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Abstract—The period after the COVID-19 wave is called the Echo-period. Estimation of
crowd size in an outdoor environment is essential in the Echo-period. Making a simple and
flexible working system for the same is the need of the hour. This article proposes and
evaluates a nonintrusive, passive, and cost-effective solution for crowd size estimation in
an outdoor environment. We call the proposed system as LTE communication
infrastructure based environment sensing or LTE-CommSense. This system does not
need any active signal transmission as it uses LTE transmitted signal. So, thisis a
power-efficient, simple, low-footprint device. Importantly, the personal identity of the
people in the crowd cannot be obtained using this method. First, the system uses practical
data to determine whether the outdoor environment is empty or not. If not, it tries to
estimate the number of people occupying the near range locality. Performance evaluation
with practical data confirms the feasibility of this proposed approach.
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B WitH THE ouTBREAK Of COVID-19 virus, we are
forced to rethink visiting public areas'™. After
the current primary wave of infection improves,
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we will be living in a period when we will need to
run business “almost” as usual without a vac-
cine. This phase is sometimes called the Echo-
period.’ In this scenario, a device to measure the
crowd size is urgently required. Crowd sensing
is an active area of research because of its
diverse applications.

IEEE Consumer Electronics Magazine



Keeping this in mind, a passive system, called
CommSense (communication-based environment
sensing system), is proposed here for measuring
crowd size in an outdoor environment. The con-
cept of CommSense was proposed and verified by
the authors in simulation and with field-collected
data for various indoor applications, such as
indoor object detection, indoor localization, and
indoor occupancy estimation.® The system was
also tested for outdoor vehicle detection and clas-
sification.” These give the confidence to apply the
CommSense principle. A major advantage of the
CommSense system, compared to audio or
vision-based methods, is that our system is nonin-
trusive. It cannot identify the persons.

The experiments and analyses performed
here are as follows.

1) First, we considered that the people in the
outdoor crowd are static. Crowd detection
using a threshold-based method was per-
formed first. If a crowd is detected, it triggers
the investigation of the deriving number of
persons in the crowd.

2) In the next step, the same analysis was
repeated when the people in the crowd were
moving freely.

3) Finally, we have performed these two experi-
ments on a different day and time to examine
the consistency of this approach.

STATE OF THE ART

As crowd sensing is vital for many other appli-
cations,® there have been attempts to perform
outdoor-crowd-size estimation in the past. Video-
based crowd-size estimation was proposed by Li
et al.'® The performance of video processing for
crowd-monitoring applications was analyzed by
Bailas ef al.'' A crowd-counting method was pro-
posed by Xing et al.,'* which uses detection flow
along the temporal video sequence. Automated
video analytic was used for crowd monitoring and
counting in the work by Cheong et al.'®> Counting
the number of people present in a crowd with a
real-time network of image sensors was proposed
by Yang et al'*. A motion-based crowd density
estimation method was proposed by Chondro
et al.’> A crowd-counting method based on image
processing and convolutional neural network was
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proposed by Liu et al.'® But these vision-based
approaches require the crowd to be in the line-of-
sight of the cameras. Their performance also
depends on the overlapping of the objects, the rel-
ative positioning of the crowd, visibility at the time
of the day, weather conditions, pollution level, etc.
Additionally, it also poses privacy concerns. Danie-
lis et al'” tried to estimate the size of dense
crowds, using a distributed protocol that relies on
mobile device-to-device communication. This
required active transmission at all times and was
verified in simulation. In addition, we need crowd-
size estimation on a smaller scale. Khan et al.'® use
smartphones’ acoustic sensors in the presence of
human conversation, and motion sensors in the
absence of any conversational data, for crowd-size
estimation. There has been few attempts to use
LTE-based systems for crowd-density estima-
tion.!®?° Tripathy et al.?! presented an Internet-of-
Medical-Things-enabled wearable called EasyBand
for autocontact tracing. Currently, the world is
almost coming to a halt to reduce COVID-19
spread. Official recommendations for social dis-
tancing have pushed people into ever-smaller
clusters.!

LTE-CommSense SYSTEM

Figure 1(a) shows a simple version of the pro-
posed system that uses a piece of single user
equipment (UE).%? In this article, a single UE
was considered for verification using practical
data. The LTE UE receiver works at Band-40
(2300-2400-MHz frequency band) in time divi-
sion duplexing topology. The signal captured
had a bandwidth of 10 MHz.

In the experimental setup, we have used a total
of 19 number of people in an outdoor roadside
environment. The CommSense prototype was
employed to collect LTE downlink (DL) data
affected by the presence of the crowd. The mod-
eled UE, which is a part of the proposed prototype,
then receives the DL data and performs standard
UE operations to evaluate state information (CSI).

The description and working principle of an
USRP N200 SDR platform can be obtained from
the work by Sardar et al.%” The SDR was modeled
as the CommSense prototype containing LTE
receiver. The LTE DL signal was captured via the
antenna and radio frequency (RF) daughter card
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Figure 1. (a) Block diagram of LTE-CommSense
system that uses a single UE for outdoor crowd-size
estimation. (b) Relative position of LTE receiver,
crowd, and LTE eNodeB in the outdoor environment.

connected to the N200 platform. Figure 1(b)
explains the relative position of the prototype,
crowd, and LTE base station (eNodeB) in the
outdoor environment in the experimental setup.
First, the LTE DL data were recorded without the
presence of the crowd, and then for different
numbers of people present. This method is per-
formed for two scenarios. In one case, the per-
sons in the crowd are static, and in another
case, they were moving without any restriction
within the premises. For each DL data capture, a
thousand CSI values were extracted.

CASE STUDY DESIGN

Detection for Static and Dynamic Crowd

As per the experimental setup, there are a
total of eight different cases. The first class cor-
responds to the outdoor environment with the
absence of any crowd. The next category
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Crowd Density Analysis using LTE-CommSense: 30 ScatterPlot

Figure 2. Static crowd detection. (a) Histogram of
principal component for largest eigenvalue. (b)
Scatterplot corresponding to highest three
eigenvalues.

denotes the presence of only one person. Cate-
gory three is for the presence of four persons. In
a similar manner, we keep on increasing the
number of persons by 3 until the 8th category
corresponding to the presence of 19 persons
was reached. For all these eight categories, 1000
CSI values were extracted. Now, to detect the
presence of a person, principal component anal-
ysis (PCA) was performed for feature extraction
of the CSI values.®

Principal components for all the categories
corresponding to the largest eigenvalue are plot-
ted in Figure 2(a). Figure 2(b) depicts the three-
dimensional scatterplots of the principal compo-
nents for the largest three eigenvalues. The
description of the categories for Figure 2(b) is
explained in Table 1. In this plot, distinguishable
clusters are visible corresponding to the
absence of crowd and the presence of different
sizes of the crowd. In Figure 2(a), for the case
where only one principal component corre-
sponding to the largest eigenvalue was consid-
ered, the overlap between the clusters was
more, and this overlap decreases gradually
when more number of principal components
were considered.
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Table 1. Category Description in the Three-Dimensional
Clusterplot for Three Principal Components
corresponding to Highest Three Eigenvalues.

Symbol | Experiment Description Category
® Empty Outdoor Environment 1
O No. of Persons = 1 2
+ No. of Persons = 4 3
X No. of Persons = 7 4
O No. of Persons = 10 5
o No. of Persons = 13 6
A No. of Persons = 16 7
* No. of Persons = 19 8

The aforementioned analysis was performed
next when the persons were in random motion
in the locality. Principal components for all the
categories corresponding to the largest eigen-
value are plotted in Figure 3(a). Figure 3(b)
depicts the three-dimensional scatterplots of the
principal components for the largest three eigen-
values. The description of the categories for
Figure 3(b) is same as in Table 1. In this plot, dis-
tinguishable clusters are visible corresponding
to the absence of crowd and the presence of dif-
ferent sizes of the crowd. In Figure 3(a), i.e., for
the case where only one principal component
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Crowd Density Analysis using LTE-CommSense: 3D ScatterPlot
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Figure 3. Dynamic crowd detection. (a) Histogram
of principal component for largest eigenvalue. (b)
Scatterplot corresponding to highest three
eigenvalues.
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Figure 4. Consistency of CommSense detector
performance: Comparison of detection performance
at two different days.

corresponding to the largest eigenvalue was
considered, the overlap between the clusters
was more.

Threshold-Based Detection and Verification of
Consistency

Threshold-based detection performance cor-
responding to different values of the selected
threshold may be analyzed for both static and
dynamic case. For static crowd, as shown in
Figure 2(a), the error percentage of crowd detec-
tion versus the selected threshold was shown in
Figure 4. The percentage of error in detection
was obtained to be 0.65% for a threshold value
of 0.80. The same analysis was performed for the
dynamic crowd shown in Figure 3(a). The error
percentage of 1.7% was evaluated for a threshold
value of 0.82 [see Figure 2(d)]. Both these results
are depicted in Figure 4, labeled as “Static Crowd
Day 1” and “Dynamic Crowd Day 1,” respectively.

We evaluated the performance consistency of
the proposed approach to ascertain the reliabil-
ity of the developed prototype. The exercise was
repeated on a different day with a new set of peo-
ple. In Figure 4, we can see the detection perfor-
mance for the other day (Day 2) was also along
with the initial day data. In “Day 2,” for these two
different types of crowds, minimum detection
errors achieved a minimum value of 0.8% and
1.55%, respectively. Comparison with the per-
formances of Day 1 concludes that both the
days’ detection performance was consistent.

Estimation of Crowd Size for Static and
Dynamic Crowd

Detection of the crowd triggers the next stage
of analysis. Here, we attempt to estimate crowd
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Table 2. Classification of Number of Persons Present for
Static and Dynamic Crowd Scenario.

Training | Testing OAccuracy. Accuracy (./o)
. . (%) for static for dynamic
images images

crowd crowd
200 250 85.9 84.35
300 350 86.3 85.36
400 500 86.02 84.55
500 700 85.3 83.02
600 800 85.6 83.72
750 1000 85.6 83.91

Table 3. Confusion Matrix for Static and Dynamic Crowd
for the Case of 500 Training Data per Category and 700
Testing Data per Category.

Static Crowd

697 0 0 0 0 0 0

1 698 1 0 0 0 0 0

0 1 699 0 0 0 0 0

0 0 0 682 7 0 11 0

0 0 0 7 671 15 5 2

0 0 0 0 29 644 1 26
0 0 0 8 7 0 685 0

0 0 0 1 2 26 1 670

Dynamic Crowd
697 3 0 0 0
685 14 0 0
10 688 2 0
0 3 659 22 1 14
12 639 28 14
0 24 623 5 48
11 11 10 658 10
0 1 44 5 650
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size, i.e., the number of persons in the crowd.
Table 2 depicts the evaluated accuracy for differ-
ent numbers data for training and size estima-
tion. A simple nearest neighbor classifier was
chosen for this purpose. When new sample data
are input to the system, using the nearest neigh-
bor classifier the distance of that from the near-
est data available in the training dataset
was evaluated. The results reveal that the pro-
posed approach is a promising candidate for
crowd detection and its size estimation in an
outdoor environment consisting of either static
or dynamic persons present in the crowd.
Table 3 shows the confusion matrix for the
lowest accuracy achieved in Table 2. The
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corresponding accuracy achieved for the static
and dynamic crowd cases are 86.02% and
84.55%, respectively.

CONCLUSION

This article proposes a passive nonintrusive
solution for outdoor crowd detection and subse-
quently, its size estimation. The feasibility of
this novel approach was verified with practical
signal captured using SDR-based prototype
developed by the authors. The results prove the
feasibility of our proposal.

Consistency of the performance of this pro-
posal was evaluated by calculating the detection
accuracy for static and dynamic crowd on a dif-
ferent day with a different set of people. Similar
performance was observed, which proves the
performance consistency.

For the static as well as dynamic crowd
cases, the nearest neighbor classifier provided
acceptable performance.

The analysis in this article with practical data
confirms that LTE-CommSense principle can suc-
cessfully detect crowd in outdoor environment.
After detection, it can estimate the crowd size as
well with reasonable accuracy.
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