the number of
categories, and the sparsity of these datasets in the Table 3.

4.2 Baselines

Recall that FSketch (hence Median-FSketch) compresses
categorical vectors to shorter categorical vectors in an unsuper-
vised manner that “preserves” Hamming distances.

Our first baseline is based on one-hot-encoding (OHE)
which is one of the most common methods to convert
categorical data to a numeric vector and can approximate
pairwise Hamming distance (refer to Appendix A). Since
OHE actually increases the dimension to very high levels
(e.g., the dimension of the binary vectors obtained by en-
coding the NYTimes dataset is 11, 703, 240), the best way
to use it is by further compressing the one-hot encoded
vectors. For empirical evaluation we applied BinSketch [17]
which is the state-of-the-art binary-to-binary dimensionality
reduction technique that preserves Hamming distance. We

1. https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.3.0/1M neurons

refer to the entire process of OHE followed by BinSketch
simply by OHE in the rest of this section.

To the best of our knowledge, there is no sketching al-
gorithm other than OHE that compresses high-dimensional
categorical vectors to low-dimensional categorical (or in-
teger) vectors that preserves the original pairwise Ham-
ming distances. Hence, we chose as baseline state-of-the-
art and popularly employed algorithms that either preserve
Hamming distance or output discrete-valued sketches (pre-
serving some other similarity measure). We list them in
Table 4 and tabulate their characteristic in Table 5. Their
implementation details are discussed in Appendix E.1.

We include Kendall rank correlation coefficient (KT) [14]
– a feature selection algorithm which generates discrete val-
ued sketches. Note that if we apply Feature Hashing (FH),
SimHash (SH), and KT naively on categorical datasets, we
get discrete valued sketches on which Hamming distance
can be computed.We also include a few other well known
dimensionality reduction methods such as Principal com-
ponent analysis (PCA), Non-negative Matrix Factorisation
(NNMF) [34], Latent Dirichlet Allocation (LDA) [33], La-
tent Semantic Analysis (LSA) [32], Variational Autoencoder
(VAE) [52], Categorical PCA (CATPCA) [53], Hierarchical
Cluster Analysis (HCA) [53] all of which output real-valued
sketches.

4.3 Choice of p

We discussed in Section 3 that a larger value of p (a
prime number) leads to a tighter estimation of Hamming
distance but degrades sketch sparsity, which negatively
affects performance at multiple fronts, and moreover, de-
mands more space to store a sketch. We conducted an
experiment to study this trade-off, where we ran our pro-
posal with different values of p, and computed the cor-
responding RMSE values. The RMSE is defined as the
square-root of the average error, among all pairs of data
points, between their actual Hamming distances and the
corresponding estimate obtained via FSketch. Note that a
lower RMSE indicates that the sketch correctly estimates the
underlying pairwise Hamming distance. We also note the
corresponding space overhead which is defined as the ratio
of the space used by uncompressed vector and its sketch
obtained from FSketch. We consider storing a data point
in a typical sparse vector format – a list of non-zero entries
and their positions (see Table 2). We summarise our results
in Figures 4 and 5, respectively. We observe that a large
value of p leads to a lower RMSE (in Figure 4), however
simultaneously it leads to a smaller space compression
(Figure 5). As a heuristic, we decided to set p as the next
prime after c as shown in this table.

Brain cell 2039 NYTimes 127 Enron 151
KOS 43 Delicious 59 Gisette 1009
NIPS 137

That said, the experiments reveal that, at least for the
datasets in the above experiments, setting p to be at least c/4
may be practically sufficient, since there does not appear to
be much advantage in using a larger p.

4.4 Variance of FSketch

In Section 3.3 we explained that the bias of our estimator is
upper bounded with a high likelihood. However, there re-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

100 1000 2500 5000
Reduced Dimension

102RM
SE

NIPS
p=2
p=17
p=29
p=47
p=67
p=137
p=139

100 1000 2500 5000
Reduced Dimension

101

102

Enron
p=2
p=17
p=31
p=53
p=79
p=151
p=211

100 1000 2500 5000
Reduced Dimension

101

102

103
NYTimes

p=2
p=13
p=31
p=41
p=59
p=127
p=157

100 1000 2500 5000
Reduced Dimension

103

GISETTE
p=2
p=61
p=151
p=337
p=503
p=1009
p=1361

Fig. 4. Comparison of RMSE measure obtained from FSketch algorithm on various choices of p. Values of c for NIPS, Enron, NYTimes, and
GISETTE are 132, 150, 114, and 999, respectively.

1000 2500 5000
Reduced Dimension

1

10

100

Sp
ac

e
Ef

fic
ie

nc
y

NIPS
p=2
p=17
p=29
p=47
p=67
p=137
p=139

1000 2500 5000
Reduced Dimension

1

10

100 Enron
p=2
p=17
p=31
p=53
p=79
p=151
p=211

1000 2500 5000
Reduced Dimension

1

10

100 NYTimes
p=2
p=13
p=31
p=41
p=59
p=127
p=157

1000 2500 5000
Reduced Dimension

1

10

100 GISETTE
p=2
p=61
p=151
p=337
p=503
p=1009
p=1361

Fig. 5. Space overhead of uncompressed vectors stored as a list of non-zero entries and their positions. Y -axis represents the ratio of the space
used by uncompressed vector to that obtained from FSketch.

50 100 500 1000 3000 5000
Reduced Dimension

60

40

20

0

20

H
am

m
in

g
Er

ro
r

FSketch

50 100 500 1000 3000 5000
Reduced Dimension

0

20

40

60

80

H
am

m
in

g
Er

ro
r

FH

50 100 500 1000 3000 5000
Reduced Dimension

2500

2000

1500

1000

500

0

H
am

m
in

g
Er

ro
r

SH

50 100 500 1000 3000 5000
Reduced Dimension

100

50

0

50

H
am

m
in

g
Er

ro
r

SSD

50 100 500 1000 3000 5000
Reduced Dimension

50

0

50

100

150

200
H

am
m

in
g

Er
ro

r

OHE

Fig. 6. Comparison of avg. error in estimating Hamming distance of a pair of points from the Enron dataset.

100 1000 2500 5000
Reduced Dimension

100

101

102

103

104

Ti
m

e
(S

ec
on

ds
)

Brain Cell

100 1000 2500 5000
Reduced Dimension

100

101

102

103

104

NYTimes

100 1000 2500 5000
Reduced Dimension

100

101

102

103

104

Enron

100 1000 2500 5000
Reduced Dimension

10 1

100

101

102

103

104

KOS FSketch
FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
CATPCA
HCA

Fig. 7. Comparison among the baselines on the dimensionality reduction time. See Appendix G for results on the other datasets which show a
similar trend and Section F for the errors encountered by some baselines.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 5
Summarisation of the baselines.

Characteristics FSketch FH SH SSD OHE KT NNMF MCA LDA LSA PCA VAE CATPCA HCA

Output
discrete
sketch

✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Output
real-
valued
sketch

✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Approximating
distance
measure

Hamming
Dot
product

Cosine Hamming Hamming NA NA NA NA NA NA NA NA NA

Require
labelled
data

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Dependency
on the size
of sample *

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

End tasks
comparison

All All All All All All
Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

Clustering,
Similarity
Search

* The size of the maximum possible reduced dimension is the minimum of the number of data points and the dimension.

TABLE 6
Speedup of FSketch w.r.t. baselines on the reduced dimension 1000. OOM indicates “out-of-memory error” and DNS indicates “did not stop” after a

sufficiently long time.

Dataset OHE KT NNMF MCA LDA LSA PCA VAE SSD SH FH CATPCA HCA

NYTimes OOM OOM 6149× OOM 189× 11.5× 88.14× 4340× 164.9× 1.2× 0.99× DNS DNS

Enron OOM DNS 2624× OOM 122× 15.5× OOM DNS 25.5× 1.25× 0.87× DNS 1268.2×
KOS 629× 14455× 1754× 20.41× 128× 6.40× 9.5× 1145× 14.62× 0.79× 0.98× DNS 81.24×
DeliciousMIL 1332× 14036× 1753× 40.39× 136× 6.6× 18.1× 1557× 29.2× 0.61× 0.90× DNS 117.6×
Gisette 399× 1347× 459× 5.7× 269× 5.4× 4.2× 285× 8.1× 0.69× 0.98× DNS 16.78×
NIPS 378× 15863× 1599× 26.6× 302× 6.4× 3.17× 451× 29.9× 0.47× 1.20× DNS 58.49×
Brain Cell OOM OOM DNS OOM 322× 79.38× 62.7× 1198× 443× 5× 0.89× DNS DNS

100 1000 2500 5000
Reduced Dimension

101

102

103

RM
SE

Brain Cell

100 1000 2500 5000
Reduced Dimension

101

102

103

NYTimes

100 1000 2500 5000
Reduced Dimension

101

102

103

Enron

100 1000 2500 5000
Reduced Dimension

101

102

103

KOS

FSketch
FH
SH
SSD
OHE
KT
HCA

Fig. 8. Comparison on RMSE among baselines. A lower value is an indication of better performance. See Appendix G for results on the other
datasets which show a similar trend.

mains the question of its variance. To decide the worthiness
of our method, we compared the variance of the estimates
of the Hamming distance obtained from FSketch and from
the other randomised sketching algorithms with integer-
valued sketches (KT was not included as it is a deterministic
algorithm, and hence, has zero variance).

Figure 6 shows the Hamming error (estimation error) for
a randomly chosen pair of points from the Enron dataset,
averaged over 100 iterations. We make two observations.

First is that the estimate using FSketch is closer to
the actual Hamming distance even at a smaller reduced
dimension; in fact, as the reduced dimension is increased,
the variance becomes smaller and the Hamming error con-
verges to zero. Secondly, FSketch causes a smaller error
compared to the other baselines. On the other hand, fea-
ture hashing highly underestimates the actual Hamming
distance, but has low variance, and tends to have negligible
Hamming error with an increase of the reduced dimen-

sion. The behaviour of SimHash is counter-intuitive as on
lower reduced dimensions it closely estimates the actual
Hamming distances, but on larger dimensions it starts to
highly underestimate the actual Hamming distances. This
creates an ambiguity on the choice of a dimension for
generating a low-dimensional sketch of a dataset.Similar
to FSketch, the sketches produced by SSD, though real-
valued, allow estimation of pairwise Hamming distances.
However the estimation error increases with the reduced
dimension. Lastly, OHE seems to be highly underestimating
pairwise Hamming distances.

4.5 Speedup in dimensionality reduction

We compress the datasets to several dimensions using
FSketch and the baselines and report their running times
in Figure 7. We notice that FSketch has a comparable
speed w.r.t. Feature hashing and SimHash, and is signifi-
cantly faster than the other baselines. However, both feature

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 7
Speedup from running tasks on 1000-dimensional sketches instead of

the full dimensional dataset. We got a DNS error while running
clustering on the uncompressed BrainCell dataset.

Task Brain cell NYTimes Enron NIPS KOS Gisette DeliciousMIL

Clustering NA 139.64× 21.15× 10.6× 3.93× 4.35× 5.84×
Similarity Search 1231.6× 118.12× 48.15× 15.1× 10.56× 8.34× 17.76×

hashing and SimHash are not able to accurately estimate the
Hamming distance between data points and hence perform
poorly on RMSE measure (Subsection 4.6) and the other
tasks. Many baselines such as OHE, KT, NNMF, MCA,
CATPCA, HCA give “out-of-memory” (OOM) error, and also
didn’t stop (DNS) even after running for a sufficiently long
time (∼ 10 hrs) on high dimensional datasets such as Brain
Cell and NYTimes. On other moderate dimensional datasets
such as Enron and KOS, our speedup w.r.t. these baselines
are of the order of a few thousand. We report the numerical
speedups that we observed in Table 6.

4.6 Performance on root-mean-squared-error (RMSE)

How good are the sketches for estimating Hamming dis-
tances between the uncompressed points in practice? To an-
swer this, we compare FSketch with integer-valued sketch-
ing algorithms, namely, feature hashing, SimHash, Kendall
correlation coefficient and OHE+BinSketch. Note that fea-
ture hashing and SimHash are known to approximate inner
product and cosine similarity, respectively. However, we
consider them in our comparison nonetheless as they output
discrete sketches and Hamming distance can be computed
on their sketch. We also include SSD for comparison which
outputs real-valued sketches and estimates original pairwise
Hamming distance. For each of the methods we compute
its RMSE as the square-root of the average error, among
all pairs of data points, between their actual Hamming
distances and their corresponding estimates (for FSketch
the estimate was obtained using Definition 5). Figure 8
compares these values of RMSE for different dimensions;
note that a lower RMSE is an indication of better perfor-
mance. It is immediately clear that the RMSE of FSketch
is the lowest among all; furthermore, it falls to zero rapidly
with increase in reduced dimension. This demonstrates that
our proposal FSketch estimates the underlying pairwise
Hamming distance better than the others.

4.7 Performance on clustering

We compare the performance of FSketch with baselines
on the task of clustering and similarity search, and present
the results for the first task in this section. The objective
of the clustering experiment was to test if the data points
in the reduced dimension maintain the original clustering
structure. If they do, then it will be immensely helpful for
those techniques that use a clustering, e.g., spam filtering.
We used the purity index to measure the quality of k-mode
and k-means clusters on the reduced datasets obtained
through the compression algorithms; the ground truth was
obtained using k-mode on the uncompressed data (for more
details refer to Appendix E.2).

We summarise our findings on quality in Figure 9. The
compressed versions of the NIPS, Enron, and KOS datasets
that were obtained from FSketch yielded the best purity
index as compared to those obtained from the other base-
lines; for the other datasets the compressed versions from
FSketch are among the top. Even though it appears that KT
offers comparable performance on the KOS, DeliciousMIL,
and Gisette datasets w.r.t. FSketch, the downside of using
KT is that its compression time is much higher than that
of FSketch (see Table 6) on those datasets, and moreover
it gives OOM/DNS error on the remaining datasets. Per-
formance of FH also remains in the top few. However, its
performance degrades on the NIPS dataset.

We tabulate the speedup of clustering of FSketch-
compressed data over uncompressed data in Table 7 where
we observe significant speedup in the clustering time, e.g.,
139× when run on a 1000 dimensional FSketch.

Recall that the dimensionality reduction time of our
proposal is among the fastest among all the baselines which
further reduces the total time to perform clustering by
speeding up the dimensionality reduction phase. Thus the
overall observation is that FSketch appears to be the most
suitable method for clustering among the current alterna-
tives, especially, for high-dimensional datasets on which
clustering would take a long time.

4.8 Performance on similarity search

We take up another unsupervised task – that of similarity
search. The objective here is to show that after dimensional-
ity reduction the similarities of points with respect to some
query points are maintained. To do so, we randomly split
the dataset in two parts 5% and 95% – the smaller partition
is referred to as the query partition and each point of this
partition is called a query vector; we call the larger partition
as training partition. For each query vector, we find top-k
similar points in the training partition. We then perform
dimensionality reduction using all the methods (for various
values of reduced dimensions). Next, we process the com-
pressed dataset where, for each query point, we compute the
top-k similar points in the corresponding low-dimensional
version of the training points, by maintaining the same
split. For each query point, we compute the accuracy of
baselines by taking the Jaccard ratio between the set of
top-k similar points obtained in full dimensional data with
the top-k similar points obtained in reduced dimensional
dataset. We repeat this for all the points in the querying
partition, compute the average, and report this as accuracy.

We summarise our findings in Figure 10. Note that PCA,
MCA and LSA can reduce the data dimension up to the
minimum of the number of data points and the original data
dimension. Therefore their reduced dimension is at most
2000 for Brain cell dataset.

The top few methods appear to be feature hashing (FH),
Kendall-Tau (KT), HCA along with FSketch. However,
KT give OOM and DNS on the Brain cell, NYTimes and
Enron datasets, and HCA give DNS error on BrainCell and
NYTimes datasets. Ffurther, their dimensionality reduction
time are much worse than FSketch (see Table 6).

FSketch outperforms FH on the BrainCell and the
Enron datasets; however, on the remaining datasets, both

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

100 1000 2500 5000
Reduced Dimension

0.90

0.92

0.94

0.96

0.98

1.00
Pu

rit
y

In
de

x
Enron (k = 7)

100 1000 2500 5000
Reduced Dimension

0.82

0.84

0.86

0.88

0.90

0.92

0.94
KOS (k =3)

100 1000 2500 5000
Reduced Dimension

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94 DeliciousMIL (k = 5)

100 1000 2500 5000
Reduced Dimension

0.42

0.44

0.46

0.48

0.50
NIPS (K=5) FSketch

FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
CATPCA
HCA

Fig. 9. Comparing the quality of clusters on the compressed datasets. See Appendix G for results on the other datasets which show a similar trend.

100 1000 2500 5000
Reduced Dimension

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Brain Cell

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

1.0 NYTimes

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

Enorn

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

NIPS FSketch
FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
CATPCA
HCA

Fig. 10. Comparing the performance of the similarity search task (estimating top-k similar points with k = 100) achieved on the reduced dimensional
data obtained from various baselines. See Appendix G for results on the other datasets which show a similar trend.

of them appear neck to neck for similarity search despite
the fact that there is no known theoretical understanding
of FH for Hamming distance — in fact, it was included in
the baselines as a heuristic because it offers discrete-valued
sketches on which Hamming distance can be calculated.
Here want to point out that FH was not a consistent top-
performer for clustering and similarity search.

The two other methods that are designed for Hamming
distance, namely SSD and OHE, perform significantly worse
than FSketch; in fact, the accuracy of OHE lies almost to the
bottom on all the four datasets.

We also summarise the speedup of FSketch-
compressed data over uncompressed data, on similarity
search task, in Table 7. We observe a significant speedup
– e.g. 1231.6× speedup on the BrainCell dataset when run
on a 1000 dimensional FSketch.

To summarise, FSketch is one of the best approaches
towards similarity search for high-dimensional datasets and
the best if we also require theoretical guarantees or applica-
bility towards other data analytic tasks.

5 CONCLUSION

In this paper, we proposed a sketching algorithm named
FSketch for sparse categorical data such that the Ham-
ming distances estimated from the sketches closely approx-
imate the original pairwise Hamming distances. The low-
dimensional data obtained by FSketch are discrete-valued,
and therefore, enjoy the flexibility of running the data ana-
lytics tasks suitable for categorical data. The sketches allow
tasks like clustering, similarity search to run which might
not be possible on a high-dimensional dataset.

Our method does not require learning from the dataset
and instead, exploits randomization to bring forth large
speedup and high-quality output for standard data ana-
lytic tasks. We empirically validated the performance of

our algorithm on several metric and end tasks such as
RMSE, clustering, similarity search, and observed compa-
rable performance while simultaneously getting significant
speed up in dimensionality reduction and end-task with
respect to several baselines. A common practice to analyse
high-dimensional datasets is to partition them into smaller
datasets. Given the simplicity, efficiency, and effectiveness
of our proposal, we hope that FSketch will allow such
analysis to be done on the full datasets and on general-
purpose hardware.

REFERENCES

[1] J. Moody, D. T. (eds, M. Kaufmann, M. O. Noordewier, G. G.
Towell, and J. W. Shavlik, “Training knowledge-based neural
networks to recognize genes in dna sequences,” 1991.

[2] T. Rognvaldsson, L. You, and D. Garwicz, “State of the art pre-
diction of hiv-1 protease cleavage sites,” Bioinformatics (Oxford,
England), vol. 31, 2014.

[3] W. Hämäläinen and M. Nykänen, “Efficient discovery of statis-
tically significant association rules,” in 2008 Eighth IEEE Interna-
tional Conference on Data Mining, 2008, pp. 203–212.

[4] J. Lavergne, R. Benton, and V. V. Raghavan, “Min-max itemset
trees for dense and categorical datasets,” in Foundations of Intel-
ligent Systems, L. Chen, A. Felfernig, J. Liu, and Z. W. Raś, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 51–60.

[5] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between sets of items in large databases,” in SIGMOD ’93:
Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, 1993, pp. 207–216.

[6] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, “Visu-
alization of navigation patterns on a web site using model-based
clustering,” in Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2000, pp. 280–
284.

[7] L. Kurgan, K. Cios, R. Tadeusiewicz, M. Ogiela, and L. Goodenday,
“Knowledge discovery approach to automated cardiac spect diag-
nosis,” Artificial intelligence in medicine, vol. 23, pp. 149–69, 2001.

[8] S. Sidana, C. Laclau, and M.-R. Amini, “Learning to recommend
diverse items over implicit feedback on pandor,” 2018, pp. 427–
431.

[9] J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data
for neural networks,” Journal of Big Data, vol. 7, pp. 1–41, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[10] R. G. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional
models for dimensionality reduction and signal recovery: A ge-
ometric perspective,” Proceedings of the IEEE, vol. 98, no. 6, pp.
959–971, 2010.

[11] L. H. Nguyen and S. Holmes, “Ten quick tips for effective dimen-
sionality reduction,” PLOS Computational Biology, vol. 15, no. 6, pp.
1–19, 2019.

[12] H. Liu and R. Setiono, “Chi2: feature selection and discretization
of numeric attributes,” in Seventh International Conference on
Tools with Artificial Intelligence, ICTAI ’95, Herndon, VA, USA,
November 5-8, 1995, 1995, pp. 388–391. [Online]. Available:
https://doi.org/10.1109/TAI.1995.479783

[13] H. Peng, F. Long, and C. H. Q. Ding, “Feature selection
based on mutual information: Criteria of max-dependency,
max-relevance, and min-redundancy,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 8, pp. 1226–1238, 2005. [Online].
Available: https://doi.org/10.1109/TPAMI.2005.159

[14] M. G. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1/2, pp. 81–93, 1938.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[16] D. Becker, “Using categorical data with one hot encoding,”
2018. [Online]. Available: https://www.kaggle.com/dansbecker/
using-categorical-data-with-one-hot-encoding

[17] R. Pratap, D. Bera, and K. Revanuru, “Efficient sketching
algorithm for sparse binary data,” in 2019 IEEE International
Conference on Data Mining, ICDM 2019, Beijing, China, November
8-11, 2019, 2019, pp. 508–517. [Online]. Available: https:
//doi.org/10.1109/ICDM.2019.00061

[18] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation
for high similarities using odd sketches,” in 23rd International
World Wide Web Conference, WWW ’14, Seoul, Republic of
Korea, April 7-11, 2014, 2014, pp. 109–118. [Online]. Available:
http://doi.acm.org/10.1145/2566486.2568017

[19] R. Pratap, I. Sohony, and R. Kulkarni, “Efficient compression
technique for sparse sets,” in Advances in Knowledge Discovery
and Data Mining - 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III,
2018, pp. 164–176. [Online]. Available: https://doi.org/10.1007/
978-3-319-93040-4 14

[20] K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola,
and J. Attenberg, “Feature hashing for large scale multitask
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, ICML 2009, Montreal, Quebec, Canada,
June 14-18, 2009, 2009, pp. 1113–1120. [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553516

[21] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proceedings on 34th Annual ACM Symposium on
Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
2002, pp. 380–388. [Online]. Available: http://doi.acm.org/10.
1145/509907.509965

[22] A. Zheng and A. Casari, Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. O’Reilly Media,
2018. [Online]. Available: https://books.google.co.in/books?id=
sthSDwAAQBAJ

[23] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz
mappings into a hilbert space,” Conference in modern analysis
and probability (New Haven, Conn., 1982), Amer. Math. Soc.,
Providence, R.I., pp. 189–206, 1983. [Online]. Available: http:
//dx.doi.org/10.1016/S0022-0000(03)00025-4

[24] D. Achlioptas, “Database-friendly random projections: Johnson-
lindenstrauss with binary coins,” J. Comput. Syst. Sci., vol. 66,
no. 4, pp. 671–687, 2003. [Online]. Available: http://dx.doi.org/
10.1016/S0022-0000(03)00025-4

[25] P. Li, T. Hastie, and K. W. Church, “Very sparse random
projections,” in Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Philadelphia, PA, USA, August 20-23, 2006, 2006, pp. 287–296.
[Online]. Available: https://doi.org/10.1145/1150402.1150436

[26] D. M. Kane and J. Nelson, “Sparser johnson-lindenstrauss
transforms,” J. ACM, vol. 61, no. 1, pp. 4:1–4:23, 2014. [Online].
Available: https://doi.org/10.1145/2559902

[27] B. Schölkopf, A. J. Smola, and K. Müller, “Kernel principal com-
ponent analysis,” in Artificial Neural Networks - ICANN ’97, 7th

International Conference, Lausanne, Switzerland, October 8-10, 1997,
Proceedings, 1997, pp. 583–588.

[28] J. Blasius and M. Greenacre, “Multiple correspondence analysis
and related methods,” Multiple Correspondence Analysis and Related
Methods, 2006.

[29] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, 1998, pp. 604–613.

[30] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations (extended abstract),” in
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of
Computing, Dallas, Texas, USA, May 23-26, 1998, 1998, pp. 327–336.
[Online]. Available: http://doi.acm.org/10.1145/276698.276781

[31] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” in VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, 1999, pp. 518–529. [Online].
Available: http://www.vldb.org/conf/1999/P49.pdf

[32] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” JOURNAL
OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE,
vol. 41, no. 6, pp. 391–407, 1990.

[33] D. M. Blei, A. Y. Ng, M. I. Jordan, and J. Lafferty, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3, p. 2003,
2003.

[34] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization.” in NIPS, T. K. Leen, T. G. Dietterich, and V. Tresp,
Eds., 2000, pp. 556–562.

[35] E. Golinko and X. Zhu, “Generalized feature embedding for
supervised, unsupervised, and online learning tasks,” Information
Systems Frontiers, vol. 21, no. 1, pp. 125–142, 2019.

[36] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[37] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[38] X. Li, M. Chen, and Q. Wang, “Discrimination-aware projected
matrix factorization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 32, no. 4, pp. 809–814, 2020.

[39] X. Zhang, Q. Mai, and H. Zou, “The maximum separation
subspace in sufficient dimension reduction with categorical
response,” Journal of Machine Learning Research, vol. 21, no. 29,
pp. 1–36, 2020. [Online]. Available: http://jmlr.org/papers/v21/
17-788.html

[40] X. Chen, H. Yang, S. Zhao, M. R. Lyu, and I. King, “Effective
data-aware covariance estimator from compressed data,” IEEE
Trans. Neural Networks Learn. Syst., vol. 31, no. 7, pp. 2441–2454,
2020. [Online]. Available: https://doi.org/10.1109/TNNLS.2019.
2929106

[41] Q. Wang, Z. Qin, F. Nie, and X. Li, “C2dnda: A deep framework
for nonlinear dimensionality reduction,” IEEE Transactions on In-
dustrial Electronics, vol. 68, no. 2, pp. 1684–1694, 2021.

[42] M. Banerjee and N. R. Pal, “Unsupervised feature selection with
controlled redundancy (ufescor),” IEEE Transactions on Knowledge
and Data Engineering, vol. 27, no. 12, pp. 3390–3403, 2015.

[43] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, “Compar-
ing data streams using hamming norms (how to zero in),” IEEE
Trans. Knowl. Data Eng., vol. 15, no. 3, pp. 529–540, 2003.

[44] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm
for the distinct elements problem,” in Proceedings of the Twenty-
Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana,
USA, 2010, pp. 41–52.

[45] R. Freivalds, “Probabilistic machines can use less running time,”
in IFIP Congress, 1977.

[46] M. Mitzenmacher and E. Upfal, Probability and computing - random-
ized algorithms and probabilistic analysis, 2005.

[47] M. Lichman, “UCI machine learning repository,” 2013.
[48] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of

the nips 2003 feature selection challenge,” in Advances in Neural
Information Processing Systems 17, 2005, pp. 545–552.

[49] H. Soleimani and D. J. Miller, “Semi-supervised multi-label topic
models for document classification and sentence labeling,” in
Proceedings of the 25th ACM International Conference on Information
and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,
October 24-28, 2016, 2016, pp. 105–114. [Online]. Available:
https://doi.org/10.1145/2983323.2983752

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[50] X. Genomics, “1.3 million brain cells from e18 mice,” CC BY, vol. 4,
2017.

[51] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan, “Compar-
ing data streams using hamming norms (how to zero in),” IEEE
Trans. Knowl. Data Eng., vol. 15, no. 3, pp. 529–540, 2003.

[52] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
in 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceed-
ings, 2014.

[53] Z. Sulc and H. Rezanková, “Dimensionality reduction of categori-
cal data: Comparison of hca and catpca approaches,” 2015.

[54] C. McDiarmid, On the method of bounded differences, ser. London
Mathematical Society Lecture Note Series. Cambridge University
Press, 1989, p. 148–188.

[55] Z. Huang, “Extensions to the k-means algorithm for clustering
large data sets with categorical values,” Data Mining and
Knowledge Discovery, vol. 2, no. 3, pp. 283–304, 1998. [Online].
Available: https://doi.org/10.1023/A:1009769707641

[56] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: the count-min sketch and its applications,” J.
Algorithms, vol. 55, no. 1, pp. 58–75, 2005. [Online]. Available:
https://doi.org/10.1016/j.jalgor.2003.12.001

[57] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” Theoretical Computer Science, vol. 312, no. 1,
pp. 3 – 15, 2004, automata, Languages and Programming.

[58] P. Indyk, “Stable distributions, pseudorandom generators,
embeddings, and data stream computation,” J. ACM, vol. 53,
no. 3, pp. 307–323, 2006. [Online]. Available: http://doi.acm.org/
10.1145/1147954.1147955

[59] R. Fisher, “The statistical utilization of multiple measurements,”
Annals of Eugenics, vol. 8, pp. 376–386, 1938.

[60] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum descrip-
tion length and helmholtz free energy,” in Proceedings of the 6th In-
ternational Conference on Neural Information Processing Systems, ser.
NIPS’93. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993, p. 3–10.

[61] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and
G. Rätsch, “Kernel pca and de-noising in feature spaces,” in
Advances in Neural Information Processing Systems, M. Kearns,
S. Solla, and D. Cohn, Eds., vol. 11. MIT Press, 1999.
[Online]. Available: https://proceedings.neurips.cc/paper/1998/
file/226d1f15ecd35f784d2a20c3ecf56d7f-Paper.pdf

[62] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, p. 2319, 2000.

[63] T. Kohonen, “Self-organized formation of topologically correct
feature maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, Jan.
1982. [Online]. Available: http://dx.doi.org/10.1007/BF00337288

Debajyoti Bera received his B.Tech. in Com-
puter Science and Engineering in 2002 at In-
dian Institute of Technology (IIT), Kanpur, India
and his Ph.D. degree in Computer Science from
Boston University, Massachusetts, USA in 2010.
Since 2010 he is an assistant professor at In-
draprastha Institute of Information Technology,
(IIIT-Delhi), New Delhi, India. His research in-
terests include quantum computing, randomized
algorithms, and engineering algorithms for net-
works, data mining, and information security.

Rameshwar Pratap has earned Ph.D in Theo-
retical Computer Science in 2014 from Chennai
Mathematical Institute (CMI). Earlier, he com-
pleted Masters in Computer Application (MCA)
from Jawaharlal Nehru University and BSc in
Mathematics, Physics, and Computer Science
from University of Allahabad. Post Ph.D he has
worked TCS Innovation Labs (New Delhi, In-
dia), and Wipro AI-Research (Bangalore, India).
Since 2019 he is working as an assistant profes-
sor at School of Computing and Electrical Engi-

neering (SCEE), IIT Mandi. His research interests include algorithms for
dimensionality reduction, robust sampling, and algorithmic fairness.

Bhisham Dev Verma is pursuing Ph.D from
IIT Mandi. He has done his Masters in Ap-
plied Mathematics from IIT Mandi and BSc in
Mathematics, Physics, and Chemistry from Hi-
machal Pradesh University. His research interest
includes data mining, algorithms for dimension
reduction, optimization and machine learning.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

APPENDIX A

ANALYSIS OF ONE-HOT ENCODING + BINARY COM-

PRESSION

Let x and y be two n-dimensional categorical vectors with
sparsity at most σ; c will denote the maximum number of
values any attribute can take. Let x′ and y′ be the one-hot
encodings of x and y, respectively. Further, let x′′ and y′′

denote the compression of x′ and y′, respectively, using
BinSketch [17] which is the state-of-the-art dimensionality
reduction for binary vector using Hamming distance.

Observe that the sparsity of x′ is same as that of x and
a similar claim holds for y′ and y. However, HD(x′, y′)
does not hold a monotonic relationship with HD(x, y). It
is easy to show that HD(x, y) ≤ HD(x′, y′) ≤ 2HD(x, y).
Therefore,

|HD(x, y)−HD(x′, y′)| ≤ HD(x, y) ≤ 2σ. (4)

We need the following lemma that was used to analyse
BinSketch [17, Lemma 12,Appendix A].

Lemma 11. Suppose we compress two n′-dimensional binary
vectors x′ and y′ with sparsity at most σ to g-dimensional
binary sketches, denotes x′′ and y′′ respectively, by following an

algorithm proposed in the BinSketch work. If g is set to σ
√

σ
2 ln 6

δ

for any δ ∈ (0, 1), then the following holds with probability at
least 1− δ.

|HD(x′, y′)−HD(x′′, y′′)| ≤ 6
√

σ
2 ln 6

δ .

Combining the above inequality with that in Equation 4
gives us

|HD(x, y)−HD(x′′, y′′)| ≤ 2σ + 6
√

σ
2 ln 6

δ ≤ 2σ
√
ln 2

δ

if we set the reduced dimension to σ
√

σ
2 ln 6

δ .

This bound is worse compared to that of FSketch where

we able to prove an accuracy of Θ(
√
σ ln 2

δ) using reduced

dimension value of 4σ (see Lemma 8).

APPENDIX B

PROOFS FROM SECTION 3.3

Lemma 6. Let α denote a desired additive accuracy. Then, for
any x, y with sparsity σ,

Pr
[
|f − f∗| ≥ α

]
≤ 2 exp (−α2

4σ).

Proof. Fix any R and x, y; the rest of the proof applies to
any R, and therefore, holds for a random R as well. Define
a vector z ∈ {0,±1, . . . ,±c}n in which zi = (xi − yi); the
number of non-zero entries of z are at most 2σ since the
number of non-zero entries of x and y are at most σ. Let J0
be the set of coordinates from {1, . . . , n} at which z is 0, and
let J1 be the set of the rest of the coordinates; from above,
J1 ≤ 2σ.

Define the event Ej as “[φj(x) 6= φj(y)]”. Note that
f can be written as a sum of indicator random variables,∑

j I(Ej), and we would like to prove that f is almost
always close to f∗ = E[f].

Observe that φj(x) = φj(y) iff
∑

i∈ρ−1(j) zi · ri = 0
mod p iff

∑
i∈ρ−1(j)∩J1

zi · ri = 0 mod p. In other words,
ρ(i) could be set to anything for i ∈ J0 without any

effect on the event Ej ; hence, we will assume that the
mapping ρ is defined as a random mapping only for i ∈ J1,
and further for the ease of analysis, we will denote them
as ρ(i1), ρ(i2), . . . , ρ(i2σ) (if |J1| < 2σ then move a few
coordinates from J0 to J1 without any loss of correctness).

To prove the concentration bound we will employ mar-
tingales. Consider the sequence of these random variables
ρ′ = ρ(i1), ρ(i2), . . . , ρ(i2σ) – these are independent. Define
a function g(ρ′) of these random variables as a sum of
indicator random variables as stated below (note that R and
ρ(i), for i ∈ J0, are fixed at this point)

g(ρ(i1), ρ(i2), . . . ρ(i2σ))

=
∑

j

I

 ∑

i∈ρ−1(j)∩J1

zi · ri 6= 0 mod p

=
∑

j

I(Ej) = f

Now consider an arbitrary t ∈ {1, . . . , 2σ} and let
q = ρ(it); observe that zit influences only Eq . Choose an
arbitrary value q′ ∈ {1, . . . , d} that is different from q.
Observe that, if ρ is modified only by setting ρ(it) = q′

then we claim that “bounded difference holds”.

Proposition 12. | g(ρ(i1), . . . , ρ(it−1), q, . . . , ρ(i2σ)) −
g(ρ(i1), . . . , ρ(it−1), q

′, . . . , ρ(i2σ)) | ≤ 2.

The proposition holds since the only effects of the change
of ρ(it) from q to q′ are seen in Eq and Eq′ (earlier Eq

depended upon zit that now changes to Eq′ being depended
upon zit). Since g() obeys bounded difference, therefore, we
can apply McDiarmid’s inequality [46, Ch 17], [54].

Theorem 13 (McDiarmid’s inequality). Consider independent
random variables X1, . . . , Xm ∈ X , and a mapping f : Xm →
R which for all i and for all x1, . . . xm, xi

′ satisfies the property:
|f(x1, . . . , xi, . . . , xm) − f(x1, . . . , xi

′, . . . , xm)| ≤ ci, where
x1, . . . xm, xi

′ are possible values for the input variables of the
function f . Then,

Pr
[∣∣E[f(X1, . . . , Xm)− f(X1, . . . , Xm)]

∣∣ ≥ ε
]

≤ 2 exp

(−2ε2∑m
i=1 c

2
i

)
.

This inequality implies that, for every x, y,R,

Pr
ρ

[∣∣E[f]− f
∣∣ ≥ α

]
≤ 2 exp

(
− 2α2

(2σ)22

)
= exp

(
−α2

4σ

)
.

Hence, the lemma is proved.

Lemma 7. Pr[f ≥ dP] ≤ 2 exp(−P 2σ).

Proof. Since f∗ = dP (1 − Dh) = dP − dPDh, if f ≥ dP
then |f − f∗| ≥ dPDh.

Pr[f ≥ dP] ≤ Pr[|f − f∗| ≥ dPDh]

≤ 2 exp(−d2P 2D2h

4σ) (using Lemma 6)

= 2 exp(−P 2

4σ d
2(1− 1

d)
2h)

≤ 2 exp(−P 2

4σ (d− h)2) (∵ (1− 1
d)

h ≥ 1− h
d)

≤ 2 exp(−P 2σ) (∵
(d−h)2

4σ ≥ σ)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Here we have used the fact that h ≤ 2σ which, along with
the setting d = 4σ, implies that (d− h) ≥ 2σ.

Lemma 8. Choose d = 4σ as the dimension of FSketch and
choose a prime p and an error parameter δ ∈ (0, 1) (ensure that

1 − 1
p ≥ 4√

σ

√
ln 2

δ — see the proof for discussion). Then the

estimator defined in Definition 5 is close to the Hamming distance
between x and y with high probability, i.e.,

Pr
[
|ĥ− h| ≥ 32

1−1/p

√
σ ln 2

δ

]
≤ δ.

Proof. Denote |ĥ − h| by ∆h and let α =
√
d ln 2

δ . We will

prove that ∆h < 32
P

√
σ ln 2

δ for the case |f − f∗| ≤ α

which, by Lemma 6, happens with probability at least

(1− 2 exp (−α2

4σ)) = 1− δ.
First we make a few technical observations all of which

are based on standard inequalities of binomial series and
logarithmic functions. It will be helpful to remember that
D = 1− 1/d ∈ (0, 1).

Observation 14. For reasonable values of σ, and reasonable

values of δ, almost all primes satisfy the bound P ≥ 4√
σ

√
ln 2

δ .

We will assume this inequality to hold without loss of generality 2.

For example, p = 2 is sufficient for σ ≈ 1000 and δ ≈
0.001 (remember that P = 1− 1

p). Furthermore, observe that
P is an increasing function of p, and the right hand side is
a decreasing function of σ, increasing with decreasing delta
but at an extremely slow logarithmic rate.

Observation 15. dP
α > 4 can be assumed without loss of

generality. This holds since the left hand side is dP√
d
√

ln(2/δ)
=

P
√
d√

ln(2/δ)
≥ 4

√
d√
σ

(by Observation 14) which is at least 4.

Observation 16. Based on the above assumptions, f < dP .

Proof of Observation. We will prove that
√
d ln 2

δ < dPDh.

Since |f − f∗| ≤
√
d ln 2

δ and f∗ = dP (1 − Dh), it follows

that f ≤ f∗ +
√
d ln 2

δ < dP .

√
dPDh =

dPDh

√
d

≥ P√
d
d(1− 1

d)
h ≥ P√

d
d(1− h

d)

=
P√
d
(d− h) ≥ P√

d

d

2
(∵ h ≤ 2σ, d− h ≥ 2σ = d

2)

= P
√
σ ≥ 4

√
ln 2

δ (Observation 14)

which proves the claim stated at the beginning of the proof.

Based on this observation, ĥ is calculated as

ln
(
1− f

dP

)
/ lnD (see Definition 5). Thus, we get Dĥ =

1− f
dP . Further, from Equation 3 we get Dh = 1− f∗

dP .

Observation 17. Dh ≥ D2σ ≥ 9
16 . This is since h ≤ 2σ and

Dσ = (1− 1
d)

σ ≥ 1− σ
d = 3

4 .

2. If the reader is wondering why we are not proving this fact, it may
be observed that this relationship does not hold for small values of σ,
e.g., σ = 16, δ = 0.01.

Observation 18. Dĥ > 5
16 .

This is not so straight forward as Observation 17 since

ĥ is calculated using a formula and is not guaranteed, ab
initio, to be upper bounded by 2σ.

Proof of Observation. We will prove that f
dP < 11

16 which will

imply that Dĥ = 1− f
dP > 5

16 .
For the proof of the lemma we have considered the case

that f ≤ f∗ + α. Therefore, f
dP ≤ f∗

dP + α
dP . Substituting

the value of f∗ = dP (1 − Dh) from Equation 3 and using
Observation 17 we get the bound f

dP ≤ 7
16 + α

dP . We can
further simplify the bound using Observation 15:

f
dP ≤ 7

16 + α
dP ≤ 7

16 + 1
4 < 11

16 , validating the observation.

Now we get into the main proof which proceeds by
considering two possible cases.

(Case ĥ ≥ h, i.e., ∆h = ĥ−h:) We start with the identity

Dh −Dĥ = f−f∗

dP .
Notice that the RHS is bounded from the above by α

dP
and the LHS can bounded from the below as

Dh −Dĥ = Dh(1−D∆h) > 9
16 (1−D∆h)

where we have used Observation 17. Combining these facts
we get α

dP > 9
16 (1−D∆h).

(Case h ≥ ĥ, i.e., ∆h = h − ĥ:) In a similar manner,
we start with the identity Dĥ − Dh = f∗−f

dP in which the
RHS we bound again from the above by α

dP and the LHS is
treated similarly (but now using Observation 18).

Dĥ −Dh = Dĥ(1−D∆h) > 5
16 (1−D∆h)

and then, α
dP > 5

16 (1−D∆h).
So in both the cases we show that α

dP > 5
16 (1 − D∆h).

Our desired bound on ∆h can now be obtained.

∆h lnD ≥ ln
(
1− 16

5
α
dP

)
≥ − 16α

5dP /(1− 16α
5dP) = − 16α

5dP−16α

(using the inequality ln(1 + x) ≥ x
1+x for x > −1)

∴ ∆h ≤ 1

ln 1
D

16α

5dP − 16α
≤ 16αd

5dP − 16α

(it is easy to show that ln 1
D = ln 1

1−1/d ≥ 1/d)

=
16
5 d

dP
α − 16

5

<
16
5 d
dP
5α

(using Observation 15, dP
α − 16

5 > dP
5α)

=
16α

P
=

16

P

√
d ln 2

δ =
32

P

√
σ ln 2

δ

Lemma 9. Suppose we know that h ≤ √
σ and choose d =

16
√
σ ln 2

δ as the dimension for FSketch. Then (a) also f < dP

with high probability and moreover we get a better estimator. That

is, (b) Pr
[
|ĥ− h|

]
≥ 8

1−1/p

√
σ ln 2

δ

]
≤ δ.

Proof of (a) f < dP with high probability. Following the steps
of the proof of Lemma 7,

Pr[f ≥ dP] ≤ 2 exp(−d2P 2D2h

4σ)

≤ 2 exp(−P 2 (d−h)2

4σ)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Let L denote
√
ln 2

δ ; note that L > 1. Now, d = 16L
√
σ

and h ≤ √
σ. So, d − h ≥ 15L

√
σ > 15

√
σ and, therefore,

(d−h)2

σ > 225. Using this bound in the equation above, we
can upper bound the right-hand side as 2 exp(−225(1 −
1
p)

2/4) which is a decreasing function of p, the lowest (for

p = 2) being 2 exp(−225/4 ∗ 4) ≈ 10−6.

Proof of (b) a better estimator of h. The proof is almost exactly
same as that of Lemma 8, with only a few differences. We

set α = d/8 where d = 16
√
σ ln 2

δ . Incidentally, the value of

α remains the same in terms of σ (α =
√
4σ ln 2

δ). Thus, the

probability of error remains same as before;

2 exp (− d2

64·4σ) = δ.

Observation 14 is true without any doubt. dP
α = 8P

which is greater than 4 for any prime number; so Obser-
vation 15 is true in this scenario.

Observation 16 requires a new proof. Following the steps
of the above proof of Observation 16, it suffices to prove that
dPDh > d

8 .

PDh = P (1− 1
d)

h ≥ P (1− h
d)

= P (d−h
d) ≥ P 15L

√
σ

16L
√
σ
= P 15

16 > 1
2
15
16 > 1

8

Observation 17 is now tighter since Dh ≥ D
√
σ = (1 −

1
d)

√
σ ≥ 1−

√
σ
d = 1− 1

16
√

ln 2/δ
≥ 3

4 for reasonable values of

δ. Similarly Observation 18 is also tighter (it relies on only

the above observations) since f∗

dP = 1 − Dh ≤ 1 − 3
4 and

α
dP < 1

4 ; we get Dĥ > 1
2 .

Following similar steps as above, for the case ĥ ≥ h,

we get α
dP > 3

4 (1 − D∆h) and for the case ĥ < h, we get
α
dP > 1

2 (1 − D∆h) leading to the common condition that
α
dP > 1

2 (1−D∆h).
The final thing to calculate is the bound on ∆h.

∆h lnD ≥ ln
(
1− 2α

dP

)
≥ − 2α

dP /(1− 2α
dP) = − 2α

dP−2α

(using the inequality ln(1 + x) ≥ x
1+x for x > −1)

∴ ∆h ≤ 1

ln 1
D

2α

dP − 2α
≤ 2αd

dP − 2α

(it is easy to show that ln 1
D = ln 1

1−1/d ≥ 1/d)

=
2d

dP
α − 2

<
2d
dP
2α

(using Observation 15, dP
α − 2 > dP

2α)

=
4α

P
=

4

P

√
4σ ln 2

δ =
8

P

√
σ ln 2

δ

APPENDIX C

COMPLEXITY ANALYSIS OF FSketch

There are two major operations with respect to FSketch—
construction of sketches and estimation of Hamming dis-
tance from two sketches. We will discuss their time and
space requirements. There are efficient representations of
sparse data vectors, but for the sake of simplicity we as-
sume full-size arrays to store vectors; similarly we assume

simple dictionaries for storing the interval variables ρ,R by
FSketch. While it may be possible to reduce the number
of random bits by employing k-wise independent bits and
mappings, we left it out of the scope of this work and for
future exploration.

1) Construction: Sketches are constructed by the FSketch
algorithm which does a linear pass over the input
vector, maps every non-zero attribute to some entry of
the sketch vector and then updates that corresponding
entry. The time to process one data vector becomes
Θ(n) +O(σ · poly(log p)) which is O(n) for constant p.
The interval variables, ρ,R, p, require space Θ(n log d),
Θ(n log p) and Θ(log p), respectively, which is almost
O(n) if σ ≪ n. Furthermore, ρ and R, that can consume
bulk of this space, can be freed once the sketch construc-
tion phase is over. A sketch itself consumes Θ(d log p)
space.

2) Estimation: There is no additional space requirement
for estimating the Hamming distance of a pair of
points from their sketches. The estimator scans both
the sketches and computes their Hamming distance;
finally it computes an estimate by using Definition 5.
The running time is O(d log p).

APPENDIX D

PROOFS FROM SECTION 3.4

Lemma 10. If d = 4σ (as required by Lemma 8), then the
expected number of non-zero entries of φ(x) is upper bounded
by d

4 . Further, at least 50% of φ(x) will be zero with probability
at least 1

2 .

Proof. The lemma can be proved by treating it as a balls-and-
bins problem. Imagine throwing σ balls (treat them as the
non-zero attributes of x) into d bins (treat them as the sketch
cells) independently and uniformly at random. If the jth-bin
remains empty then φj(x) must be zero (the converse is not
true). Therefore, the expected number of non-zero cells in
the sketch is upper bounded by the expected number of
empty bins, which can be easily shown to be d[1− (1− 1

d)
σ].

Using the stated value of d, this expression can further be
upper bounded.

d[1− (1− 1
d)

σ] ≤ d[1− (1− σ
d)] =

d
4

Furthermore, let NZ denote the number of non-zero entries
in φ(x). We derived above E[NZ] ≤ d

4 . Markov inequality
can help in upper bounding the probability that φ(x) con-
tains many non-zero entries.

Pr[NZ ≥ d
2] ≤ E[NZ]/d

2 ≤ 1
2

APPENDIX E

REPRODUCIBILITY DETAILS

E.1 Baseline implementations

1) We implemented the feature hashing (FH) [20],
SimHash (SH) [21], Sketching via Stable Distribution

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

(SSD) [51] and One Hot Encoding (OHE) [17] algo-
rithms on own own; we have made these implemen-
tations publicly available 3.

2) For Kendall rank correlation coefficient [14] we used the
implementation provided by pandas data frame 4.

3) For Latent Semantic Analysis (LSA) [32], Latent Dirich-
let Allocation (LDA) [33], Non-negative Matrix Factori-
sation (NNMF) [34], and vanilla Principal component
analysis (PCA), we used their implementations avail-
able in the sklearn.decomposition library 5.

4) For Multiple Correspondence Analysis (MCA) [28], we
used a Python library 6.

5) For HCA [53], we performed hierarchical clustering 7

over the features in which we set the number of clusters
to the value of reduced dimension. We then randomly
sampled one feature from each of the clusters, and
considered the data points restricted to the sampled
features.

6) For CATPCA [53], we used an R package 8.

It should be noted that PCA, MCA and LSA cannot reduce
the dimension beyond the number of data points.

E.2 Reproducibility details for clustering task

We first generated the ground truth clustering results on the
datasets using k-mode [55] (we used a Python library 9).

We then compressed the datasets using the baselines.
Of them, feature hashing [20], SimHash [21], and Kendall
rank correlation coefficient [14] generate integer/discrete
valued sketches on which we can define a Hamming dis-
tance. Therefore we use the k-mode algorithm on com-
pressed datasets. On the other hand, Latent Semantic Anal-
ysis (LSA) [32], Latent Dirichlet Allocation (LDA) [33],
Non-negative Matrix Factorisation (NNMF) [34], Principal
component analysis (PCA), and Multiple Correspondence
Analysis (MCA) [28] generate real-valued sketches. For
these we used the k-means algorithm (available in the
sklearn library 10) on the compressed datasets. We set
random_state = 42 for both k-mode and k-means.

We evaluated the clustering outputs using purity in-
dex. Let m be the number of data points and Ω =
{ω1, ω2, . . . , ωk} be a set of clusters obtained on the original
data. Further, let C = {c1, c2, . . . , ck} be a set of clusters
obtained on reduced dimensional data. Then the purity index
of the clusters C is defined as

purity index(Ω, C) = 1

m

k∑

i=1

max
1≤j≤k

|ωi ∩ cj |.

3. https://github.com/Anonymus135/F-Sketch
4. https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.corr.html
5. https://scikit-learn.org/stable/modules/classes.html#

module-sklearn.decomposition
6. https://pypi.org/project/mca/
7. https://scikit-learn.org/stable/modules/generated/sklearn.

cluster.AgglomerativeClustering.html
8. https://rdrr.io/rforge/Gifi/man/princals.html
9. https://pypi.org/project/kmodes/
10. https://scikit-learn.org/stable/modules/classes.html#

module-sklearn.cluster

APPENDIX F

ERRORS DURING DIMENSIONALITY REDUCTION EX-

PERIMENTS

Several baselines give out-of-memory error or their running
time is quite high on some datasets. This makes it infeasible
to include them in empirical comparison on RMSE and
other end tasks.

We list these errors here. OHE gives out-of-memory error
for Brain cell dataset. HCA gives DNS errors on NYTimes
and BrainCell datasets. CATPCA could only on KOS and
DeliciousMIL datasets that too upto only 300 reduced di-
mension. Other than that it gives a DNS error. VAE gives
DNS errors on Enron datasets. KT gives out-of-memory error
for NYTimes and Brain cell and on Enron it didn’t stop even
after 10 hrs. MCA also gives out-of-memory error for NY-
Times and Brain cell datasets. Further, the dimensionality
reduction time for NNMF was quite high – on NYTimes
it takes around 20 hrs to do the dimensionality reduction
for 3000 dimension, and on the Brain cell dataset, NNMF
didn’t stop even after 10 hrs. These errors prevented us
from performing dimensionality reduction for all dimension
using some of the algorithms.

APPENDIX G

EXTENDED EXPERIMENTAL RESULTS

This section contains the remaining comparative plots for
the RMSE (Figure 11), clustering (Figure 12), similarity
search experiments (Figure 13) and the dimensionality re-
duction time (Figure 14).

APPENDIX H

Median-FSketch: COMBINING MULTIPLE

FSketch

We proved in Lemma 8 that our estimate ĥ is within an addi-
tive error of h. A standard approach to improve the accuracy
in such situations is to obtain several independent estimates
and then compute a suitable statistic of the estimates. We
were faced with a choice of mean, median and minimum
of the estimates of which we decided to choose median
after extensive empirical evaluation (see Section H.3) and
obtaining theoretical justification (explained in Section H.2).
We first explain our algorithms in the next subsection.

H.1 Algorithms for generating a sketch and estimaing

Hamming distance

Let k, d be some suitably chosen integer parameters.
An arity-k dimension-d Median-FSketch for a categor-
ical data, say x, is an array of k sketches: Φ(x) =
〈φ1(x), φ2(x), . . . φk(x)〉; the i-th entry of Φ(x) is a d-
dimensional FSketch. See Figure 15 for an illustration.
Note that the internal parameters ρ,R, p required to run
FSketch to obtain the i-entry are same across all data
points; the parameters corresponding to different i are,
however, chosen independently (p can be the same).

Our algorithm for Hamming distance estimation is
inspired from the Count-Median sketch [56] and Count
sketch [57]. It estimates the Hamming distances between the
pairs of “rows” from Φ(x) and Φ(y) and returns the median

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 19

100 1000 2500 5000
Reduced Dimension

102

103
RM

SE
NIPS

100 1000 2500 5000
Reduced Dimension

101

102

103

Delicious

100 1000 2500 5000
Reduced Dimension

101

102

103

GISETTE

FSketch
FH
SH
SSD
OHE
KT
HCA

Fig. 11. Comparison of RMSE values. A lower value is an indication of better performance. The GISETTE dataset is of 5000 dimensions and hence,
FSketch suffers from an increase in RMSE as the embedding dimension also reaches 5000.

100 1000 2500 5000
Reduced Dimension

0.80

0.85

0.90

0.95

1.00

Pu
rit

y
In

de
x

Gisette (K=5)

100 1000 2500 5000
Reduced Dimension

0.9726

0.9728

0.9730

0.9732

0.9734

0.9736
NyTimes (K= 5)

FSketch
FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
HCA

Fig. 12. Comparing the quality of clusters on the compressed datasets.

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

DeliciousMIL

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

KOS

100 1000 2500 5000
Reduced Dimension

0.0

0.2

0.4

0.6

0.8

1.0
Gisette

FSketch
FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
CATPCA
HCA

Fig. 13. Comparing the performance of the similarity search task (estimating top-k similar points with k = 100) achieved on the reduced dimensional
data obtained from various baselines.

100 1000 2500 5000
Reduced Dimension

10 1

100

101

102

103

104

Ti
m

e
(S

ec
on

ds
)

NIPS

100 1000 2500 5000
Reduced Dimension

100

101

102

103

104

Gisette

100 1000 2500 5000
Reduced Dimension

10 1

100

101

102

103

104

DeliciousMIL
FSketch
FH
SH
SSD
OHE
KT
LDA
LSA
PCA
MCA
NNMF
VAE
CATPCA
HCA

Fig. 14. Comparison of the dimensionality reduction times.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 20

Φ(x1)

x1
x2
…

Dataset

Φ(x2)

k

d

ϕ2(x2)

ϕ1(x2) ϕ1(x1) ...

...

FSketch
Use same p, π, R

x2
1

x2
2

x2
3

x2
4

r1 r2 r3 r4 ...

...

ϕ1
2
(x2)

π

ϕ1

2
(x2) = x2

1
 · r1 + x2

4
 · r4 + x2

7
 · r7 (mod p)

d

Fig. 15. Median-FSketch for categorical data — sketch of each data
point is a 2-dimensional array whose each row is an FSketch. The i-th
rows corresponding to all the data points use the same values of ρ,R.

of the estimated distances. This procedure is followed in
Algorithm 3.

Algorithm 3 Estimate Hamming distance between x and y
from their Median-FSketch

Input: Φ(x) = 〈φ1(x), φ2(x), . . . φk(x)〉, Φ(y) =
〈φ1(y), φ2(y), . . . φk(y)〉

1: for i = 1 . . . k do
2: Compute f = Hamming distance between φi(x) and

φi(y)

3: If f < dP , ĥi = ln
(
1− f

dP

)
/ lnD

4: Else ĥi = 2σ
5: end for
6: return ĥ = min{ĥ1, ĥ2, . . . ĥk}

H.2 Theoretical justification

We now give a proof that our Median-FSketch estimator
offers a better approximation. Recall that σ indicates the
maximum number of non-zero attributes in any data vector,
and is often much small compared to the their dimension,
n. Surprisingly, our results are independent of n.

Lemma 19. Let hm denote the median of the estimates of Ham-
ming distances obtained from t independent FSketch vectors
of dimension 4σ and let h denote the actual Hamming distance.
Then,

Pr
[
|hm − h| ≥ 18

√
σ
]
≤ δ

for any desired δ ∈ (0, 1) if we use t ≥ 48 ln 1
δ .

Proof. We start by using Lemma 8 with p = 3 and error (δ in

the lemma statement) = 1
4 . Let ĥi denote the k-th estimate.

From the lemma we get that

Pr
[
|ĥi − h| ≥ 18

√
σ
]
≤ 1

4

Define indicator random variables W1 . . .Wt as Wi = 1
iff |ĥi − h| ≥ 18

√
σ. We immediately have Pr[Wi] ≤ 1

4 .
Notice that Wi = 1 can also be interpreted to indicate

the event h − 18
√
σ ≤ ĥi ≤ h + 18

√
σ. Now, hm is

the median of {ĥ1, ĥ2, . . . ĥt}, and so, hm falls outside the
range [h − 18

√
σ, h + 18

√
σ] only if more than half of the

estimates fall outside this range., i.e., if
∑t

i=1 Wi > t/2.
Since E[

∑
i Wi] ≤ t/4, the probability of this event is easily

bounded by exp (−(12
2 t
4/3)) = e−t/48 ≤ δ using Chernoff’s

bound.
H.3 Choice of statistics in Median-FSketch

We conducted an experiment to decide whether to take
median, mean or minimum of k FSketch estimates in
the Median-FSketch algorithm. We randomly sampled a
pair of points and estimated the Hamming distance from
its low-dimensional representation obtained from FSketch.
We repeated this 10 times over different random mappings
and computed the median, mean, and minimum of those
10 different estimates. We further repeat this experiment
10 times and generate a box-plot of the readings which
is presented in Figure 16. We observe that median has
the lowest variance and also closely estimates the actual
Hamming distance between the pair of points.

APPENDIX I

DIMENSIONALITY REDUCTION ALGORITHMS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 21

400
Reduced Dimension

370

380

390

400

410

420

H
am

m
in

g
Es

tim
at

e

NYTimes

Median
Mean
Min

1000
Reduced Dimension

480

485

490

495

500

H
am

m
in

g
Es

tim
at

e

NYTimes

Median
Mean
Min

3000
Reduced Dimension

156

158

160

162

H
am

m
in

g
Es

tim
at

e

Enron

Median
Mean
Min

Fig. 16. Box plot for the median, mean, and minimum of the FSketch’s estimate obtain via it’s from its 10 repetitions, then each experiment is
repeated 10 times for computing the variance of these statistics. The black dotted line corresponds to the actual Hamming distance.

TABLE 8
A tabular summary of popular dimensionality reduction algorithms. Linear dimensionality reduction algorithms are those whose features in reduced
dimension are linear combinations of the input features, and the others are known as non-linear algorithms. Supervised dimensionality reduction

methods are those that require labelled datasets for dimensionality reduction.

S.
No.

Data type of in-
put vectors

Objective/ Properties Data type of
sketch vectors

Result Supervised or
Unsupervised

Type of dimen-
sionality reduc-
tion

1 Real-valued
vectors

Approximating pairwise eu-
clidean distance, inner product

Real-valued
vectors

JL-lemma [23] Unsupervised Linear

2 Real-valued
vectors

Approximating pairwise eu-
clidean distance, inner product

Real-valued
vectors

Feature Hash-
ing [20]

Unsupervised Linear

3 Real-valued
vectors

Approximating pairwise cosine
or angular similarity

Binary vectors SimHash [21] Unsupervised Non-Linear

4 Real-valued
vectors

Approximating pairwise ℓp
norm for p ∈ (0, 2]

Real-valued
vectors

p-stable random
projection
(SSD) [58]

Unsupervised Linear

5 Sets Approximating pairwise Jac-
card similarity

Integer valued
vectors

MinHash [30] Unsupervised Non-linear

6 Sparse binary
vectors

Approximating pairwise Ham-
ming distance, Inner product,
Jaccard and Cosine similarity

Binary vectors BinSketch [17] Unsupervised Non-linear

7 Real-valued
vectors

Minimize the variance in low
dimension

Real-valued
vectors

Principal
Component
Analysis (PCA)

Unsupervised Linear

8 Real-valued
vectors
(labelled input)

Maximizes class separability in
the reduced dimensional space

Real-valued
vectors

Linear Discriminant
Analysis [59]

Supervised Linear

9 Real-valued
vectors

Embedding high-dimensional
data for visualization in a
low-dimensional space of two
or three dimensions

Real-valued
vectors

t-SNE [36] Unsupervised Non-linear

10 Real-valued
vectors

Minimize the reconstruction er-
ror

Real-valued
vectors

Auto-encoder [60] Unsupervised Non-linear

11 Real-valued
vectors

Extracting nonlinear structures
in low-dimension via Kernel
function

Real-valued
vectors

Kernel-PCA [61] Unsupervised Non-linear

12 Real-valued
vectors

Factorize input matrix into two
small size non-negative matri-
ces

Real-valued
vectors

Non-negative
matrix factorization
(NNMF) [34]

Unsupervised Linear

13 Real-valued
vectors

Compute a quasi-isometric low-
dimensional embedding

Real-valued
vectors

Isomap [62] Unsupervised Non-linear

14 Real-valued
vectors

Preserves the topological struc-
ture of the data

Real-valued
vectors

Self-organizing
map [63]

Unsupervised Non-linear

	1 Introduction
	1.1 Challenges in the existing approaches
	1.2 Overview of results
	1.3 Organisation of the paper

	2 Related work
	3 Category sketching and Hamming distance estimation
	3.1 FSketch construction
	3.2 Hamming distance estimation
	3.3 Analysis of Estimator
	3.4 Complexity analysis
	3.5 Sketch updating

	4 Experiments
	4.1 Dataset description
	4.2 Baselines
	4.3 Choice of p
	4.4 Variance of FSketch
	4.5 Speedup in dimensionality reduction
	4.6 Performance on root-mean-squared-error (RMSE)
	4.7 Performance on clustering
	4.8 Performance on similarity search

	5 Conclusion
	References
	Biographies
	Debajyoti Bera
	Rameshwar Pratap
	Bhisham Dev Verma

	Appendix A: Analysis of one-hot encoding + binary compression
	Appendix B: Proofs from Section 3.3
	Appendix C: Complexity analysis of FSketch
	Appendix D: Proofs from Section 3.4
	Appendix E: Reproducibility details
	E.1 Baseline implementations
	E.2 Reproducibility details for clustering task

	Appendix F: Errors during dimensionality reduction experiments
	Appendix G: Extended experimental results
	Appendix H: Median-FSketch: Combining multiple FSketch
	H.1 Algorithms for generating a sketch and estimaing Hamming distance
	H.2 Theoretical justification
	H.3 Choice of statistics in Median-FSketch

	Appendix I: Dimensionality reduction algorithms

