
DANTE: Deep AlterNations for Training nEural networks

Vaibhav B Sinhaa,1,2,∗, Sneha Kuduguntaa,1, Adepu Ravi Sankara, Surya Teja Chavalia, Purushottam Karb, Vineeth N

Balasubramaniana,

aDepartment of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India
bDepartment of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

Abstract

We present DANTE, a novel method for training neural networks using the alternating minimization principle. DANTE provides an

alternate perspective to traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an

adaptation of quasi-convexity to cast training a neural network as a bi-quasi-convex optimization problem. We show that for neural

network configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can

perform the alternations effectively in this formulation. DANTE can also be extended to networks with multiple hidden layers. In

experiments on standard datasets, neural networks trained using the proposed method were found to be promising and competitive

to traditional backpropagation techniques, both in terms of quality of the solution, as well as training speed.

Keywords: Neural nets, Deep Learning, Backpropagation, Machine Learning.

1. Introduction

For much of the recent march of deep learning, gradient-

based backpropagation methods, e.g. Stochastic Gradient De-

scent (SGD) and its variants, have been the mainstay of practi-

tioners. The use of these methods, especially on vast amounts

of data, has led to unprecedented progress in several areas of ar-

tificial intelligence in recent years. The intense focus on these

techniques has led to an intimate understanding of hardware

requirements and code optimizations needed to execute these

routines on large datasets in a scalable manner. Today, myriad

off-the-shelf and highly optimized packages exist that can churn

reasonably large datasets on GPU architectures with relatively

mild human involvement and little bootstrap effort.

However, this surge of success of backpropagation-based

methods in recent years has somewhat overshadowed the need

to continue to look for options beyond backpropagation to train

deep networks. Despite several advancements in deep learn-

ing with respect to novel architectures such as encoder-decoder

networks, generative adversarial models and transformer net-

works, the reliance on backpropagation methods remains. Sev-

∗Corresponding author

Email addresses: cs15btech11034@iith.ac.in (Vaibhav B Sinha),

snehakudugunta@google.com (Sneha Kudugunta),

cs14resch11001@iith.ac.in (Adepu Ravi Sankar),

chavali2@wisc.edu (Surya Teja Chavali), purushot@cse.iitk.ac.in

(Purushottam Kar), vineethnb@iith.ac.in (Vineeth N Balasubramanian)
1Authors contributed equally
2Currently at Department of Computer Science, University of Texas at

Austin, US

c©2020. This manuscript version is made available under the CC-BY-NC-

ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.

0/

DOI: https://doi.org/10.1016/j.neunet.2020.07.026

eral works have studied the limitations of SGD-based backprop-

agation, whether it be vanishing gradients, especially for certain

activation functions [1]; the tendency of SGD to face difficul-

ties with saddle points [2] - even for simple architectures [3]; or

even more subtle issues such as significant difference in train-

ing time for networks having same expressive power as seen in

[4]. Importantly, while existing backpropagation-based meth-

ods work, it is essential to continuously look for alternative

methods that can help train neural networks effectively.

Complementarily, there has been marked progress in recent

years in the broader area of non-convex optimization. Sev-

eral alternate algorithms with provable guarantees, such as it-

erative hard thresholding [5], alternating minimization [6], [7]

and [8]. In this work, we leverage recent developments in

optimization (quasi-convex, to be precise) to propose a non-

backpropagation strategy to train neural networks. Our method

is called DANTE (Deep AlterNations for Training nEural net-

works), and it offers an alternating minimization-based tech-

nique for training neural networks. There have been a few re-

lated efforts of late, which we review in Section 2.

DANTE is based on the simple but useful observation that the

problem of training a single hidden-layer neural network can

be cast as a bi-quasiconvex optimization problem (described in

Section 3.1). This observation allows us to use an alternating

optimization strategy to train the neural network, where each

step involves solving relatively simpler quasi-convex problems.

DANTE then uses efficient solvers for quasi-convex problems

such as stochastic normalized gradient descent [9] to train the

neural network using alternating minimization. The key origi-

nal contributions of this work can be summarized as:

• We show that the error in each layer of a neural network

can, in fact, be viewed as a quasi-convex function, thus

allowing us to treat a single hidden-layer neural network

Preprint submitted to Elsevier Neural Networks August 11, 2020

ar
X

iv
:1

90
2.

00
49

1v
3

 [
cs

.L
G

]
 9

 A
ug

 2
02

0

as a bi-quasi-convex optimization problem. Motivated by

recent work [9], this allows us to propose an alternat-

ing minimization strategy, DANTE , where each quasi-

convex optimization problem can be solved effectively (us-

ing Stochastic Normalized Gradient Descent (SNGD)).

• While earlier results on the effectiveness of SNGD for

solving a quasi-convex problem was restricted to a sim-

ple sigmoid Generalized Linear Model (GLM) with the

squared loss, we show that SNGD can converge in high

probability to an ǫ-suboptimal solution even in case of lay-

ers of a neural network. We also expand the scope to in-

clude Rectified Linear Units (ReLU) activation functions

and its variants by introducing a Generalized ReLU acti-

vation function. We also provide theoretical results in case

of networks using Cross Entropy as loss (all of which has

not been done before).

• We show DANTE can be extended to train deep neural

networks with multiple hidden layers.

• We empirically validate DANTE with both the gener-

alized ReLU and sigmoid activations and establish that

DANTE provides competitive or better performance on

several standard datasets, when compared to standard

mini-batch SGD-based backpropagation.

• While the high level idea of using the definition to prove

the quasi-convexity of functions is inspired by [9], we

would like to highlight that our proofs are more involved,

and use techniques that were not in [9] (to adapt to newer

activation functions, handle hidden layers, as well as mul-

tiple output neurons).

We now review earlier related efforts, before presenting details

of the proposed methodology.

2. Related Work

Backpropagation-based techniques date back to the early

days of neural network research [10, 11] but remain to this day,

the most commonly used methods for training a variety of neu-

ral networks including multi-layer perceptrons, convolutional

neural networks, autoencoders, recurrent networks and the like.

In recent years, Taylor et al. [12] and Choromanska et al.

[13] proposed methods to train neural networks which belong

to the broad framework of alternating-minimization. Although

both of these approaches use alternating-minimization, they are

fundamentally different from ours. Both of them use auxil-

iary variables and the minimization is done on these auxiliary

variables too, while our algorithm does not have any auxil-

iary variables and only minimizes on the weights of the net-

work, giving it significant advantages in space complexity and

training-time. Moreover, Taylor’s algorithm does not use gra-

dients unlike ours. Jaderberg proposed the idea of ‘synthetic

gradients’ in [14]. Although interesting, this work is more fo-

cused towards a more efficient way to carry out gradient-based

parameter updates in a neural network. More recently, Jagatap

and Hegde [15] proposed a method to train single hidden layer

ReLU networks using an alternating minimization technique.

Unlike our method, this method alternates between updating

weights, and state variables which indicate which ReLU activa-

tions are on, and so is very specific to ReLU activations.

In this work, we focus on an entirely new approach to train-

ing neural networks using alternating optimization inspired by

quasi-convexity (different from the abovementioned methods),

and show that this approach shows promising results to train

neural networks of different depths on a range of datasets. Al-

though alternating minimization has found much appeal in ar-

eas such as matrix factorization ([6]), to the best of our knowl-

edge, this is the one of the early efforts in using alternating prin-

ciples to train feedforward neural networks effectively.

Other efforts that are related to this work include target

propagation based methods, such as in [16], Difference Target

Propagation [17] and target propagation in a Bayesian setting

[18]. There are also efforts that use random feedback weights

such as feedback-alignment [19] and direct/indirect feedback-

alignment[20] where the weights used for propagation need not

be symmetric with the weights used for forward propagation.

We however do not focus on credit assignment in this work.

One could view the proposed method however as carrying out

‘implicit’ credit assignment using partial derivatives, but there

is no defined model for credit assignment which is not the focus

of this work. We now describe our methodology.

3. Deep AlterNations for Training nEural networks

(DANTE)

We begin by presenting the overall problem formulation.

3.1. Problem Formulation

Consider a neural network with L layers. Each layer l ∈

{1, 2, . . . , L} has nl nodes and is characterized by a linear op-

erator Wl ∈ R
nl−1×nl and a non-linear activation function defined

as φl : Rnl → R
nl . The activations generated by layer l are de-

noted by al ∈ R
nl . We denote by a0, the input activations and n0

to be the number of input activations i.e. a0 ∈ R
n0 . Each layer

uses activations being fed into it to compute its own activations

as al = φl〈Wl, al−1〉 ∈ R
nl , where φ〈., .〉 denotes φ(〈., .〉) for sim-

plicity of notation. A multi-layer neural network is formed by

nesting such layers to form a composite function f given as fol-

lows:

f (W; x) = φL〈WL, φL−1〈WL−1, · · · , φ1〈W1, x〉〉〉 (1)

where W = {Wl} is the collection of all the weights through

the network, and x = a0 contains the input activations for each

training sample.

Given m data samples {(xi, yi)}
m
i=1 from a distribution D and

a loss function J, the network is trained by tuning the weights

W to minimize the empirical risk associated with:

min
W

E(x,y)∼D[J(f (W; x), y)] (2)

For purpose of simplicity and convenience, we first consider

the case of a single hidden layer neural network, represented as

f (W; x) = φ2〈W2, φ1〈W1, x〉〉 to describe our methodology. We

later describe how this can be extended to multi-layer neural

2

networks. A common loss function used to train neural net-

works is the squared loss function which yields the following

objective (we later also study changing the loss function in this

work):
min

W
E(x,y)∼D‖ f (W; x) − y‖22 (3)

where:

‖ f (W; x) − y‖22 = ‖φ2〈W2, φ1〈W1, x〉〉 − y‖22 (4)

An important observation here is that if we fix W1, then Eq. (4)

turns into a set of Generalized Linear Model (GLM) problems

with φ2 as the activation function, i.e.

min
W2

E(x,y)∼D‖φ2〈W2, z〉 − y‖22 (5)

where z = φ1〈W1, x〉. In particular, a GLM with differen-

tiable activation functions such as sigmoid satisfy a property

called Strict Locally Quasi-Convexity (SLQC), which allows

techniques such as SNGD to solve the GLM problem effec-

tively, as pointed out in [9]. We exploit this observation, and

generalize this result in many ways: (i) we firstly show that a

GLM with non-differentiable activation functions such as Re-

LUs (and its variants) also satisfy the SLQC property; (ii) we

show that a set of GLMs, such as in a layer of a neural network,

also satisfy the SLQC property; and (iii) we leverage these gen-

eralizations to develop an alternating minimization methodol-

ogy to train neural networks; and (iv) we also move away from

the restriction of square loss and provide extensions for Cross-

Entropy Loss. Sections 3.2 and 3.3 describe these generaliza-

tions further.

Optimizing for W1 in Equation 4, unfortunately, cannot be

directly viewed as a set of SLQC GLMs. To this end, we pro-

vide a generalization of local quasi-convexity in Section 3.2 and

show that fixing W2 does indeed turn the problem below into

yet another SLQC problem, this time with W1 as the parameter

(note that φW2
〈·〉 = φ2〈W2, φ1〈·〉〉):

min
W1

E(x,y)∼D‖φW2
〈W1, x〉 − y‖22 (6)

Putting Equations 5 and 6 together gives us a single-layer neural

network setup, where each layer is individually SLQC, and can

be efficiently solved using SNGD. This allows us to propose

our alternating minimization strategy to train a neural network

in an effective manner. We now describe in detail each of the

above steps, beginning with the background and preliminaries

required to set up this problem.

3.2. Background and Preliminaries

Let ‖ · ‖ denote the L2 (Euclidean) norm for vectors, and ‖ · ‖F
denote the Frobenius norm of a matrix. We sometimes drop the

subscript F from ‖ · ‖F for ease of reading (the appropriate norm

can be identified from the context). B(x, r) denotes a Euclidean

ball of radius r with x as center and B denotes B(0, 1). We

begin with the formal definitions of Local Quasi-Convexity and

Generalized Linear Model (GLM).

Definition 1 (Local-Quasi-Convexity [9]). Let x, z ∈ Rd, κ, ǫ >

0 and f : Rd → R be a differentiable function. Then f is said

to be (ǫ, κ, z)-Strictly-Locally-Quasi-Convex (SLQC) in x, if at

least one of the following applies:

1. f (x) − f (z) ≤ ǫ

2. ‖∇ f (x)‖ > 0, and ∀y ∈ B (z, ǫ/κ), 〈∇ f (x), y − x〉 ≤ 0
where B (z, ǫ/κ) is a ball centered at z with radius ǫ/κ.

Definition 2 (Idealized and Noisy Generalized Linear Model

[9]). In the idealized GLM setting, we are given m samples

{(xi, yi)}
m
i=1 ∈ B × [0, 1] and an activation function φ : R → R.

There exists w∗ ∈ R
d such that yi = φ〈w

∗, xi〉∀i ∈ {1, · · · ,m}

where w∗ is the global minimizer of the empirical error func-

tion:

ˆerr(w) =
1

m

m
∑

i=1

(yi − φ(〈w, xi〉))
2

In the noisy GLM setting, we are given m samples {(xi, yi)}
m
i=1 ∈

Bd × [0, 1] drawn i.i.d. from an unknown distributionD. There

exists a w∗ ∈ Rd such that E(x,y)∼D[y| x] = φ(〈w∗, x〉), and w∗ is

the global minimizer of :

err(w) = E(x,y)∼D (y − φ(〈w, x〉))2

Hazan et al. showed in [9] that the idealized GLM problem

with the sigmoid activation function is (ǫ, e‖w
∗‖,w∗)-SLQC

in w, ∀w ∈ B(0, ‖w∗‖) and ∀ǫ > 0; and that if we draw

m ≥ Ω
(

exp(2‖w∗‖)

ǫ2
log 1

δ

)

i.i.d. samples fromD, the empirical er-

ror function ˆerr with sigmoid activation is (ǫ, e‖w
∗‖,w∗)-SLQC

in w for any w ∈ B(0, ‖w∗‖) with probability at least 1 − δ.

However, these results by themselves are not directly useful,

considering they are proved only for a single GLM (which can

be viewed as a neural network with no hidden layers and a

single output neuron), and which are non-trivial to extend to a

traditional multi-layer/feedforward neural network. Besides,

their proofs rely on properties of the sigmoid function, which

restricts us from using these (and any following) results to

contemporary neural networks which use other activation func-

tions such as the ReLU. We overcome all of these restrictions

in this work, and provide a new mechanism to use such a

theoretical result in practice.

3.2.1. SLQC-ness of a GLM with Non-Linear Activations

Before presenting our approach with multi-layer neural net-

works, we begin our description of the proposed methodology

by showing that a GLM with a ReLU activation function is also

SLQC ([9] already showed this for a GLM with sigmoid activa-

tion). This will later allow us to seamlessly extend our results

to both sigmoid and ReLU multi-layer neural networks. (We

note that tanh - which is simply a rescaled sigmoid - is also

subsumed in these definitions.) To this end, we introduce a new

generalized ReLU activation function, defined as follows:

Definition 3. (Generalized ReLU) The generalized ReLU

function f : R→ R, 0 < a ≤ b, a, b ∈ R is defined as:

f (x) =

{

ax x ≤ 0

bx x > 0

Note that this definition subsumes variants of ReLU such as

the Leaky ReLU [21] or PReLU [22]. This function is differ-

entiable at every point except 0. We define the function g that

provides a valid subgradient for the generalized ReLU at all x

to be:

g(x) =

{

a x < 0

b x ≥ 0

3

We now prove our first results using the above definition of

the generalized ReLU in idealized and noisy GLMs below.

Theorem 1. In the idealized GLM with generalized ReLU ac-

tivation, assuming ‖w∗‖ ≤ W, ˆerr(w) is
(

ǫ, 2b3W
a
,w∗

)

− S LQC

in w,∀w ∈ B(0,W) and ∀ǫ > 0.

Proof Sketch. We use Definition 1 to show this result. Consider

a point v, ǫ/κ-close to minima w∗ with κ = 2b3W
a

. Throughout

the paper, we measure closeness in L2-norm. Let G represent

the subgradient of ˆerrm(w). We show that 〈G(w),w − v〉 ≥ 0,

which proves the result. To show this inequality, we exploit the

Lipschitzness of ReLU function, the bound on its derivative and

the fact that φ〈w∗, xi〉 = yi. The complete proof is presented in

Section 5.1 for ease of reading further at this time.

Theorem 2. In the noisy GLM with generalized ReLU activa-

tion, assuming ‖w∗‖ ≤ W, given w ∈ B(0,W), then with prob-

ability ≥ 1 − δ after m ≥ O(log(1/δ)/ǫ2) samples, ˆerr(w) is
(

ǫ, 2b3W
a
,w∗

)

− S LQC in w.

Proof. Please see Section 5.3 for the proof.

The above theorems, in combination with the results in [9],

allow us to conclude that for a single-output no-hidden-layer

neural network with sigmoid or ReLU activation, the error func-

tion, ˆerr, is SLQC in w. This is however not directly useful for

neural networks, as stated earlier. To this end, we propose a

new extension of SLQC relevant to a set of GLMs, such as in

a layer of a neural network. We note that all of the following

sections are novel contributions, which did not exist earlier.

3.2.2. SLQC-ness of a Multi-Output Neural Network with No

Hidden Layers

We begin with a revised definition of Local Quasi-Convexity

for matrices using the Frobenius inner product.

Definition 4 (Local Quasi-Convexity for Matrices). Let x, z ∈

R
d×d′ , κ, ǫ > 0 and f : Rd×d′ → R be a differentiable function.

Then f is (ǫ, κ, z)-Strictly Locally Quasi-Convex (SLQC) in x,

if at least one of the following applies:

1. f (x) − f (z) ≤ ǫ

2. ‖∇ f (x)‖ > 0, and ∀y ∈ B (z, ǫ/κ), 〈∇ f (x), y − x〉F ≤ 0

where B (z, ǫ/κ) is a ball centered at z with radius ǫ/κ. (〈·, ·〉F
denotes the Frobenius inner product.)

We now show that the error, ˆerr(W), of a multi-output no-

hidden-layer neural network is also SLQC in W. (Note that

w.r.t. our problem setup in Equation 4, this is equivalent to

showing that the one-hidden layer neural network problem is

SLQC in W2 alone.) The empirical error function is now given

by:

ˆerr(W) =
1

m

m
∑

i=1

‖yi − φ(〈W, xi〉)‖
2

where xi ∈ R
d is the input, yi ∈ R

d′ is the corresponding cor-

rect output, W ∈ R
d×d′ is the matrix of weights and φ is ap-

plied element-wise in the multi-output no-hidden-layer neural

network. Let the global minimizer of ˆerr be W∗.

Theorem 3. Let an idealized single-layer multi-output neural

network be characterized by a linear operator W ∈ R
d×d′ =

[w1 w2 · · · wd′] and a generalized ReLU activation function

be applied element-wise φ : Rd′ → R
d′ . Let the output of the

layer be φ〈W, x〉 ∈ R
d′ where x ∈ R

d is the input. Assuming

‖W∗‖F ≤ W, ˆerr(W) is
(

ǫ, 2b3W
a
,W∗

)

− S LQC in W for all

W ∈ Bd(0,W) and ǫ > 0.

Proof Sketch. To show this result, we use Definition 4. Let V =

[v1 v2 · · · vd′] be a point ǫ/κ-close to minima W∗ with κ =
2b3W

a
. Let G(W) be the subgradient of ˆerrm(W). Then we show

that 〈G(W),W − V〉F ≥ 0, thus proving the result. Section 5.5

presents the complete proof.

3.2.3. One Hidden Layer Networks with Single Output Neurons

Taking this further, we next consider a single-hidden-layer

neural network. While the outer layer (layer 2) of a single-

hidden-layer neural network can be directly viewed as a set

of GLMs (see section 5.4), the inner layer cannot be viewed

the same way (due to lack of expected outputs in the hidden

layer). We hence need to show that given a fixed w2, the error

ˆerr(W1,w2) is also SLQC in W1. In this case, the empirical

error function is:

ˆerr(W1,w2) =
1

m

m
∑

i=1

‖yi − φ2〈w2, φ1〈W1, xi〉〉‖
2

where xi ∈ R
d is the input; yi ∈ R is the corresponding correct

output; and W1 ∈ R
d×d′ , w2 ∈ R

d′ are the weights of the inner

and outer layers respectively. Let the global minimizer of ˆerr be

(W∗
1
,w∗

2
). This setting corresponds to the inner layer of single-

output single-hidden-layer neural network.

Theorem 4. Let an idealized two-layer neural network be

characterized by linear operators W1 ∈ R
d×d′ , w2 ∈ R

d′

and generalized ReLU activation functions φ1 : R
d′ → R

d′ ,

φ2 : R → R. Assuming ‖W∗
1
‖F ≤ W1, ‖w∗

2
‖ ≤ W2, ˆerr(W1,w2)

is

(

ǫ,

(

a

4b5W2
2

W1
−

W1

ǫ

)−1

,W∗
1

)

− S LQC in W1,∀W1 ∈ B(0,W1)

and ∀ǫ > 0.

Proof Sketch. We again use Definition 4 to prove the re-

sult. Let V1 be a point ǫ
κ

close to minima. We show that

〈∇W1
ˆerr(W1,w2),W1 −V1〉F ≥ 0. As a consequence of Defini-

tion 4, this proves the result. See Section 5.7 for the complete

proof.

3.2.4. One Hidden Layer Networks with Multiple Output Neu-

rons

The above results together postulate that a single-hidden-

layer neural network is layer-wise SLQC. We use the above

result to show that error ˆerr(W1,W2) is SLQC in W1 for single-

hidden-layer neural network, even with multiple outputs. The

empirical error function in this setting is:

ˆerr(W1,W2) =
1

m

m
∑

i=1

‖yi − φ2〈W2, φ1〈W1, xi〉〉‖
2

4

where xi ∈ R
d is the input, yi ∈ R

d
′′

is the corresponding correct

output, W1 ∈ R
d×d′ , W2 ∈ R

d
′
×d
′′

are the weights of the inner

and outer layers respectively. Let the global minimizer of ˆerr

be (W∗
1
,W∗

2
). This setting corresponds to the inner layer of a

multi-output single-hidden-layer neural network.

Theorem 5. Let an idealized two-layer neural network be

characterized by linear operators W1 ∈ R
d×d′ , W2 ∈ R

d′×d
′′

and generalized ReLU activation functions φ1 : R
d′ → R

d′ ,

φ2 : R
d′′ → R

d′′ . Assuming ‖W∗
1
‖F ≤ W1, ‖W∗

2
‖F ≤

W2, ˆerr(W1,W2) is

(

ǫ,

(

a

4b5W2
2

W1
−

W1

ǫ

)−1

,W∗
1

)

− S LQC in

W1,∀W1 ∈ B(0,W1) and ∀ǫ > 0.

Proof Sketch. We use Theorem 4 to prove this result. The error

ˆerr(W1,W2) of a multi-output single-hidden layer network can

be seen as the sum of errors of d′′ single-output single-hidden

layer networks. This observation combined with Theorem 4

is used to prove the result. See Section 5.8 for the complete

proof.

While the above results have been shown with the general-

ized ReLU, each of these results also holds for sigmoid activa-

tion functions. Moreover, most other widely used error func-

tions such as cross-entropy loss are convex (and thus SLQC) as

well as Lipschitz. We believe that our results can be extended

to most commonly used error functions, and we present an ex-

tension to cross-entropy loss below in Section 3.3.

3.2.5. The ReLU Case

In an earlier subsection, we defined the Generalized ReLU

in Defn 3. Note that this definition does not cover the standard

ReLU (a = 0). We call the standard ReLU as ReLU in this sub-

section. We hence now provide additional results for networks

having ReLU as the activation function. These results are, natu-

rally, quite similar to the ones for Generalized ReLU. Note that

for ReLU as the activation function, the subgradient g would be

0 for x < 0 and b otherwise.

As in the previous subsection, consider first the case of a

network having no hidden layers and only one output neuron.

In this case we have the following corollary (to Theorem 1):

Corollary 1. In the idealized GLM with ReLU activation, as-

suming ‖w∗‖ ≤ W, ˆerr(w) is
(

ǫ, 2b2W,w∗
)

− S LQC in w,∀w ∈

B(0,W) and ∀ǫ > 0.

Proof Sketch. The proof is similar to the proof of Theorem 1.

See Section 5.2 for the complete proof.

Now consider the case with no hidden layer but multiple out-

put neurons. For this case, we have the following corollary (to

Theorem 3).

Corollary 2. Let an idealized single-layer multi-output neural

network be characterized by a linear operator W ∈ R
d×d′ =

[w1 w2 · · · wd′] and a standard ReLU activation function ap-

plied element-wise φ : R
d′ → R

d′ . Let the output of the

layer be φ〈W, x〉 ∈ R
d′ where x ∈ R

d is the input. Assuming

‖W∗‖F ≤ W, ˆerr(W) is
(

ǫ, 2b2W,W∗
)

− S LQC in W for all

W ∈ Bd(0,W) and ǫ > 0.

Proof Sketch. The proof is similar to the proof of Theorem 3,

Section 5.6 presents the complete proof.

The above results allow us to extend our results to the stan-

dard ReLU activation function. We leave the specifics of ex-

tending to the one-hidden layer network to the reader. We note,

however, that all of our experiments in this work are conducted

with the Leaky ReLU which satisfies the Generalized ReLU

definition in Defn 3, and hence is in line with the theorems

proved in earlier subsections.

3.3. Extension to Cross-Entropy Loss

We now present results for neural networks trained using the

Cross Entropy Error, −
∑

i(yi log(pi)) (where pi is the predicted

probability for the ith output class from the neural network, ob-

tained using the sigmoid function on a single output neuron, or

softmax function when there are multiple output neurons), as

loss instead of Mean Square Error. We first consider the case of

a network having no hidden layer and only neuron in the out-

put layer. This corresponds to use of J as binary cross-entropy

loss in Equation 2, with a sigmoid activation in the output layer.

(We wish to highlight that the proof techniques used in the re-

sults below are very different from those in [9].)

Theorem 6. In the idealized GLM like setting with sigmoid ac-

tivation and binary cross entropy loss, assuming ‖w∗‖ ≤ W,

ˆerr(w) is
(

ǫ, ǫ
(1−e−ǫ)2 ,w

∗
)

− S LQC in w,∀w ∈ B(0,W) and

∀ǫ > 0.

Proof Sketch. To show this, we use Definition 1. With a point

v, ǫ/κ close to w∗, we show that 〈G(w),w − v〉 ≥ 0. Section 5.9

presents the complete proof.

We next consider the case of no hidden layers but multiple

output neurons. In this case, given cross-entropy error as the

loss function, the following result holds:

Theorem 7. Let an idealized single-layer multi-output neural

network be characterized by a linear operator W ∈ R
d×d′ =

[w1 w2 · · · wd′] and softmax activation function applied φ :

R
d′ → R

d′ . Let the output of the layer be φ〈W, x〉 ∈ R
d′

where x ∈ R
d is the input and the loss function, ˆerr, used

is Cross-Entropy Error. Assuming ‖W∗‖F ≤ W, ˆerr(W) is
(

ǫ, ǫd′

(1−e−ǫ)2 ,W
∗
)

− S LQC in W for all W ∈ Bd(0,W) and ǫ > 0.

Proof. See Section 5.10 for the proof.

The above results allow us to extend our results in Section 3.2

to the cross-entropy loss. We leave the specific statement of the

above result for one hidden-layer networks to the reader. We

however do experimentally study the use of cross-entropy loss

in our methodology, even for deep neural networks, in Section

4. Also, while the cross-entropy loss is more closely related to

sigmoid-activated neurons, we empirically also study the use of

leaky ReLU as activations in hidden layers in our experiments

(Section 4).

Given the above background of results, we now present our

methodology to train a multi-layer neural network effectively

using these results.

5

Algorithm 1 Stochastic Normalized Gradient Descent (SNGD)

Input: Number of iterations T , training data S =

{(xi, yi)}
m
i=1
∈ R

d × R, learning rate η, minibatch size b, Ini-

tialization parameters w0

for t = 1 to T do

Select a random mini-batch of training points by sampling

{(xi, yi)}
b
i=1
∼ Uniform(S)

Let ft(w) = 1
b

∑b
i=1(yi − φ〈w, xi〉)

2

Let gt = ∇ ft(wt), and ĝ(t) =
gt

‖gt‖

wt+1 = wt − η · ĝt

end for

Output: Model given by wT

3.4. Methodology

As stated earlier, [9] showed that Stochastic Normalized Gra-

dient Descent (SNGD) converges with high probability to the

optimum for SLQC functions. We leverage this result to arrive

at a formal procedure to train neural networks effectively. To

this end, we begin by briefly reviewing the Stochastic Normal-

ized Gradient Descent (SNGD) method, and state the relevant

result.

3.4.1. Stochastic Normalized Gradient Descent (SNGD)

Normalized Gradient Descent (NGD) is an adaptation of tra-

ditional Gradient Descent, where the updates in each iteration

are based only on the direction of the gradients. This is achieved

by normalizing the gradients. SNGD is the stochastic version

of NGD, where weight updates are performed using individual

(randomly chosen) training samples, instead of the complete set

of samples. Mini-batch SNGD generalizes this by applying up-

dates to the parameters at the end of every mini-batch of sam-

ples, as does mini-batch Stochastic Gradient Descent (SGD).

In the remainder of this paper, we refer to mini-batch SNGD as

SNGD itself, as is common for SGD. Algorithm 1 describes the

SNGD methodology for a generic problem.

We now state the result showing the effectiveness of SNGD

for SLQC functions.

Theorem 8 ([9]). Let ǫ, δ,G,M, κ > 0, let f : R
d → R and

w∗ = arg minw f (w). Assume that for b ≥ b0(ǫ, δ,T), with prob-

ability ≥ 1 − δ, ft defined in Algorithm 1 is (ǫ, κ,w∗)-SLQC

∀w, and | ft | ≤ M∀t ∈ {1, · · · ,T } . If we run SNGD with

T ≥
κ2 ||w1−w∗ ||2

ǫ2
and η = ǫ

κ
, and b ≥ max

{

M2log(4T
δ)

2ǫ2
, b0(ǫ, δ,T)

}

,

with probability 1 − 2δ, f (w) − f (w∗) ≤ 3ǫ3.

Importantly, note that the convergence rate of SNGD depends

on the κ parameter. While the GLM error function with sigmoid

activation has κ = eW (stated earlier in the section), the gener-

alized ReLU setting introduced in this work has κ = 2b3W
a

(i.e.

linear in W) for both GLMs and layers, which is an exponential

improvement for the SNGD procedure’s effectiveness. This is

3Replacing inner product with Frobenius inner product in the proof for this

result in [9] allows us to extend this result to our definition of SLQC for matri-

ces.

significant as the number of iterations T in Theorem 8 depends

on κ2. In other words, SNGD offers accelerated convergence

with the proposed generalized ReLU layers as compared to sig-

moid GLMs proposed earlier.

3.4.2. DANTE

We have thus far shown that each layer of the considered one-

hidden-layer neural network comprises of a set of SLQC prob-

lems, each independent in its parameters. Also, SNGD provides

an effective method for each such SLQC problem to converge

to its respective ǫ-suboptimal solution with high probability, as

shown in Theorem 8. This allows us to propose an alternating

strategy, DANTE , where each individual SLQC problem is ef-

fectively solved (or each individual layer is effectively trained)

using SNGD, which we now present. We note that although

DANTE uses stochastic gradient-style methods internally (such

as SNGD), the overall strategy adopted by DANTE is not neces-

sarily a descent-based strategy, but an alternating-minimization

strategy.

Consider the optimization problem below for a single hidden

layer network:

min
W

f (W1,W2) = Ex∼D‖φ2〈W2, φ1〈W1, x〉〉 − y‖22

As seen in Section 3.2, on fixing each of W1 and W2, we have

an SLQC problem. On fixing W1, we have the SLQC problem:

min
W

Ex∼D‖φ2〈W2, z〉 − y‖22,

where z = φ1〈W1, x〉. On fixing W2, we have the following

SLQC problem:

min
W

Ex∼D‖φW2
〈W1, x〉 − y‖22,

DANTE optimizes the empirical risk associated with each of

these intermediate problems using SNGD steps by sampling

several mini-batches of data points and performing updates as

in Algorithm 1. Algorithm 2 provides the complete algorithm

for the proposed method. Note that the results from the last

two subsections hold for any weights and are not limited to the

initialized weights. For example if the network is initialized

with W0
1

and W0
2

and after training the layers once, we obtain

weights W1
1

and W1
2
. The SNGD conditions would still hold

for this pair of weights, justifying the applicability of the algo-

rithm.

3.5. Extending to a Multi-Layer Neural Network

In the previous sections, we illustrated how a single hidden-

layer neural network can be cast as a set of SLQC problems and

proposed an alternating minimization method, DANTE. This

approach can be generalized to deep auto-encoders by consid-

ering a greedy layer-wise approach to training a neural network

[23]. Unlike earlier layer-wise training efforts where such train-

ing is used only as a pretraining step, no further finetuning is

necessary in our methodology; the layer-wise training directly

results in the final model.

We now describe our approach. Consider for example a

three-hidden layer autoencoder as pictured in figure 1. Say the

6

Algorithm 2 Deep AlterNations for Training nEural networks

(DANTE)

Input: Stopping threshold ǫ, Number of iterations of alter-

nating minimization TAM , Number of iterations for SNGD

TS NGD, initial values W0
1
,W0

2
, learning rate η, minibatch size

b

t := 1

while | f (W t
1
,W t

2
) − f (W t−1

1
,W t−1

2
)| ≥ ǫ or t < TAM do

W t
2
← arg min

W

Ex∼D‖φ2〈W, φ1〈W
t−1
1
, x〉〉 − y‖2

2
//use

SNGD

W t
1
← arg min

W

Ex∼D‖φ2〈W
t
2
, φ1〈W, x〉〉 − y‖2

2
//use SNGD

t := t + 1

end while

Output: W t−1
1
,W t−1

2

Algorithm 3 DANTE for a multi-layer auto-encoder

Input: Network with 2n − 1 hidden layers and weights

W1, . . .W2n

for l = 1 to n do

Consider the one-hidden layer network formed by Wl and

W2n−l+1.

Train Wl and W2n−l+1 using Algorithm 2

end for

Output: Trained W1, . . .W2n

weights in the network are W1,W2,W3 and W4 respectively

from the leftmost to the rightmost layer. In the first phase we

consider the one-hidden layer network obtained by the weights

W1 and W4 (the network of layer dimensions 5→ 3→ 5). We

train these two weights using our one-hidden layer DANTE al-

gorithm (section 3.4). Once these layers are trained, in the sec-

ond phase, we consider the one-hidden layer network obtained

by the weights W2 and W3 (a network of layer dimensions

3 → 2 → 3). We train these weights by the one-hidden layer

DANTE algorithm with the input and output being φ1〈W1, x〉

(the activations of the first hidden layer). This example demon-

strated the overall idea behind deep autoencoder training. For a

general deep autoencoder, we take pairs of weights symmetric

from the center and train them moving from the farthest pair

to the one formed by the center layers. Algorithm 3 summa-

rizes the proposed approach to use DANTE for a deep neural

network, and Figure 1 illustrates the approach.

Note that it is possible to use other schemes to use

DANTE for multi-layer neural networks such as a round-robin

scheme, where each layer is trained separately one after the

other in the sequence in which the layers appear in the net-

work. Our experiments found that both of these approaches

(Algorithm 3 and round-robin scheme) work equally well for

autoencoders. To train multi-layer neural networks we use the

round-robin scheme.

Following earlier efforts on alternating optimization for neu-

ral networks [12][15], we note that proving convergence for al-

ternating minimization methods that train neural networks is

not straightforward and a significant effort by itself, and hence

(a) Phase - 1

(b) Phase - 2

Figure 1: An illustration of the proposed multi-layer DANTE (best viewed in

color). In training phase 1, the outer pairs of weights (shaded in gold) are

treated as a single-hidden-layer neural network and trained using single-layer

DANTE . In phase 2, the inner pair of weights (shaded in gold) are treated as a

single-hidden-layer neural network and trained using single-layer DANTE .

is left as an important direction of future work. We focus this

work on identifying this alternating minimization procedure,

which is derived from a sound understanding of the individual

problems underneath (we believe this is a contribution by itself

when looking for alternatives to backpropagation), and show-

case its empirical effectiveness.

4. Experiments and Results

We validated DANTE by training feedforward neural net-

works, as well as autoencoders, on standard datasets including

MNIST, Kuzushiji-MNIST (KMNIST) [24], SVHN, CIFAR-10

and Tiny ImageNet. The Tiny-Imagenet dataset has 200 classes

while the others have 10 classes each. We followed the bench-

mark training and evaluation protocols established for each of

these datasets. We studied the training and test loss as well as

the test accuracy on all our experiments. We used vanilla SGD-

based backpropagation (henceforth, called SGD in the exper-

iments) as the baseline method. In order to ensure fair com-

parison between SGD and DANTE , we tried different learning

rates and picked the best ones individually for both methods.

We show the comparative results with these best learning rates.

We also show results later in this section using adaptive learning

rate methods on both learning schemes.

Note that in all the presented results (unless explicitly stated

otherwise), the X-axis is the number of weights updated. We

choose this as the reference instead of number of epochs to be

fair to DANTE as it updates fewer weights than SGD in any

given epoch (where only one pair of layers is updated). In

graphs comparing SGD and DANTE, the blue curve is always

DANTE and the green one is SGD.

4.1. Feedforward Neural Networks

This subsection presents the comparative performance of

SGD and DANTE on feedforward neural networks. To ensure

7

an exhaustive comparison, we used multiple datasets and var-

ied network widths and depths in our experiments. Our initial

experiments use Leaky ReLU as the activation function, with

a = 0.01 and b = 1, as well as sigmoid activation, and Mean

Square Error as the loss function (we later show results with

cross-entropy error).

Both MNIST and KMNIST datasets consist of grayscale im-

ages of size 28 × 28. The input layer hence has dimension 784.

For both these datasets, we use one-hidden layer networks hav-

ing 100, 250, 400 and 600 neurons in the hidden layer, as well

as a two hidden-layer network (784 −→ 400 −→ 200 −→ 10), a

three hidden-layer network (784 −→ 400 −→ 200 −→ 100 −→ 10)

and a five hidden-layer network (784 −→ 600 −→ 400 −→ 200 −→

100 −→ 50 −→ 10). The results are presented in Figure 2.

Both CIFAR-10 and SVHN datasets have colored (3-

channel) images of size 3 x 32 x 32, thus the input layer for

these is of dimension 3072. For these datasets, we use a one

hidden-layer network (3072 −→ 512 −→ 10), a two-hidden layer

network (3072 −→ 512 −→ 64 −→ 10). and a five hidden-layer

network (3072 −→ 1024 −→ 512 −→ 256 −→ 128 −→ 64 −→ 10).

Figure 3 shows the results.

Tiny-Imagenet is a widely used subset of the original Ima-

genet dataset having 200 classes, and 500 images of each class

in the training set. We train three networks (12288 −→ 3072 −→

512 −→ 200, 12288 −→ 3072 −→ 1024 −→ 512 −→ 200, and

12288 −→ 3072 −→ 1536 −→ 768 −→ 384 −→ 200) using DANTE

and SGD on this dataset to compare the performance on a more

difficult task. Since the labels of the test set are not available, we

report the performance on the standard validation set (which has

50 images of each class) in Figure 4. (Both SGD and DANTE

do not achieve high accuracies on this dataset as the network

considered is a simple MLP. Considering our objective in this

work was to prove the feasibility of this approach with MLPs,

studying extension of DANTE on convolutional layers, LSTMs

and other variants are important directions of our future work.)

The results clearly show the effectiveness of using

DANTE for training neural networks - DANTE obtains lower

training/test loss and higher test accuracy. Even in cases where

the final losses of DANTE and SGD are almost equal, DANTE

always minimizes the loss faster than SGD.

Feedforward Neural Networks with Sigmoid Activations.

We now present the comparative performance of SGD and

DANTE on feedforward neural networks with sigmoid activa-

tions and Mean Square Error loss function. We show our results

with MNIST and KMNIST datasets. We use the same architec-

tures as in the previous subsection, except that we use sigmoid

activation instead of Leaky ReLU. The results are presented in

Figure 5. It is apparent from the results that DANTE performs

better than SGD in this case too.

Feedforward Neural Networks with Cross-Entropy Loss.

To compare DANTE with SGD on networks with cross-entropy

loss, we experiment with sigmoid and Leaky ReLU actiav-

tions on the MNIST dataset with the same network architec-

tures as before, but with cross-entropy as loss function. Figure

6 presents the results of these experiments.

Algorithm Parameter Loss

DANTE LR = 0.001 0.030775

SGD LR = 0.001 0.031126

SGD+Adam 0.0001 0.021704

SGD+Adagrad 0.0001 0.021896

SGD+RMSProp 0.0001 0.021953

SGD+Momentum MP=0.9 0.021497

DANTE +Momentum MP=0.0005 0.020816

Table 1: Loss on using various adaptive learning schemes with DANTE and

SGD. (LR = Learning Rate; MP =Momentum Parameter)

Algorithm Learning Rate Loss

DANTE 0.001 0.030775

SGD 0.001 0.031126

SGD+AltMin 0.001 0.032912

SGD+AltMin 0.0001 0.044911

SGD+AltMin 0.0005 0.035567

Table 2: Loss on using SGD+AltMin to learn the MNIST dataset.

4.2. Ablation Studies

4.2.1. Impact of Adaptive Learning Rate Methods

As stated earlier, in all of the abovementioned experiments,

we chose the best learning rates for both SGD and DANTE in

each experiment. To go further, we also studied the use of sev-

eral adaptive learning schemes with both SGD and DANTE .

The results, the final test loss at the end of training, in

these studies on the MNIST dataset are presented in Table 1.

DANTE with some momentum is able to outperform SGD with

all the popular adaptive learning rate schemes.

4.2.2. Using SGD in Alternating Minimization

A natural question one could ask is the relevance of SNGD to

train each layer of the proposed methodology. To study this em-

pirically, we compared our algorithm to an analogous algorithm

that uses SGD for each inner loop of DANTE . Table 2 presents

these results, the test loss at the end of training. Although we

allowed different learning rates for the SGD variant, DANTE

provides a better performance than any of these variants.

4.2.3. Effect of the T Parameter

DANTE alternatively optimizes over each layer using

SNGD. An important parameter for SNGD which can affect

performance is the number of epochs for which SNGD algo-

rithm runs for each layer (parameter T in Algorithm 1). We

vary T and compare how the performance of DANTE varies

when compared to SGD. The results are presented in Figure 7.

We observe that DANTE is fairly robust to changes in T . The

network used for the presented result was (784 −→ 100 −→ 10)

with the MNIST dataset. Observing the performance of this

experiment, we chose T = 5 for all our experiments.

8

Figure 2: (Best viewed in color) Comparative Performance of SGD (Green) and DANTE (Blue) on MNIST and KMNIST datasets. The rows correspond to

networks (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10), (784 −→ 400 −→ 200 −→ 100 −→ 10) and

(784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10) in order from top to bottom, all with Leaky ReLU activations. The first three columns correspond to MNIST, and the

last three correspond to KMNIST. The first and fourth columns show training loss; second and fifth columns show test accuracy; third and sixth columns show test

loss. For all the plots, X axis is the number of weights updated.

9

Figure 3: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on CIFAR-10 and SVHN datasets. The rows correspond to networks

(3072 −→ 512 −→ 10), (3072 −→ 512 −→ 64 −→ 10) and (3072 −→ 1024 −→ 512 −→ 256 −→ 128 −→ 64 −→ 10) in order from top to bottom, all with Leaky ReLU activations.

The first three columns correspond to CIFAR-10, and the last three correspond to SVHN. The first and fourth columns show training loss; second and fifth columns

show test accuracy; third and sixth columns show test loss. For all the plots, X axis is the number of weights updated.

Figure 4: (Best viewed in color) Comparative performance of SGD (Green) and

DANTE (Blue) on Tiny Imagenet. The rows correspond to networks (12288 −→

3072 −→ 512 −→ 200), (12288 −→ 3072 −→ 1024 −→ 512 −→ 200) and (12288 −→

3072 −→ 1536 −→ 768 −→ 384 −→ 200) in order from top to bottom, all with

Leaky ReLU activations. The first column shows training loss, second shows

validation accuracy and third shows validation loss. For all plots, X-axis is the

number of weights updated.

4.3. Other Empirical Studies

4.3.1. Comparative Study

We have compared DANTE to other Alternating-

Minimization approaches for training neural networks:

Choromanska’s [13] AM-Adam (which was their best per-

forming variant) and Taylor’s [12] ADMM approach, from

the codes provided by the corresponding authors. The results

of comparison between DANTE , AM-Adam and ADMM on

MNIST are presented in figure 8. Taylor’s ADMM algorithm

peaked at an accuracy of about 81% for both the networks.

Note that Taylor’s method seems to show significant instability

when trained on well-known datasets over a longer period.

Our proposed method does not suffer from this issue. As is

clear of the graphs and results, DANTE outperforms both the

AM-Adam and Taylor’s ADMM algorithm.

4.3.2. Regression Tasks

All the above-mentioned experiments were done for the clas-

sification task. We hence also studied the performance of

DANTE on standard regression datasets from the UCI repos-

itory. Table 3 presents the final test error values at the end

of training. We followed The standard benchmark evalua-

tion setup of each of the datasets, as specified in the reposi-

tory. These results further support the promise of the proposed

method.

4.3.3. Training Autoencoder Models

Going further, we conducted experiments to study the effec-

tiveness of the feature representations learned using the autoen-

coder models trained using DANTE and SGD. After training,

we passed the datasets (from UCI repository) through the au-

toencoder, extracted the hidden layer representations, and then

10

Figure 5: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on MNIST and KMNIST datasets. The rows correspond to networks

(in order) (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10) and (784 −→ 400 −→ 200 −→ 100 −→ 10)

having sigmoid activations. The first three columns correspond to MNIST, and the last three correspond to KMNIST. The first and fourth columns show training

loss; second and fifth columns show test accuracy; third and sixth columns show test loss. For all the plots, X-axis is the number of weights updated.

11

Figure 6: (Best viewed in color) Comparative performance of SGD (Green) and DANTE (Blue) on the MNIST dataset with cross-entropy loss. The rows correspond

to networks (in order) (784 −→ 100 −→ 10), (784 −→ 250 −→ 10), (784 −→ 400 −→ 10), (784 −→ 600 −→ 10), (784 −→ 400 −→ 200 −→ 10), (784 −→ 400 −→ 200 −→ 100 −→ 10)

and (784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10). The first three columns correspond to networks with Leaky ReLU activations; the last three correspond to

networks with sigmoid activations. The first and fourth columns show training loss; second and fifth columns show test accuracy; third and sixth columns show test

loss. For all the plots, X-axis is the number of weights updated.

12

Figure 7: (Best viewed in color) Comparative performance of SGD (Green)

and DANTE (Blue) with varying parameter T on MNIST dataset. The network

used in the top three plots is (784 −→ 100 −→ 10) and the bottom three plots

is (784 −→ 600 −→ 400 −→ 200 −→ 100 −→ 50 −→ 10). The first column shows

training loss; the second shows test accuracy; and third shows test loss. For all

plots, X-axis is the number of weights updated.

Figure 8: (Best viewed in color) Comparative performance of DANTE (Blue),

Choromanska’s AM-Adam (red) and Taylor’s ADMM based algorithm (cyan)

on MNIST dataset. The network used in the top three plots is (784 −→ 100 −→ 10)

and the bottom three plots is (784 −→ 100 −→ 100 −→ 100 −→ 10). The first column

shows training loss; the second shows test accuracy; and third shows test loss.

For all plots, X-axis is the number of parameters updated.

DANTE SGD

Air-Foil 0.066852 0.069338

Fires 0.024988 0.029008

CCPP 0.000283 0.0003009

Table 3: Test error on UCI regression datasets with DANTE and SGD.

DANTE SGD

MNIST 93.6% 92.44%

Ionosphere 92.45% 96.22%

SVMGuide4 87.65% 70.37%

USPS 90.43% 89.49%

Vehicle 77.02% 74.80%

Table 4: Classification accuracies using ReLU autoencoder features on different

datasets.

trained a linear SVM. The classification accuracy results us-

ing the hidden representations are given in Table 4. The table

clearly highlights the improved performance of DANTE on this

task. In case of the SVMGuide4 dataset, DANTE showed a

significant improvement of over 17% on the classification ac-

curacy.

Figure 9 shows some of the best reconstructions obtained by

trained models for the autoencoder with the ReLU activation on

MNIST in both cases (SGD and DANTE). The model trained

using DANTE shows qualitatively better reconstructions, when

compared to reconstructions obtained using a model trained by

SGD under the same settings.

5. Proofs

5.1. Proof of Theorem 1

Proof. Consider w ∈ B(0,W), ‖w‖ ≤ W such that ˆerrm(w) =
1
m

∑m
i=1(yi − φ〈w, xi〉)

2 ≥ ǫ, where m is the total number of

samples. Also let v be a point ǫ/κ-close to minima w∗ with

κ = 2b3W
a

. Let g be the subgradient of the generalized ReLU

activation and G be the subgradient of ˆerrm(w). (Note that as

before, g〈., .〉 denotes g(〈., .〉).) Then:

〈G(w),w − v〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w
∗,xi〉)

[

〈xi,w − w∗〉 + 〈xi,w
∗ − v〉

]

(Step 1)

Figure 9: Reconstructions using the autoencoder models with ReLU activation.

Top: Model trained using SGD; Bottom: Model trained using DANTE.

13

≥
2

m

m
∑

i=1

g〈w, xi〉
[

b−1 (φ〈w, xi〉 − φ〈w
∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w
∗,xi〉) 〈xi,w

∗ − v〉
]

(Step 2)

≥
2

m

m
∑

i=1

g〈w, xi〉
[

b−1 (φ〈w, xi〉 − φ〈w
∗,xi〉)

2

− |φ〈w, xi〉 − φ〈w
∗,xi〉|‖xi‖‖w

∗ − v‖
]

≥
2

m

m
∑

i=1

ab−1 (φ〈w, xi〉 − φ〈w
∗, xi〉)

2

−
2

m

m
∑

i=1

b|φ〈w, xi〉 − φ〈w
∗,xi〉|‖xi‖‖w

∗ − v‖

(Step 3)

≥
2

m

m
∑

i=1

ab−1 (φ〈w, xi〉 − φ〈w
∗, xi〉)

2

−
2

m

m
∑

i=1

b2‖〈w, xi〉 − 〈w
∗,xi〉‖

ǫ

κ
‖xi‖

(Step 4)

≥ 2ab−1ǫ −
aǫ

bWm

m
∑

i=1

‖〈w, xi〉 − 〈w
∗,xi〉‖‖xi‖

≥ 2ab−1ǫ −
aǫ

bWm

m
∑

i=1

‖w − w∗‖‖xi‖
2

≥ ab−1ǫ(2 −
1

W
‖w − w∗‖) (Step 5)

≥ 0 (7)

In the above proof, we first use the fact (in Step 1) that in

the GLM, there is some w∗ such that φ〈w∗, xi〉 = yi. Then,

we use the fact (in Steps 2 and 4) that the generalized ReLU

function is b-Lipschitz, and the fact that the minimum value of

the quasigradient of g is a (Step 3). Subsequently, in Step 5,

we simply use the given bounds on the variables xi,w,w
∗ due

to the setup of the problem (w ∈ B(0,W), and xi ∈ B(0, 1), the

unit d-dimensional ball, as defined earlier in this section).

5.2. Proof of Corollary 1

Proof. Similar to the previous proof, consider w ∈ B(0,W),

‖w‖ ≤ W such that 1
m

∑m
i=1,〈w,xi〉>0(yi − φ〈w, xi〉)

2 ≥ ǫ, where

m is the total number of samples. Also let v be a point ǫ/κ-

close to minima w∗ with κ = 2b2W. Let g be the subgradient

of the generalized ReLU activation and G be the subgradient of

ˆerrm(w).

Note here that since φ is ReLU, if 〈w, xi〉 ≤ 0, then φ〈w, xi〉 =

0 and g〈w, xi〉 = 0. Then:

〈G(w),w − v〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w
∗,xi〉)

[

〈xi,w − w∗〉 + 〈xi,w
∗ − v〉

]

(Step 1)

≥
2

m

m
∑

i=1

g〈w, xi〉
[

b−1 (φ〈w, xi〉 − φ〈w
∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w
∗,xi〉) 〈xi,w

∗ − v〉
]

(Step 2)

=
2

m

m
∑

i=1
〈w,xi〉>0

g〈w, xi〉
[

b−1 (φ〈w, xi〉 − φ〈w
∗,xi〉)

2

+ (φ〈w, xi〉 − φ〈w
∗,xi〉) 〈xi,w

∗ − v〉
]

(Step 3)

≥
2

m

m
∑

i=1
〈w,xi〉>0

b
[

b−1 (φ〈w, xi〉 − φ〈w
∗,xi〉)

2

− |φ〈w, xi〉 − φ〈w
∗,xi〉|‖xi‖‖w

∗ − v‖
]

≥
2

m

m
∑

i=1
〈w,xi〉>0

b
[

b−1 (φ〈w, xi〉 − φ〈w
∗, xi〉)

2

− b‖〈w, xi〉 − 〈w
∗,xi〉‖

ǫ

κ
‖xi‖

]

(Step 4)

=
2

m

m
∑

i=1
〈w,xi〉>0

(φ〈w, xi〉 − φ〈w
∗, xi〉)

2
−

2

m

m
∑

i=1
〈w,xi〉>0

b2‖〈w, xi〉 − 〈w
∗,xi〉‖

ǫ

κ
‖xi‖

(Step 5)

≥ 2ǫ −
2

m

m
∑

i=1
〈w,xi〉>0

b2‖w − w∗‖
ǫ

κ
‖xi‖

2 (Step 6)

= 2ǫ −
2

m
mb2‖w − w∗‖

ǫ

κ
(Step 7)

≥ ǫ(2 −
1

W
‖w − w∗‖)

≥ 0

The proof uses similar arguments as the proof in Theorem 1.

In Step 3, we use the fact that g〈w, xi〉 = 0 if 〈w, xi〉 ≤ 0 and b

otherwise. For Step 7, we observe that there at most m i’s.

5.3. Proof of Theorem 2

Proof. Here, ∀i, yi ∈ [0, 1], the following holds:

yi = φ〈w
∗, x〉 + ξi (8)

where {ξi}
m
i=1

are zero mean, independent and bounded random

variables, i.e. ∀i ∈ [m], ||ξi|| ≤ 1. Then, ˆerrm(w) may be written

as follows (expanding yi as in Eqn 8):

ˆerrm(w) =
1

m

m
∑

i=1

(yi − φ〈w, xi〉)
2

14

=
1

m

(

m
∑

i=1

(φ〈w∗, xi〉 − φ〈w, xi〉)
2

+

m
∑

i=1

2ξi(φ〈w
∗, xi〉 − φ〈w, xi〉) +

m
∑

i=1

ξ2i

)

Therefore, we also have (by definition of noisy GLM in Defn

2):

ˆerrm(w) − ˆerrm(w∗) =
1

m

m
∑

i=1

(φ〈w∗, xi〉 − φ〈w, xi〉)
2

+
1

m

m
∑

i=1

2ξi(φ〈w
∗, xi〉 − φ〈w, xi〉)

Consider ||w|| ≤ W such that ˆerrm(w) − ˆerrm(w∗) ≥ ǫ. Also,

let v be a point ǫ/κ-close to minima w∗ with κ = 2b3W
a

. Let g

be the subgradient of the generalized ReLU activation and G be

the subgradient of ˆerrm(w), as before. Then:

〈G(w),w − v〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − yi) 〈xi, (w − v)〉

=
2

m

m
∑

i=1

g〈w, xi〉 (φ〈w, xi〉 − φ〈w
∗, xi〉 − ξi)

[

〈xi,w − w∗〉 + 〈xi,w
∗ − v〉

]

(Step 1)

≥
2b−1

m

m
∑

i=1

g〈w, xi〉(φ〈w
∗, xi〉 − φ〈w, xi〉)

2

−
2

m

m
∑

i=1

g〈w, xi〉ξi(〈w, xi〉 − 〈w
∗, xi〉)

+
2

m

m
∑

i=1

g〈w, xi〉

· (φ〈w, xi〉 − φ〈w
∗, xi〉 − ξi)〈w

∗ − v, xi〉

(Step 2)

≥
2b−1

m

m
∑

i=1

g〈w, xi〉(φ〈w
∗, xi〉 − φ〈w, xi〉)

2

−
2

m

m
∑

i=1

g〈w, xi〉ξi(〈w, xi〉 − 〈w
∗, xi〉)

− 2
ǫb2

κ
(||w − w*|| +

1

m

m
∑

i=1

|ξi|)

(Step 3)

=
2b−1

m

m
∑

i=1

a[(φ〈w∗, xi〉 − φ〈w, xi〉)
2

− 2ξi(φ〈w, xi〉 − φ〈w
∗, xi〉)]

−
2

m

m
∑

i=1

[g〈w, xi〉(ξi(〈w, xi〉 − 〈w
∗, xi〉))

− 2ab−1ξi(φ〈w, xi〉 − φ〈w
∗, xi〉)]

− 2
ǫb2

κ
(||w − w*|| +

1

m

m
∑

i=1

|ξi|)

(Step 4)

≥ 2ab−1ǫ − 2
ǫb2

κ
(||w − w*|| +

1

m

m
∑

i=1

|ξi|)

+
1

m

m
∑

i=1

ξiλi(w) (Step 5)

≥ 2ab−1ǫ − ab−1W−1ǫ(||w − w*|| +
1

m

m
∑

i=1

|ξi|)

+
1

m

m
∑

i=1

ξiλi(w) (Step 6)

≥ 2ab−1ǫ − ab−1ǫ(1 +W−1) +
1

m

m
∑

i=1

ξiλi(w) (Step 7)

≥ −ab−1ǫW−1 +
1

m

m
∑

i=1

ξiλi(w) (Step 8)

Here, λi(w) = 2g〈w, xi〉(〈w, xi〉 − 〈w
∗, xi〉) − 4ab−1(φ〈w, xi〉 −

φ〈w∗, xi〉), and

|ξiλi(w)| ≤ 2b(|〈w, xi〉− 〈w
∗, xi〉|+4ab−1|φ〈w, xi〉−φ〈w

∗, xi〉|) ≤

2b(3|〈w, xi〉 − 〈w
∗, xi〉|) ≤ 2b(6W) = 12bW

The above proof uses arguments similar to the proof for the

idealized GLM (please see the lines after the proof of Theorem

1, viz. the b-Lipschitzness of the generalized ReLU, and the

problem setup). Now, when

1

m

m
∑

i=1

ξλi(w) ≥ ab−1W−1ǫ

our model is SLQC. By simply using the Hoeffding’s

bound, we get that the theorem statement holds for m ≥
288b4W4

a2 log(1/δ)/ǫ2.

5.4. Viewing the Outer Layer of a Neural Network as a Set of

GLMs

Given an (unknown) distribution D, let the layer be charac-

terized by a linear operator W ∈ Rd×d′ and a non-linear activa-

tion function defined by φ : R → R. Let the layer output be

defined by φ〈W, x〉, where x ∈ R
d is the input, and φ is used

element-wise in this function.

Consider the mean squared error loss, commonly used in

neural networks, given by:

min
W

err(W) = min
W

Ex∼D‖φ〈W, x〉 − y‖22

= min
W

Ex∼D‖

d′
∑

i=1

φ〈W:,i, x〉 − yi‖
2
2

= min
W

d′
∑

i=1

Ex∼D‖φ〈W:,i, x〉 − yi‖
2
2

=

d′
∑

i=1

min
W

Ex∼D‖φ〈W:,i, x〉 − yi‖
2
2

Each of these sub-problems above is a GLM, which can be

solved effectively using SNGD as seen in Theorem 8, which we

leverage in this work.

15

5.5. Proof of Theorem 3

Proof. Consider W ∈ B(0,W), ‖W‖ ≤ W such that ˆerrm(W) =
1
m

∑m
i=1(yi − φ〈W, xi〉)

2 ≥ d′ǫ, where m is the total number of

samples. Also let V = [v1 v2 · · · vd′] be a point ǫ/κ-close to

minima W∗ with κ = 2b3W
a

. Let g be the subgradient of the gen-

eralized ReLU activation, G(W) be the subgradient of ˆerrm(W)

and G(w j) be the subgradient of ˆerrm(w j). (Note that as before,

g〈., .〉 denotes g(〈., .〉).) Then:

〈G(W),W − V〉

=

d′
∑

j=1

〈G(wj),wj − vj〉F

(By definition of Frobenius inner product)

=
2

m

m
∑

i=1

d′
∑

j=1

(

φ〈wj, xi〉 − yi j

)

〈
∂(φ〈wj, xi〉)

∂wj

, (wj − vj)〉

(Step 1)

=
2

m

m
∑

i=1

d′
∑

j=1

g(wj, xi)
(

φ〈wj, xi〉 − yi j

)

[〈xi,wj − w∗j 〉 + 〈xi,w
∗
j − vj〉]

(Step 2)

≥
2

m

m
∑

i=1

d′
∑

j=1

g〈wj, xi〉
[

b−1
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2

+
(

φ〈wj, xi〉 − φ〈w
∗
j xi〉

)

〈xi,w
∗
j − vj〉

]

(Step 3)

≥
2

m

m
∑

i=1

d′
∑

j=1

g〈wj, xi〉
[

b−1
(

φ〈wj, xi〉 − φ〈w
∗
j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w
∗
j ,xi〉|‖xi‖‖w

∗
j − vj‖

]

(Step 4)

≥
2

m

m
∑

i=1

d′
∑

j=1

[

ab−1
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2

− b|φ〈wj, xi〉 − φ〈w
∗
j ,xi〉|‖xi‖‖w

∗
j − vj‖

]

≥
2

m

m
∑

i=1

d′
∑

j=1

[

ab−1
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2

− b2‖〈wj, xi〉 − 〈w
∗
j ,xi〉‖

ǫ

κ
‖xi‖

]

(Step 5)

≥ 2ab−1d′ǫ −
ad′ǫ

bWm

m
∑

i=1

‖〈w, xi〉 − 〈w
∗,xi〉‖‖xi‖ (Step 6)

≥ ab−1d′ǫ(2 −
1

Wm

m
∑

i=1

‖w − w∗‖‖xi‖
2) (Step 7)

≥ ab−1d′ǫ(2 −
1

W
‖w − w∗‖) ≥ 0

In Step 6, ‖〈w, xi〉 − 〈w
∗,xi〉‖ = max

j
‖〈wj, xi〉 − 〈w

∗
j
,xi〉‖ To

simplify from Step 7 we use the fact that ‖W∗‖ ≤ W =⇒

‖w∗‖ ≤ W. The remainder of the proof proceeds precisely as in

Theorem 1.

5.6. Proof of Corollary 2

Proof. Let all the variables be the same as in the proof for Theo-

rem 3 except that 1
m

∑m
i=1

∑d′

j=1,〈w j,xi〉>0(yi j−φ〈w j, xi〉)
2 ≥ d′ǫ and

κ = 2b2W. Again note here that since φ is ReLU, if 〈w, xi〉 ≤ 0,

then φ〈w, xi〉 = 0 and g〈w, xi〉 = 0. Using the results from

previous proof, we continue from Step 4,

〈G(W),W − V〉

≥
2

m

m
∑

i=1

d′
∑

j=1

g〈wj, xi〉
[

b−1
(

φ〈wj, xi〉 − φ〈w
∗
j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w
∗
j ,xi〉|‖xi‖‖w

∗
j − vj‖

]

(Step 4, Borrowed)

≥
2

m

m
∑

i=1

d′
∑

j=1
〈wj,xi〉>0

b
[

b−1
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2]

−
2

m

m
∑

i=1

d′
∑

j=1

[

b|φ〈wj, xi〉 − φ〈w
∗
j ,xi〉|‖xi‖‖w

∗
j − vj‖

]

(Step 5)

≥ d′ǫ(2 −
1

W
‖w − w∗‖) ≥ 0

Simplification from Step 5 to last step follows from similar ar-

guments as last proof.

5.7. Proof of Theorem 4

Proof. In this case, the prediction of the network on x is

f (W1; w2; x).

Consider W1 ∈ B(0,W1), ‖W1‖ ≤ W1, ‖w2‖ ≤ W2 such that

ˆerr(W1,w2) ≥ ǫ. Let V1 be a point ǫ
κ

close to minima W1,

where κ =

(

a

4b5W2
2

W1
−

W1

ǫ

)−1

.

Let ‖ f (W1; w2; x) − y‖2
2
= ‖φ2〈w2, φ1〈W1, x〉〉 − y‖2

2
and 〈·〉F be

the Frobenius inner product.

〈∇W1
ˆerr(W1,w2),W1 − V1〉F

=
2

m

m
∑

i=1

(φ2〈w2, φ1〈W1, xi〉〉 − yi)

〈
∂(φ2〈w2, φ1〈W1, xi〉〉)

∂W1

, (W1 − V1)〉F

(Step 1)

Using chain rule, we can simplify
∂(φ2〈w2,φ1〈W1,x〉〉)

∂W1
as

[

∂(φ2〈w2, φ1〈W1, x〉〉)

∂W1

]T

=
∂(φ2〈w2, φ1〈W1, x〉〉)

∂〈w2, φ1〈W1, x〉〉

·

[

∂〈w2, φ1〈W1, x〉〉

∂φ1〈W1, x〉

T

·
∂φ1〈W1, x〉

∂〈W1, xi〉

T
]T

·

[

∂〈W1, x〉

∂W1

]T

= g2(W1,w2, x) · g1(W1, x) · w2 · x
T (Let)

Continuing from Step 1:

=
2

m

m
∑

i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

〈xiw
T
2 g1(W1, xi)

T , (W1 − V1)〉F

16

=
2

m

m
∑

i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

[〈xiw
T
2 g1(W1, xi)

T ,W1〉F

− 〈xi(w
∗
2)T g1(W∗

1, xi)
T ,W∗

1〉F

+ 〈xi(w
∗
2)T g1(W∗

1, xi)
T ,W∗

1〉F

− 〈xiw
T
2 g1(W1, xi)

T ,V1〉F]

=
2

m

m
∑

i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

[Tr(g1(W1, xi)w2xT
i W1) − Tr(g1(W∗

1, xi)w
∗
2xT

i W∗
1)

+ Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)]

(Step 2)

In order to convert the above terms into a more familiar form,

we begin with the following observation:

〈w2, φ1〈W, x〉〉F = Tr(g1(W, x)w2xT (W))

Also, note that g1(W, x) is a diagonal d′ × d′ matrix consisting

of a’s and b’s on the diagonal:

〈w2, φ1〈W1, x〉〉 − 〈w
∗
2, φ1〈W, x〉〉

= Tr(g1(W1, x)w2xT W1) − Tr(g1(W, x)w∗2xT W)

Therefore, on setting W = W∗
1

and using the fact that the

generalized ReLU is b-Lipschitz and monotonically increasing,

we have:

(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w
∗
2, φ1〈W∗

1, x〉〉)
2

≤ b(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w
∗
2, φ1〈W∗

1, x〉〉)

· (〈w2, φ1〈W1, x〉〉 − 〈w
∗
2, φ1〈W

∗
1, x〉〉)

= b(φ2〈w2, φ1〈W1, x〉〉 − φ2〈w
∗
2, φ1〈W∗

1, x〉〉)

· (Tr(g1(W1, x)w2xT W1) − Tr(g1(W∗
1, x)w∗2xT W∗

1))

Plugging this result into Step 2:

≥
2

m

m
∑

i=1

g2(W1,w2, xi)

[b−1(φ2〈w2, φ1〈W1, xi〉〉 − φ2〈w
∗
2, φ1〈W∗

1, xi〉〉)
2

+ (φ2〈w2, φ1〈W1, xi〉〉 − yi)

· (Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1))]

≥ 2ab−1ǫ +
2

m

m
∑

i=1

g2(W1,w2, xi) (φ2〈w2, φ1〈W1, xi〉〉 − yi)

· [Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)]

≥
2a

b
ǫ −

2

m

m
∑

i=1

g2(W1,w2, xi) · | (φ2〈w2, φ1〈W1, xi〉〉 − yi) |

|Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)|

(Step 3)

First consider the term |Tr(g1(W∗
1, xi)w

∗
2
xT

i
W∗

1) −

Tr(g1(W1, xi)w2xT
i

V1)|. Note that ‖V1 − W∗
1‖ ≤

ǫ
κ
. From

triangle inequality, ‖V1‖ ≤ ‖V1 −W∗
1‖ + ‖W

∗
1‖.

|Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1) − Tr(g1(W1, xi)w2xT

i V1)|

≤ |Tr(g1(W∗
1, xi)w

∗
2xT

i W∗
1)| + |Tr(g1(W1, xi)w2xT

i V1)|

≤ b · ‖w∗2‖‖xi‖‖W
∗
1‖ + b · ‖w2‖‖xi‖‖V‖

≤ 1 · b ·W2[‖W∗
1‖ + ‖V1‖]

≤ b ·W2[2 · ‖W∗
1‖ + ‖V1 −W∗

1‖]

≤ b ·W2[2 · ‖W∗
1‖ +

ǫ

κ
]

Now consider the term |φ2〈w2, φ1〈W1, xi〉〉−φ2〈w
∗
2
, φ1〈W

∗
1, xi〉〉|

appearing in Step 3. We have,

|φ2〈w2, φ1〈W1, xi〉〉 − φ2〈w
∗
2, φ1〈W

∗
1, xi〉〉|

≤ |φ2〈w2, φ1〈W1, xi〉〉| + |φ2〈w
∗
2, φ1〈W

∗
1, xi〉〉|

≤ b
[

|〈w2, φ1〈W1, xi〉〉| + |〈w
∗
2, φ1〈W

∗
1, xi〉〉|

]

≤ b
[

‖w2‖ · ‖φ1〈W1, xi〉‖ + ‖w
∗
2‖ · ‖φ1〈W

∗
1, xi〉‖

]

≤ b ·W2·
[

‖φ1〈W1, xi〉‖ + ‖φ1〈W
∗
1, xi〉‖

]

≤ b ·W2·
[

b‖〈W1, xi〉‖ + b‖〈W∗
1, xi〉‖

]

≤ b2 ·W2·
[

‖W1‖‖xi‖ + ‖W
∗
1‖‖xi‖

]

≤ b2W2 · [‖W1‖ + ‖W
∗
1‖]

≤ 2 · b2 ·W2 ·W1

Using these and the fact that |g2(W1,w2, xi)| ≤ b in Step 3

≥
2a

b
ǫ − 2b · 2b2W2W1 · bW2[2 · ‖W∗

1‖ +
ǫ

κ
]

≥
2a

b
ǫ − 4b4W2

2 W1 ·W1 − 4b4W2
2 W1

ǫ

κ

=
2a

b
ǫ − 4b4W2

2 W1 ·W1 − 4b4W2
2 W1ǫ

a

4b5W2
2
W1

−
W1

ǫ

=
a

b
ǫ ≥ 0

The idea of the proof is similar to that of previous theorems.

The proof uses the fact that the minimum value of the quasigra-

dient of g is a.
5.8. Proof of Theorem 5

Proof. Consider W1 ∈ B(0,W1), ‖W1‖ ≤ W1, ‖W2‖ ≤ W2 such

that ˆerr(W1,W2) ≥ ǫ. Let V1 be a point ǫ
κ

close to minima W1,

where κ =

(

a

4b5W2
2

W1
−

W1

ǫ

)−1

Let W2 ∈ R
d′×d

′′

= [w2
1
,w2

2
, . . .w2

d
′′].

Note here that,

∇W1
ˆerr(W1,W2)

= ∇W1

1

m

m
∑

i=1

‖yi − φ2〈W2, φ1〈W1, xi〉〉‖
2

= ∇W1

1

m

d′′
∑

j=1

m
∑

i=1

‖yij − φ2〈w
2
j , φ1〈W1, xi〉〉‖

2

=

d′′
∑

j=1

∇W1

1

m

m
∑

i=1

‖yij − φ2〈w
2
j , φ1〈W1, xi〉〉‖

2

17

=

d′′
∑

j=1

∇W1
ˆerr(W1,w

2
j)

Now,

〈∇W1
ˆerr(W1,W2),W1 − V1〉F

=

d′′
∑

j=1

〈∇W1
ˆerr(W1,w

2
j),W1 − V1〉F

Observe here that ‖W2‖ ≤ W2 =⇒ ‖w2
j
‖ ≤ W2∀ j. Us-

ing this and the result from theorem 4 we get that each term

〈∇W1
ˆerr(W1,w

2
j
),W1 − V1〉F ≥

a
b
ǫ. Hence, we get that:

〈∇W1
ˆerr(W1,W2),W1 − V1〉F ≥

a

b
ǫd′′ ≥ 0

5.9. Proof of Theorem 6

Proof. Consider w ∈ B(0,W), ‖w‖ ≤ W such that

ˆerri(w) = −(yi log(φ〈w, xi〉)) + (1 − yi)(1 − log(φ〈w, xi〉)) ≥ ǫ

(=⇒ ˆerrm(w) = 1
m

∑m
i=1 −(yi log(φ〈w, xi〉) + (1 − yi)(1 −

log(φ〈w, xi〉))) ≥ ǫ, where m is the total number of samples).

Also let v be a point ǫ/κ-close to minima w∗ with κ = ǫ
(1−e−ǫ)2 .

Consider the case when yi = 1. In this case ˆerri(w) =

− log(φ〈w, xi〉) ≥ ǫ. Using − log p ≥ ǫ. =⇒ (1 − p)2 ≥

(1 − e−ǫ)2, we get that (yi − φ〈w, xi〉)
2 ≥ (1 − e−ǫ)2. In the other

case when yi = 0, ˆerri(w) = − log(1 − φ〈w, xi〉) ≥ ǫ. Here

using − log(1 − p) ≥ ǫ =⇒ (p)2 ≥ (1 − e−ǫ)2, we get that

=⇒ (yi − φ〈w, xi〉)
2 ≥ (1 − e−ǫ)2. Combining these we get,

(yi − φ〈w, xi〉)
2 ≥ (1 − e−ǫ)2 for all i. Then:

〈∇err(w),w − v〉

=
1

m

m
∑

i=1

(φ〈w, xi〉 − yi)〈xi,w − v〉 (Step 1)

=
1

m

m
∑

i=1

(φ〈w, xi〉 − φ〈w
∗, xi〉)(〈xi,w − w∗〉 + 〈xi,w

∗ − v〉)

(Step 2)

≥
1

m

m
∑

i=1

(φ〈w, xi〉 − φ〈w
∗, xi〉)

[(〈w, xi〉 − 〈w
∗, xi〉) − ‖xi‖‖w

∗ − v‖]

(Step 3)

≥
1

m

m
∑

i=1

4(φ〈w, xi〉 − φ〈w
∗, xi〉)

2

− |φ〈w, xi〉 − φ〈w
∗, xi〉|‖xi‖‖w

∗ − v‖

(Step 4)

≥ 4(1 − e−ǫ)2 −
ǫ

κ
(Step 5)

= 3(1 − e−ǫ)2 > 0

Step 2 uses the fact that yi = φ〈w
∗, xi〉. In Step 4 we use the

fact that sigmoid is 1
4

Lipschitz and so (φ(z) − φ(z′))(z − z′) ≥

4(φ(z) − φ(z′))2. In Step 5 we use |φ〈w, xi〉 − φ〈w
∗, xi〉| ≤ 1 and

‖w∗ − v‖ ≤ ǫ
κ
.

5.10. Proof of Theorem 7

Proof. Consider W ∈ B(0,W), ‖W‖ ≤ W such that for all i,

ˆerri(W) =
∑d′

j=1 −(yi j log(φ〈w j, xi〉)) ≥ ǫ

(=⇒ ˆerri(W) = 1
m

∑m
i=1

∑d′

j=1 −(yi j log(φ〈w j, xi〉)) ≥ ǫ, where

m is the total number of samples.) Also let V = [v1 v2 · · · vd′]

be a point ǫ/κ-close to minima W∗ with κ = ǫd′

(1−e−ǫ)2 . Let G(W)

be the subgradient of ˆerrm(W) and G(w j) be the subgradient of

ˆerrm(w j).

Let for xi, the correct label be t, then yit = 1 and yi j = 0,

for any j , t. The error for this one data-point would

be
∑d′

j=1 −(yi j log(φ〈w j, xi〉)) = − log(φ〈wt, xi〉) ≥ ǫ. Using

− log p ≥ ǫ =⇒ (1 − p)2 ≥ (1 − e−ǫ)2, we get that

(yit − φ〈wt, xi〉)
2 ≥ (1 − e−ǫ)2.

Note that for any xi,
∑d′

j=1 φ〈w j, xi〉 = 1. Using this we get

that
∑d′

j=1, j,t φ〈w j, xi〉 = 1 − φ〈wt, xi〉 ≥ 1 − e−ǫ (The inequality

follows as − log p ≥ ǫ =⇒ 1 − p ≥ 1 − e−ǫ). Now using

Cauchy-Schwartz inequality, we get that
∑d′

j=1, j,t φ〈w j, xi〉
2 ≥

(1−e−ǫ)2/(d′−1). Adding this with (yit−φ〈wt, xi〉)
2 ≥ (1−e−ǫ)2

and recollecting that yit = 1 and yi j = 0, for any j , t, we get

that
∑d′

j=1(yi j − φ〈w j, xi〉)
2 ≥ (1 − e−ǫ)2 d′

d′−1
Then:

〈G(W),W − V〉

=

d′
∑

j=1

〈G(wj),wj − vj〉F

(By definition of Frobenius inner product)

=
1

m

m
∑

i=1

d′
∑

j=1

(

φ〈wj, xi〉 − yi j

)

〈xi, (wj − vj)〉 (Step 1)

=
1

m

m
∑

i=1

d′
∑

j=1

(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)

[〈xi,wj − w∗j 〉 + 〈xi,w
∗
j − vj〉]

(Step 2)

≥
1

m

m
∑

i=1

d′
∑

j=1

[

2
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2

+
(

φ〈wj, xi〉 − φ〈w
∗
j xi〉

)

〈xi,w
∗
j − vj〉

]

(Step 3)

≥
1

m

m
∑

i=1

d′
∑

j=1

[

2
(

φ〈wj, xi〉 − φ〈w
∗
j ,xi〉

)2

− |φ〈wj, xi〉 − φ〈w
∗
j ,xi〉|‖xi‖‖w

∗
j − vj‖

]

(Step 4)

≥
1

m

m
∑

i=1

d′
∑

j=1

[

2
(

φ〈wj, xi〉 − φ〈w
∗
j , xi〉

)2
−
ǫ

κ
‖xi‖

]

(Step 5)

≥ 2(1 − e−ǫ)2 d′

d′ − 1
−

d′ǫ

κ
(Step 6)

≥ (1 − e−ǫ)2 d′ + 1

d′ − 1
> 0

Step 2 uses the fact that yi j = φ〈w
∗
j
, xi〉. In Step 3, we use the

fact that softmax is 1
2

Lipschitz and so (φ(z) − φ(z′))(z − z′) ≥

2(φ(z)− φ(z′))2. In Step 5, we use |φ〈wj, xi〉 − φ〈w
∗
j
,xi〉| ≤ 1 and

‖w∗
j
− vj‖ ≤

ǫ
κ
.

18

6. Conclusion and Future Work

In this work, we presented a novel methodology, Deep Alter-

Nations for Training nEural networks (DANTE), to effectively

train neural networks using alternating minimization, thus pro-

viding a competitive alternative to standard backpropagation.

We formulated the task of training each layer of a neural net-

work (in particular, an autoencoder without loss of generality)

as a Strictly Locally Quasi-Convex (SLQC) problem, and lever-

aged recent results to use Stochastic Normalized Gradient De-

scent (SNGD) as an effective method to train each layer of the

network. While earlier work [9] simply identified the SLQC

nature of sigmoidal GLMs, we introduced a new generalized

ReLU activation, and showed that a multi-output layer satisfies

this SLQC property, thus allowing us to expand the applicabil-

ity of the proposed method to networks with both sigmoid and

ReLU family of activation functions. In particular, we extended

the definitions of local quasi-convexity in order to prove that a

one hidden-layer neural network with generalized ReLU activa-

tion is
(

ǫ, 2b3W
a
,W∗

2

)

− S LQC in W2 (the same result holds for a

GLM) and

(

ǫ,

(

a

4b5W2
2

W1
−

W1

ǫ

)−1

,W∗
1

)

−S LQC in W1, which im-

proves the convergence bound for SLQC in the GLM with the

generalized ReLU (as compared to a GLM with sigmoid). We

also showed how DANTE can be extended to train multi-layer

neural networks. We empirically validated DANTE with both

sigmoidal and ReLU activations on standard datasets as well as

in a multi-layer setting, and observed that it provides a compet-

itive alternative to standard backprop-SGD, as evidenced in the

experimental results.

Future Work and Extensions

DANTE can not only be used to train multi-layer neural net-

works from scratch, but can also be combined with back-prop

SGD, which can be used to finetune the network end-to-end pe-

riodically. Our future work will involve a more careful study

of the proposed method for deeper neural networks, as well as

in studying convergence guarantees of the proposed alternating

minimization strategy. In this paper, we focused on validating

the feasibility of DANTE for MLPs; however the ideas should

work for more advanced networks too. In our future work, we

plan to study the extensions of DANTE to convolutional layers,

LSTMs and other architectural variants.

Acknowledgements

This research was partially supported by the Department of

Science and Technology, Govt of India MATRICS program,

project MTR/2017/001047.

References

[1] S. Hochreiter, J. Schmidhuber, Long Short-term Memory, Neural Com-

putation 8 (9) (1997) 1735–1780.

[2] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio,

Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization, in: Advances in neural information processing

systems, 2014, pp. 2933–2941.

[3] Y. Tian, Symmetry-breaking convergence analysis of certain two-layered

neural networks with relu nonlinearity (2016).

[4] S. Shalev-Shwartz, O. Shamir, S. Shammah, Failures of gradient-based

deep learning, in: Proceedings of the 34th International Conference on

Machine Learning, 2017, pp. 3067–3075.

[5] T. Blumensath, M. E. Davies, Iterative Hard Thresholding for Com-

pressed Sensing, Applied and Computational Harmonic Analysis 27 (3)

(2009) 265–274.

[6] P. Jain, P. Netrapalli, S. Sanghavi, Low-rank Matrix Completion using

Alternating Minimization, in: 45th Annual ACM Symposium on Theory

of Computing (STOC), 2013.

[7] A. Anandkumar, R. Ge, Efficient Approaches for Escaping Higher Or-

der Saddle Points in Non-Convex Optimization, in: 29th Conference on

Learning Theory (COLT), 2016.

[8] E. Malach, S. Shalev-Shwartz, A provably correct algorithm for deep

learning that actually works, arXiv preprint arXiv:1803.09522 (2018).

[9] E. Hazan, K. Y. Levy, S. Shalev-Shwartz, Beyond Convexity: Stochas-

tic Quasi-Convex Optimization, in: 29th Annual Conference on Neural

Information Processing Systems (NIPS), 2015, pp. 1594–1602.

[10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning Internal Repre-

sentation by Back-propagating Errors, Nature 323 (9) (1986) 533–536.

[11] Y. Chauvin, D. E. Rumelhart, Backpropagation: Theory, Architectures,

and Applications, Psychology Press, 1995.

[12] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, T. Goldstein, Training

Neural Networks Without Gradients: A Scalable ADMM Approach, in:

33rd International Conference on Machine Learning (ICML), 2016.

[13] A. Choromanska, B. Cowen, S. Kumaravel, R. Luss, M. Rigotti, I. Rish,

P. Diachille, V. Gurev, B. Kingsbury, R. Tejwani, D. Bouneffouf, Beyond

backprop: Online alternating minimization with auxiliary variables,

in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th

International Conference on Machine Learning, Vol. 97 of Proceedings

of Machine Learning Research, PMLR, Long Beach, California, USA,

2019, pp. 1193–1202.

URL http://proceedings.mlr.press/v97/choromanska19a.

html

[14] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,

K. Kavukcuoglu, Decoupled neural interfaces using synthetic gradients,

arXiv preprint arXiv:1608.05343 (2016).

[15] G. Jagatap, C. Hegde, Learning relu networks via alternating minimiza-

tion, arXiv preprint arXiv:1806.07863 (2018).

[16] Y. Bengio, How auto-encoders could provide credit assignment in deep

networks via target propagation, arXiv preprint arXiv:1407.7906 (2014).

[17] D.-H. Lee, S. Zhang, A. Fischer, Y. Bengio, Difference target propaga-

tion, in: Joint european conference on machine learning and knowledge

discovery in databases, Springer, 2015, pp. 498–515.

[18] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, Z. Lin, Towards biolog-

ically plausible deep learning, arXiv preprint arXiv:1502.04156 (2015).

[19] T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman, Random feed-

back weights support learning in deep neural networks, arXiv preprint

arXiv:1411.0247 (2014).

[20] A. Nøkland, Direct feedback alignment provides learning in deep neural

networks, in: Advances in Neural Information Processing Systems, 2016,

pp. 1037–1045.

[21] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve

neural network acoustic models, in: ICML, Vol. 30, 2013, p. 3.

[22] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification, in: ICCV, 2015, pp.

1026–1034.

[23] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise

training of deep networks, in: Advances in neural information processing

systems, 2007, pp. 153–160.

[24] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,

D. Ha, Deep learning for classical japanese literature (2018). arXiv:

cs.CV/1812.01718.

19

	1 Introduction
	2 Related Work
	3 Deep AlterNations for Training nEural networks (DANTE)
	3.1 Problem Formulation
	3.2 Background and Preliminaries
	3.2.1 SLQC-ness of a GLM with Non-Linear Activations
	3.2.2 SLQC-ness of a Multi-Output Neural Network with No Hidden Layers
	3.2.3 One Hidden Layer Networks with Single Output Neurons
	3.2.4 One Hidden Layer Networks with Multiple Output Neurons
	3.2.5 The ReLU Case

	3.3 Extension to Cross-Entropy Loss
	3.4 Methodology
	3.4.1 Stochastic Normalized Gradient Descent (SNGD)
	3.4.2 DANTE

	3.5 Extending to a Multi-Layer Neural Network

	4 Experiments and Results
	4.1 Feedforward Neural Networks
	4.2 Ablation Studies
	4.2.1 Impact of Adaptive Learning Rate Methods
	4.2.2 Using SGD in Alternating Minimization
	4.2.3 Effect of the T Parameter

	4.3 Other Empirical Studies
	4.3.1 Comparative Study
	4.3.2 Regression Tasks
	4.3.3 Training Autoencoder Models

	5 Proofs
	5.1 Proof of Theorem 1
	5.2 Proof of Corollary 1
	5.3 Proof of Theorem 2
	5.4 Viewing the Outer Layer of a Neural Network as a Set of GLMs
	5.5 Proof of Theorem 3
	5.6 Proof of Corollary 2
	5.7 Proof of Theorem 4
	5.8 Proof of Theorem 5
	5.9 Proof of Theorem 6
	5.10 Proof of Theorem 7

	6 Conclusion and Future Work

