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a b s t r a c t

Cosmic Ray (CR) hits are the major contaminants in astronomical imaging and spectroscopic observa-
tions involving solid-state detectors. Correctly identifying and masking them is a crucial part of the
image processing pipeline, since it may otherwise lead to spurious detections. For this purpose, we
have developed and tested a novel Deep Learning based framework for the automatic detection of
CR hits from astronomical imaging data from two different imagers: Dark Energy Camera (DECam)
and Las Cumbres Observatory Global Telescope (LCOGT). We considered two baseline models namely
deepCR and Cosmic-CoNN, which are the current state-of-the-art learning based algorithms that were
trained using Hubble Space Telescope (HST) ACS/WFC and LCOGT Network images respectively. We
have experimented with the idea of augmenting the baseline models using Attention Gates (AGs) to
improve the CR detection performance. We have trained our models on DECam data and demonstrate
a consistent marginal improvement by adding AGs in True Positive Rate (TPR) at 0.01% False Positive
Rate (FPR) and Precision at 95% TPR over the aforementioned baseline models for the DECam dataset.
We demonstrate that the proposed AG augmented models provide significant gain in TPR at 0.01%
FPR when tested on previously unseen LCO test data having images from three distinct telescope
classes. Furthermore, we demonstrate that the proposed baseline models with and without attention
augmentation outperform state-of-the-art models such as Astro-SCRAPPY, Maximask (that is trained
natively on DECam data) and pre-trained ground-based Cosmic-CoNN. This study demonstrates that
the AG module augmentation enables us to get a better deepCR and Cosmic-CoNN models and to
improve their generalization capability on unseen data.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In astronomical imaging involving solid-state detectors such
as Charge-Coupled Devices (CCDs), Cosmic Ray (CR) hits are the
primary source of charged particle contamination. The cosmic de-
tritus is caused due to the energy transfer from the CR particles to
the CCD electrons in the valence band (Popowicz et al., 2016). As
the particles enter from different directions and move differently
within the internal detector structure, the CR hits impact the
observations in numerous patterns, ranging from dots affecting
one or two pixels to long wandering tracks, known as worms. The
detector thickness and incidence angle also impact the sensitivity
of the imager to CR hits. The CRs in observational data often mas-
querade as astronomical sources, contaminating observations and
causing false detection, thus degrading the sensitivity to detect
faint or transient sources. Hence, the detection and flagging of CR

∗ Corresponding author.
E-mail addresses: ee19resch01008@iith.ac.in (S.R. Bhavanam),

sumohana@ee.iith.ac.in (S.S. Channappayya), srijith@cse.iith.ac.in (P.K. Srijith),
shantanud@phy.iith.ac.in (S. Desai).

hits should be done before further analysis to ensure top quality
data is used for any science analysis. However, a visual inspection
is usually impossible due to the sheer volume of data generated
by modern wide-field photometric or spectroscopic surveys. As
a result, developing fully automated techniques to separate con-
taminants such as CR hits from the actual astrophysical sources
in modern astronomical survey pipelines is a critical challenge.

The CR hits in astronomical observations are transient, im-
plying that the likelihood of a specific pixel being affected by
CRs when the same sky region is captured multiple times is
relatively low. As a result, getting multiple exposures of the same
sky region is one straightforward approach. This is because CRs
will contaminate image pixels in only one exposure, and the
remaining exposures help to detect the CR hits. This is achieved
by comparing each pixel’s deviation from the mean or median
value from the stack of aligned exposures (Windhorst et al., 1994;
Freudling, 1995; Fruchter and Hook, 2002; Gruen et al., 2014;
Desai et al., 2016). However, getting multiple exposures are not
always possible for various reasons, including constraints on the
observing strategy and the targeting of moving or transient ob-
jects. When the exposures are displaced by a non-integer number
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of pixels about each other, or if the seeing varies significantly
between the images (Rhoads, 2000), CR rejection using only single
exposures is necessary.

Numerous methods for CR rejection from single exposure
imaging and spectroscopic data have been proposed in the lit-
erature. Most are based on the fact that the CR hits appear
sharper and brighter than the actual astronomical sources present
in the image. This is because the CR hits are not blurred by
telescope optics or the atmosphere, unlike astronomical sources.
Furthermore, they exhibit less symmetrical morphologies than
the sources present in the image because they can have any
incidence angle. Convolution using an adaptive Point Spread
Function (PSF) (Rhoads, 2000), histogram analysis (Pych, 2003),
fuzzy logic-based algorithm (Shamir, 2005), and Laplacian edge
detection (LACosmic) (Van Dokkum, 2001) are a few techniques
that have been developed using these properties. A compar-
ison of some of these algorithms is discussed in Farage and
Pimbblet (2005). Removal of cosmic rays using single-exposure
spectroscopic fiber images is discussed in Bai et al. (2017). These
techniques, as well as the IRAF tasks like xzap by M. Dickinson,
frequently involve the tuning of one or more hyperparameters to
produce the optimal CR mask per image (Farage and Pimbblet,
2005). Machine-Learning (ML) algorithms in which the classifica-
tion rules are learned from labeled data such as K-nearest neigh-
bors, multi-layer perceptrons (Murtagh and Adorf, 1991), and
decision-tree classifiers (Salzberg et al., 1995) were also applied
for CR detection and yielded encouraging results on small HST
datasets. However, in terms of generalization, these algorithms
fall short of image-filtering techniques such as LACosmic.

In recent years, ML techniques, particularly Deep-Learning
(DL) algorithms, have become increasingly ubiquitous throughout
astrophysics (Ball and Brunner, 2010; Baron, 2019) and masking
of cosmic ray artifacts is no exception. Recently, deepCR (Zhang
and Bloom, 2020) began employing DL algorithms to automate
the CR rejection, demonstrating the potential of deep learning for
processing CR hits in the observational data. The main algorithm
used here is based on Convolutional Neural Networks (CNNs,
hereafter) (O’Shea and Nash, 2015), which are well-suited for
identifying patterns in images. The convolutional kernels in deep
learning are learned automatically through back-propagation.
This is in contrast to the Laplacian-like edge detection kernel used
in LACosmic, which has to be tuned by hand. In the context of
deep learning and computer vision, CR detection can be framed
as an image semantic segmentation problem, which refers to the
process of classifying each pixel in an image as belonging to one
of several categories. The deepCR (Zhang and Bloom, 2020) is an
UNet (Ronneberger et al., 2015) based model and was initially
trained and tested on HST ACS/WFC F606 W images of sparse
extragalactic fields, globular clusters, and resolved galaxies. It
achieved 92.8%, 95.5%, and 73.3% CR detection rates, respectively,
with a 0.1% false detection rate and surpassed the state-of-the-art
approach, LACosmic. Similarly, MaxiMask (Paillassa et al., 2020)
is another CNN-based model inspired by SegNet (Badrinarayanan
et al., 2017) that attempted to produce a versatile and robust
tool for the community at large, avoiding the trap inherent in
software specialized to a single or large number of instruments
while maintaining high performance. Unlike deepCR, which was
trained on data from space-based instruments, MaxiMask has
been trained using images that encompass a wide range of tele-
scopes (CTIO Blanco, CFHT, Subaru, VST, and others), detector
types (modern CCDs and near-infrared cameras), and ground-
based observation sites to ensure that the model covers most
recent astronomical wide-field surveys. The DL algorithms are
also employed to detect other image artifacts, such as spurious
reflections (commonly referred to as ‘‘ghosts’’) and the scattering
of light off the surfaces of a camera and/or telescope (Tanoglidis
et al., 2021; Chang et al., 2021).

The network architectures and training procedures adopted
in deepCR make it susceptible to variations in the CR rates and
morphologies, restricting their application to other unseen in-
struments. Furthermore, the low CR density in ground-based
data makes the training of CNN-based models more complex.
The class-imbalance issue (Buda et al., 2018) occurs because for
ground-based data, the ratio of CR affected pixels to non-CR
pixels is usually quite small for nominal exposure times. For
DECam images with 90 s exposure, this ratio has been calculated
using data from the Science verification phase, and is approxi-
mately equal to 0.027% (Desai et al., 2016). This results in too
few CR pixels for spatial convolution, making learning ineffi-
cient. We note however that this ratio could also increase with
the exposure time. A novel CNN-based algorithm called Cosmic-
CoNN (Xu et al., 2021b) was proposed to develop generic CR
detection models for all ground and space-based instruments sep-
arately, while explicitly addressing the class imbalance problem.
They also developed novel strategies for optimizing the neural
network for astronomical images’ unique spatial and numerical
properties. Cosmic-CoNN achieved a CR detection rate of 99.9%
with 0.1% false detection when trained on LCO Global Telescope
Network imaging data. The same model achieved 99.8% detec-
tion on other ground-based unseen data (Gemini GMOS-N/S),
demonstrating its generalization capacity. This framework was
also evaluated on spatial data from the HST ACS/WFC images sim-
ilar to deepCR. It achieved 93.4%, 96.5%, and 80.3% CR detection
rates on sparse extragalactic fields, globular clusters, and resolved
galaxies, respectively at 0.1% false detection. The Cosmic-CoNN
was also trained on LCO spectroscopic data and demonstrated a
CR detection rate of 99.8%.

CNNs have become the de-facto standard for image semantic
segmentation due to their high representational power, quick
inference, and filter-sharing properties. Fully Convolutional Net-
works (FCNs) (Long et al., 2015), SegNet (Badrinarayanan et al.,
2017) and U-Net (Ronneberger et al., 2015) are the most com-
monly employed architectures. Despite their high representa-
tional power, these architectures rely on multi-stage cascaded
CNNs to accommodate large variations in the shape and size of
the target. Cascaded frameworks take a region of interest (ROI)
and create dense predictions. On the other hand, this technique
results in unnecessary and redundant use of computational re-
sources and model parameters; for example, all models in the
cascade extract similar low-level features again. Attention Gates
(AGs) (Oktay et al., 2018) offer a basic but effective solution to
this general problem. CNN models with AGs are trained from
scratch, similar to FCN models, and AGs automatically learn to
focus on target structures without further supervision. These
gates create soft region proposals implicitly on the fly during
testing and emphasize significant features relevant to a specific
task. By suppressing feature activations in irrelevant regions, the
AGs increase model sensitivity and accuracy for dense label pre-
dictions. We demonstrate the implementation of AGs in standard
U-Net architectures, for eg., Attention U-Net (Oktay et al., 2018),
and apply them for the CR identification problem.

In this work, we test and apply a deep learning framework
to photometric data from the DECam and LCO Global Telescope
Network imaging data. MaxiMask employed DECam images in its
training process to detect CR hits and outperformed LACosmic.
However, this was at the cost of significantly increased processing
resources since it tries to detect multiple contaminants at once
in a given image. Hence, developing more robust CR-alone detec-
tion models for DECam and other imaging data is essential. Our
primary goals in this work are described as follows:

• Developing a paired dataset of CR contaminated images and
the corresponding CR masks from the DECam observations.

2



S.R. Bhavanam, S.S. Channappayya, P.K. Srijith et al. Astronomy and Computing 40 (2022) 100625

• Training two baseline models, deepCR and Cosmic-CoNN
using DECam data.

• Studying the CR detection performance by adding attention
gates to the baseline models and allowing them to focus on
CR structures of various sizes and shapes.

• Evaluating the generalization performance of both the base-
line and attention augmented models using the unseen LCO
imaging data.

• Evaluating the performance of the pre-trained ground based
Cosmic-CoNN model using unseen DECam data.

The remainder of this paper is organized as follows. In Sec-
tion 2, details on the instrument, a summary of the data col-
lection and data synthesis are presented. The baseline models
deepCR and Cosmic-CoNN, as well as the proposed attention gate
added variants, are described in Section 3 along with their neural
network architectures. Section 4 summarizes the performance
on DECam and LCO imaging data, which were conducted to
demonstrate the potential of the proposed approaches. Finally,
conclusions and future work are presented in Section 5.

2. Data

This work considers images from the DECam instrument and
Las Cumbres Observatory Global Telescope Network. This section
gives an overview of the instruments and describes the dataset
used for our analysis.

2.1. DECam

The DECam is a 570 megapixel imaging camera (Flaugher
et al., 2015), with a 2.2-degree diameter field of view and a
pixel scale of 0.263 arcsecond/pixel. The imaging is done by 62
2K × 4K CCDs. The thickness of the CCDs is 250 µm with 15
µm pixels (Flaugher et al., 2015). It is mounted on the Victor
M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American
Observatory (CTIO). In this work, 56 raw science images from four
different photometric bands of DECam, namely g , r , i, and z, each
with 90 s exposure times, are considered for training and testing
the CR detection models. These images come from the detrended
DECam data taken during the Science Verification phase from Nov
2012–Feb 2013, which have been processed using the CosmoDM

pipeline (Desai et al., 2012, 2015), where the cosmic rays are
removed according to the algorithm described in Desai et al.
(2016). The median seeing of these images is equal to 1.1" in g-
band and about 1" in r , i, z bands. Although a direct estimate of
the sky brightness is not possible for these images, since they are
not photometrically calibrated, these images were taken during
similar observing months as those used for Dark Energy Survey
data. Therefore, we would expect the sky brightness to be about
the same as in DES DR1 dataset, which is ∼ 22, 21.1, 19.9, and
18.7 mag/arcsec2 in g, r, i, z bands respectively (Abbott et al.,
2018). The expected object density is approximately equal to 10
galaxies/sq. arcminute (Sevilla-Noarbe et al., 2021).

2.1.1. The DECam dataset

Recent works, including deepCR (Zhang and Bloom, 2020),
MaxiMask (Paillassa et al., 2020) and Cosmic-CoNN (Xu et al.,
2021b) presented the CR detection as a supervised image seg-
mentation problem and demonstrated the superiority of deep
learning models on segmentation tasks. However, training deep
learning algorithms in a supervised setting requires large amounts
of annotated data. In the case of CR detection, annotated data
correspond to paired images having CR contamination with the
corresponding CR mask. However, getting accurate CR masks
from single exposures like DECam data is complex and requires
manual effort. Hence, we chose to use the dark frame data

(which were downloaded from the NOAO NVO portal) similar
to MaxiMask (Paillassa et al., 2020) to generate CR contamina-
tion synthetically. The objective for synthetically generating CR
contaminated images is that the added CR hits should follow
the dynamics of the corresponding image to which they are
added so as to closely mimic the real data. The paired dataset
reconstructed in this way could also be used to train other CR
detection algorithms on DECam data. The key stpdf involved in
this procedure are described as follows:

• CR Identification: Using Astro-SCRAPPY (McCully and Tewes,
2019), a multi-core optimized implementation of LACos-
mic, the vast majority of CR hits are detected and replaced
using 5 × 5 median filter sampling, which allows us to get
the uncontaminated image without CR artifacts.

• Dark Frame Extraction: The dark frames are images obtained
when no light is incident on the image sensor, and so the
only contributors to the content of undamaged pixels are
the offset, dark current, noise and CR hits. We used 42
dark frames with medium to long exposures (≥ 90 s) with
maximum exposure time of 1200 s, to create a library of
real CR hits from DECam. We used the dark frames post the
Science Verification phase. Note that we did not consider
any cosmic rays near the edges, and also visually scanned
the cosmic rays in the dark frames in order to ensure that
they do not intersect any bad columns or bad pixels.

• Dark Data Addition for CR Contamination: Given a dark data
frame D, the corresponding CR mask M can be easily gen-
erated by applying a simple detection threshold. We em-
pirically choose this threshold to be 3σD above the median
value (mD) of D. Thus we obtain the CR mask M as follows:

∀pixels p, Mp =

{

1, if Dp > mD + 3σD

0, otherwise

Then the mask M is dilated using a 3 × 3 pixel kernel
to create the final mask MD, which is then used as both
the ground truth for the classifier, as well as to gener-
ate the final ‘‘CR contaminated’’ image C by adding CR
pixels from the dark data D with re-scaled values to the
uncontaminated image U:

C = U + kc
σU

σD

D ⊙ MD

where σD is the standard deviation of the non-CR pixels
from the dark data D, the estimated standard deviation of
the non-source pixels (background) of the uncontaminated
image U is denoted by σU , ⊙ is the element-wise multipli-
cation operation and kc is a scaling factor that needs to be
adjusted to make the CR hits look more realistic. We exper-
imented with multiple values for kc and empirically choose
the factor 1/8. We found through visual scanning that
this threshold value of kc does a better job in generating
realistic CR hits. An example image with added CR hits and
the corresponding ground truth CR mask are illustrated in
Fig. 1. The CR mask dilation helps in two ways: to make the
CR hits more realistic when added to the uncontaminated
image. The other avoids the under segmentation problem,
which made for missing the CR peripherals, especially at
the CR edges.

The images and masks (originally with 4K × 2K pixel resolu-
tion) are then divided into image chunks of size 256 × 256 before
feeding to the neural network to facilitate batch training.
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Fig. 1. Synthetic data with CR contamination on DECam-g band image.

2.2. LCO CR dataset

We also considered the Las Cumbres Observatory (LCO) CR
data set (Xu et al., 2021a), that has been made publicly available
from Xu et al. (2021b) to validate our CR detection models on
previously unseen data. This dataset has been constructed by
leveraging the data from LCO’s BANZAI data pipeline (McCully
et al., 2018). A variety of CCD imagers with different pixel scales,
field of views, and filters were used in each telescope class of
LCO’s global telescopes network. It consists of over 4500 scientific
images from LCO’s 23 globally distributed telescopes. About half
of the images have pixel resolutions of 4K × 4K pixels, whereas
the rest have size equal to 3K × 2K or 2K × 2K . The dataset is
constructed such that each sequence has at least three consecu-
tive observations with the same exposure time and separated by a
few minutes. All the images are with an exposure time of 100 s or
longer. For our analysis, we have used the test data from LCO CR
dataset from three distinct imagers, with specifications specified
in Table 1 of Xu et al. (2021b). The CCDs used in these imagers
are described in Brown et al. (2013) and have pixel sizes in the
range 9–15 µm. The median seeing for these imagers is equal
to 2.07", 2.04", and 1.44" for SBIG 6303, Sinistro, and Spectral
imagers, respectively.

2.3. Data augmentation

All the DECam images considered in this work for training the
CR detection models are with 90 s exposure time. To facilitate
the models to work on other extremely short or long exposures,
we used the idea of augmenting the image sky background level
using the same procedure as in deepCR (Zhang and Bloom, 2020).
Note that data augmentation was done only for DECam as the
LCO data already had images with varying exposure times. Note
however that the expected pixel values observed in images are
realizations of Gaussian and Poisson processes and an exact de-
terministic scaling may not be completely realistic. However, this
is sufficient to build up our training dataset. Different exposure
times and sky background levels change the contrast of CR ar-
tifacts and astronomical objects against the background, thereby
affecting model prediction. The sky background level is adjusted
by scaling by a factor of three, followed by subtracting it by up to
0.9 times its original level. Since an image’s original pixel value
can be expressed as:

n = (fstar + fsky) . texp + nCR

where n is in units of e− and flux (f ) in units of e−/s, the pixel
value after augmentation is:

nl = n + α.fsky.texp =

( fstar

1 + α
+ fsky

)

.(1 + α).texp + nCR

Adding or subtracting a multiplicative factor of the sky level,
i.e., α.fsky, is equivalent to simulating an exposure time of (1 +

α).texp, with the flux from astronomical objects scaled down by
1 + α, which is only a minor concern given that astronomical
fluxes already span many orders of magnitude. Alternatively, by
simply scaling the image with a multiplicative factor, one could
emulate different exposure times. As a result, various CR statistics
would be generated, each of which would contribute to the
observed pixel value, independent of the integration time. While
this augmentation technique will invariably affect the image
noise properties, homogeneous noise in the training set should
have little effect on model performance, according to similar
reasoning in Lehtinen et al. (2018).

3. Deep learning framework

As described earlier, the U-Net (Ronneberger et al., 2015)
model is a popular encoder–decoder based deep learning ap-
proach for image segmentation and was originally proposed for
biomedical images. U-Net based architectures have been adopted
for the CR detection task as well. Specifically, deepCR and Cosmic-
CoNN are two popular CR detection algorithms based on this
architecture. Given an image with CR contamination as input,
these models predict a probabilistic map of each pixel affected
by the CR hits. Segmentation is a simple binary classification
between CR and Non-CR pixels in the context of CR detection.
Finally, setting a threshold transforms the predicted probability
map to a binary CR mask, with 1 indicating CR and 0 indicating
Non-CR pixels.

In order to optimize the neural networks trained on astronom-
ical images, their unique features such as high dynamic range
and spatial fluctuations of high magnitude need to be addressed
explicitly. Also, the high CR rates in space-based data do not rep-
resent the acute class imbalance problem that has been reported
in ground-based imaging data. CNN models find it challenging to
train and converge on ground-based imaging data due to low CR
density. A two-phase training is designed in the deepCR (Zhang
and Bloom, 2020) framework to overcome some of these lim-
itations. In order to converge, the model freezes the feature
normalization parameters in the second phase, assuming correct
data statistics were learned in the first phase. This method works
well when the inference and training data have similar statistics
and allows an instrument-specific model to be learned. However,
this approach is not suited for designing a generic CR detection
model that can be used with a wide range of ground or space-
based instruments and data statistics. Cosmic-CoNN (Xu et al.,
2021b) presented a symbiotic combination of three enhance-
ments to address the difficulties mentioned above. Based on the
effective U-shaped architecture, Cosmic-CoNN proposed a novel
loss function that explicitly handles the problem of class disparity,
improved data sampling methods that have proven to be critical
for training efficiency, and a feature normalization technique that
uses group normalization (Wu and He, 2018) to improve model
generalization ability. Thus, the Cosmic-CoNN has emerged as the
community’s first deep learning-based generalized CR detection
model.

This work uses deepCR and Cosmic-CoNN (both adopted from
the U-Net architecture) as baseline models and augments them
with an attention gate (AG) module at each decoder block of the
U-Net. We describe our proposed methodology next.

3.1. U-Net

The architectures of the baseline models are simple modi-
fications of U-Net, an encoder–decoder-based CNN model with
skip connections between each encoder and decoder depth. The
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Fig. 2. The neural network architecture of deepCR and Cosmic-CoNN. Feature maps are represented by gray boxes. The number of channels and the feature map
size are given on the top and left of each feature map, respectively. In the legend on the lower left, different computational procedures are marked. The rectifier
activation unit, ReLU is written as f (x) = max(0, x) and is used here. Unfilled boxes to the right of blue arrows represent feature maps that have been copied from
the left and are to be combined with the adjacent feature map. The attention gate is represented by the orange color circle at each skip connection.

U-Net convolves the image at multiple scales and concatenates
features of the same scale with skip connections, allowing the
network to propagate context information to higher resolution
layers, thereby producing pixel-level classification predictions on
large images. A deep CNN model optimizes millions of kernel
parameters in its hierarchical convolution layers instead of the
hand-crafted kernels used in traditional image-filtering methods
such as LACosmic. Both methods apply convolution to extract
the features from a small portion of the input image, known as
the receptive field. LACosmic finds a CR streak by the sharpness
of its outermost pixel and proceeds inwards via an iterative
method, making the CR detection computationally expensive and
inefficient due to the limited receptive field (3 × 3, extent of the
Laplacian kernel). On the other hand, a deep CNN model uses
deeper layers of its hierarchical network to produce a larger re-
ceptive field to capture the morphological characteristics (edges,
corners, or sharpness) of CR hits, along with the contextual cues
from surrounding pixels.

A reference model to depict the network architectures of both
the baseline and the attention augmented baseline models are
presented in Fig. 2. The baseline models do not contain the
attention gates that are represented with the orange color cir-
cles at each decoder layer of the U-Net. Each model represents
a UNet-3-32 architecture which is a depth-3 network with 32
channels at the first convolution layer, as illustrated in Fig. 2. The
major distinction between the two baseline models is the feature-
normalization technique that expedites training and makes deep
CNNs more amenable to optimize. deepCR uses batch normaliza-
tion, whereas Cosmic-CoNN uses group normalization after every
convolution layer.

3.2. Attention U-Net

The attention mechanism was initially introduced in Vaswani
et al. (2017), which helps in improving the performance of deep-
learning models by allowing them to focus more on target struc-
tures and even provides an explanation for the model behavior. It
is used for several applications, including image captioning (An-
derson et al., 2018), image classification and semantic segmen-
tation (Wang et al., 2017; Ypsilantis and Montana, 2017). While

addressing the semantic segmentation problem, the spatial in-
formation obtained during upsampling in the expanding path of
encoder–decoder architecture is imprecise. U-Net employs skip
connections to address this issue and combine spatial data from
the downsampling and upsampling paths. However, feature rep-
resentation in the initial layers is inadequate, resulting in many
redundant low-level feature extractions, wasting computational
resources and model parameters. Attention U-Net (Oktay et al.,
2018) employs a novel self Attention Gating (AG) mechanism
that learns to suppress the unimportant regions in an input
image while emphasizing essential features for a specific task.
Thus it allows the U-Net to more focus on target structures of
varying size and shape. Specifically, implementing AGs using soft
attention at the skip connections actively suppresses activation in
irrelevant regions, minimizing the number of redundant features
carried across. Soft attention works by giving different sections of
the image distinct weights. Those regions with high significance
are given a higher weight, whereas those with low relevance are
given a lower weight. As the model is trained, the weighting is
improved, enabling the model to make more informed decisions
about which parts to pay more attention to. The AGs can be
easily integrated with standard CNN topologies such as the U-Net
model (shown in Fig. 2), with minimal computational overhead
and increased model sensitivity and prediction accuracy.

3.2.1. Attention gate (AG) module

Attention U-Net (Oktay et al., 2018) provided a grid-based gat-
ing that allows attention coefficients to be more specific to local
regions, building on the attention paradigm introduced in Jetley
et al. (2018). The architecture of a stand-alone AG module is
depicted in Fig. 3. It has two inputs: the first being the at-
tention gating signal, which represents the feature maps from
the previous layer, and the other is the activation map from
the corresponding encoder layer that are transferred via a skip
connection. Fig. 3 illustrates the step-by-step procedure involved
in implementing the AGs at every skip connection and are de-
scribed as follows. Specifically, we explain the operations using
tensors from the second skip connection as an example fed to
the attention gate.

5
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Fig. 3. The architecture of additive Attention Gate (AG) module represented in the orange color circle at each decoder of U-Net in Fig. 2. Unlike base models in
which the feature maps are directly copied from the encoder via skip connection, they are first passed through the attention gate in attention augmented models.
This allows U-Net to automatically focus on target structures in an image and then concatenate with the adjacent feature map.

• The vectors X and G of dimensions 64 × 128 × 128 and
64 × 128 × 128 are the two inputs to the AG module from
the encoder and decoder at the first skip connection.

• The vector G is the upsampled version of the previous layer’s
feature maps performed via transposed convolution.

• Both the vectors X and G undergo a 1 × 1 convolution,
resulting in tensors of dimension 32 × 128 × 128 and
32 × 128 × 128 respectively. Here, 32 is the number of
multi-dimensional attention coefficients, whose values need
to be learned.

• The two vectors are then added element by element, result-
ing in aligned weights getting larger and the non-aligned
weights becoming smaller.

• The resulting vector is processed with a ReLU activation
layer and a 1 × 1 convolution, reducing the dimensions to
1 × 128 × 128.

• A sigmoid layer scales this vector between [0,1], yielding
the attention coefficients (or weights, represented with α),
where the coefficients closer to 1 indicate more significant
features and those closer to 0 represent less significant ones.

• The original vector X is multiplied element-by-element with
the attention coefficients, scaling the vector according to
relevance.

• Finally, the refined feature maps X̂ are passed along nor-
mally in the skip connection.

Since the AG module is differentiable, it is trained during back-
propagation, making the attention coefficients better at highlight-
ing relevant regions. Thus, the attention gate enhances the U-Net
performance by allowing it to automatically focus on varying
target structures in an image.

In all these frameworks, training the CR detection models re-
quire a set of labeled data that includes CR contaminated images
(X) and the corresponding ground truth CR masks (M). Our train-
ing data is constructed using DECam images, and more details on
how the dataset is constructed can be found in Section 2. We
used LCOGT images for testing our models and so no training
is needed. Similar to deepCR (Zhang and Bloom, 2020), we also
chose to use the Binary Cross-Entropy (BCE) loss while training
the CR-mask detection models. The BCE loss between the model
prediction (P, the probability map) and the ground-truth CR mask
(Y, with ‘1’ indicating CR pixels and ‘0’ indicating Non-CR pixels)
can be defined as follows:

BCE(P, Y ) = −(Yijlog(Pij) + (1 − Yij)log(1 − Pij))

The ground-truth CR mask, Y is defined as Yij = 1 for CR pixels
and Yij = 0 for Non-CR pixels. When Yij = 1, the first term in BCE
loss function Yij log(Pij) measures the loss for CR pixels, while
the second term becomes 0. Similarly, when Yij = 0 the second
term measures the loss for Non-CR pixels while the first term
becomes 0. The optimization objective is to minimize the total
loss, which is the sum of the two loss terms to account for both
CR and Non-CR classes.

4. Results and discussion

We have trained and evaluated the baseline deepCR and Cos-
mic-CoNN models with and without attention gate module aug-
mentation. The models are trained using 20,480 image patches,
each with 256 × 256 pixel resolution with 40 images from each
of the ’griz’ DECam photometric bands. From the training dataset,
1% of the images, which is 2048 patches are reserved for vali-
dation. While we trained our models using only images from the
DECam imager, testing was performed on both DECam and LCOGT
Network images. The DECam test set consists of 8192 image
patches with 16 images from each DECam band. On the other
hand, the LCO CR test dataset consists of 119 images from three
different telescope classes. CR detection using image-filtering
based algorithms such as LACosmic (Van Dokkum, 2001), Astro-
SCRAPPY (McCully and Tewes, 2019) and other recent learning-
based algorithms including Maximask (Paillassa et al., 2020) and
Cosmic-CoNN (pre-trained on LCO) (Xu et al., 2021b) are also
evaluated using the test data. We use various methods to assess
the performance of the models both quantitatively and quali-
tatively. LACosmic and Astro-SCRAPPY are image-filtering based
methods and can be applied for CR detection on any optical or
spectroscopic image obtained either from ground-based or space-
based telescopes. In contrast, the other learning-based models are
specific to the data (or data with similar statistics) that they have
seen during training.

The network is a binary classifier for every class in the pro-
posed deep learning framework while detecting the CR induced
pixels. Hence, we can compute the Receiver Operating Character-
istic (ROC) curve and use it as an evaluation metric to compare
the performance of different detectors at varying thresholds (t).
ROC curves represent the False Positive Rate (FPR) versus the True
Positive Rate (TPR) and in the context of CR detection:

TPR =
CR pixels correctly classified

Total CR pixels
=

TP

TP + FN
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Fig. 4. The ROC curves obtained on DECam test data with conventional algorithms (a) LACosmic and (b) Astro-SCRAPPY. Previously trained algorithms such as
MaxiMask and Cosmic-CoNN (pre-trained on LCO) are also evaluated on DECam test data and the corresponding ROC and PRC plots are presented in (c) and
(d) respectively. The CR mask is dilated using a 3 × 3 kernel for fair comparisons with the groundtruth while using LACosmic, Astro-SCRAPPY and pre-trained
Cosmic-CoNN models.

FPR =
Non − CR pixels mistaken as CR

Total Non − CR pixels
=

FP

TN + FP

where TP is the number of true positives (CR induced pixels
successfully recovered as CRs), FN is the number of false negatives
(CR pixels wrongly classified as Non-CRs), FP is the number of
false positives (Non-CR pixels wrongly classified as CRs), and
TN is the number of true negatives (Non-CR pixels successfully
recovered as Non-CRs).

Ideally, the network should deliver the highest possible TPR
for a fixed FPR. Standard ROC plots on ground-based imaging
data, such as DECam and LCOGT, can be misleading for imbal-
anced datasets (Saito and Rehmsmeier, 2015) with far fewer CR
pixels than Non-CR pixels. Even if the ROC plot provides a model-
wide evaluation at all possible thresholds, this is possible. The
main reason for this optimistic picture is because of the use
of True Negatives in the False Positive Rate in the ROC Curve.
Even though evaluating TPR at fixed and lower FPR is a decent
metric and enough for the CR detection problem, further caution
can help better interpret the performance of these models on
imbalanced data. For imbalanced datasets, the Precision–Recall
curve, on the other hand, could also provide an independent
diagnostic and is used in our work as a supplement to the ROC
curve. Because while computing the PRC plots, we can carefully
avoid using True Negatives, the dominant class in the CR de-
tection problem. Also, PRC plots can provide the viewer with
an accurate prediction of future classification performance since
they evaluate the fraction of true positives among positive pre-
dictions. While the recall is equivalent to TPR, in the context of
CR detection, Precision (or Purity) is defined as:

Precision =
CR pixels correctly classified

Total CR pixels predicted by model
=

TP

TP + FP

Unlike FPR, precision is evaluated by the model’s proportion
of correct CR predictions, which is less susceptible to the ratio
of CR and Non-CR pixels in an image and varying CR rates be-
tween datasets. Given a fixed proportion of actual CRs correctly
discovered (e.g., 95% recall), the better model should make fewer
mistakes and thus result in higher precision. It also assists in
determining how well a model works on two different datasets
with the same recall and vice versa.

In addition to the ROC and PRC curves, we use three other
segmentation metrics helpful for assessing the performance of
each CR detector quantitatively. These include F1-score, which is
the harmonic mean of the Precision and Recall, Intersection-Over-
Union (IOU), and False Discovery Rate (FDR) and are defined as
follows (Bethapudi and Desai, 2018):

F1 − score = 2 .
Precision ∗ Recall

Precision + Recall
=

2TP

2TP + FP + FN

IOU =
Area of Overlap

Area of Union
=

TP

TP + FP + FN

FDR =
FP

TP + FP

Considering the binary classification between CR and Non-CR
pixels, the metrics F1-score and IOU should be as high as possible,
while FDR should be as low as possible. The ROC and PRC plots
are threshold-independent measures. However, the F1-score, IOU,
and FDR metrics are computed at a specific threshold at which the
model is performing well.

4.1. Performance on DECam data

The DECam test set is first analyzed with the image-filtering
based CR detectors, LACosmic (Van Dokkum, 2001) and its op-
timized version, Astro-SCRAPPY (McCully and Tewes, 2019) for
reference. We chose objlim=1.0 and sigfrac=0.1 for optimal
performance across the DECam test dataset and held it constant
for both LACosmic and Astro-SCRAPPY. Then we produce the ROC
curves varying the sigclip parameter between [1, 20]. Next,
we evaluated the previously trained deep-learning-based algo-
rithms (MaxiMask and Cosmic-CoNN (pre-trained)) along with
the proposed baselines with and without attention augmentation.
The ROC and PRC plots for deep learning models are plotted
by varying the threshold between [0, 1] on the probability map
obtained from the output of each deep learning model. Varying
the threshold changes the probability map for CR hits and thus
the final binary CR mask. The CR masks obtained from LACosmic,
Astro-SCRAPPY and the Cosmic-CoNN (pre-trained) models are
dilated using a 3 × 3 dilation kernel for fair comparisons with
the DECam test data constructed using the method described
in Section 2. However, the output CR mask from MaxiMask is
not dilated as it has also used dilation for the CR mask while
training. We note that the efficacy of our CR masking algorithms
is evaluated by comparing how many CR induced pixels are
correctly identified. However, one caveat when applying some of
our algorithms on external tools that were trained with different
‘‘ground truths’’, is that a slightly larger margin around CR events
could have been defined in the Astro-SCRAPPY or MaxiMask
footprints compared to the choices made in this paper. This would
show Astro-SCRAPPY or MaxiMask in a bad light even if these
algorithms were as reliable. One possible solution to this would
be to compare the number of distinct cosmic rays, which are
currently identified instead of cosmic ray pixels. However, the
statistics would be noisier and it is also not trivial to count the
number of distinct cosmic rays if they are of arbitrary shape. With
this caveat in mind, we now present our results.

The ROC and PRC plots obtained on DECam test data with
LACosmic, Astro-SCRAPPY and previously trained deep-learning
models such as MaxiMask and Cosmic-CoNN (pre-trained) are
shown in Fig. 4 along with the extended plots in Fig. 5, for
better understanding the model’s performance. Similar plots with
the proposed baseline and AG augmented baseline models are
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Fig. 5. The extended ROC and PRC plots for a better understanding of the model performances from Fig. 4. Both MaxiMask and pre-trained Cosmic-CoNN models
outperform LACosmic and Astro-SCRAPPY. However, the pre-trained Cosmic-CoNN provides the highest TPR of 97.96% at 0.1% FPR and 96.6% Precision at 95% TPR.

Fig. 6. The ROC and PRC plots on DECam test data with the proposed deepCR based model with and with out attention gate module insertion are in (a) and (b)
respectively. The figures (c) and (d) present similar plots with Cosmic-CoNN model. We can notice marginal improvement with AG models in most cases.

Fig. 7. The extended ROC and PRC plots for a better understanding of the performance of the proposed models from Fig. 6. For both deepCR and Cosmic-CoNN
models, the attention augmentation is helping in improving the CR detection performance slightly. Moreover, the Cosmic-CoNN model is marginally better than the
deepCR model.

shown in Figs. 6 and 7. The quantitative evaluation of the CR
detection models is presented in the first rows of Tables 1 and
2. Specifically, Table 1 shows the TPR at 0.01% and 0.1% FPR,
and the Purity at 95% TPR. From Table 1, the proposed models
provide better performance in all the cases compared to previous
CR detection algorithms. Also, the marginal improvement offered
by the attention augmented models are clear and consistent for
most cases across the DECam test data. As with TPR and Purity,
the attention augmented models are consistently better than the
corresponding baselines and for most cases. Between the two
baseline models considered, the Cosmic-CoNN model performs
slightly better than the deepCR model. The pre-trained MaxiMask
and Cosmic-CoNN models perform well on the DECam test data.
Given that the pre-trained Cosmic-CoNN model did not see the
DECam data while training, it provides better performance on
DECam test data when compared to the conventional LACosmic
and Astro-SCRAPPY and serves as a generic model for CR detec-
tion. However, both MaxiMask and Cosmic-CoNN (pre-trained)
underperform compared to the proposed models.

Similarly, Table 2 lists the F1 score, IOU and FDR values for the
models considered in this work on DECam test data. These met-
rics are evaluated at threshold=0.5 for all deep-learning based
models except for the MaxiMask, which uses threshold=0.43
(this threshold is doing better with the MaxiMask model through
their experiments). Similarly, for LACosmic and Astro-SCRAPPY,
we choose the following parameters sigclip=3.0, objlim=1.0
and sigfrac=0.1. These numbers show that the proposed mod-
els perform better than the previous algorithms. Further, at-
tention augmentation offers consistent marginal gains in this
scenario over the corresponding baselines. However, the lowest

FDR is achieved through the MaxiMask model on DECam test
data.

The qualitative analysis of the performance of each CR detec-
tion model is compared and illustrated in Fig. 8. To understand
the performance better, we used different images from each
photometric band ’griz’ of the DECam test data. From Fig. 8, the
proposed baseline models with and without attention augmen-
tation detect more CR peripherals than the other algorithms.
We can notice that the image-filtering-based algorithms (such as
LACosmic and Astro-SCRAPPY) provide more False Positives. In
contrast, the other learning-based algorithms (pre-trained Maxi-
Mask and Cosmic-CoNN) provide more False Negatives. Further,
we provide a qualitative explanation for the performance im-
provement due to attention augmentation. Specifically, we would
like to draw attention to the model from Fig. 2. The cost of
these gains is a nominal 1% increase in the number of trainable
parameters due to the attention gates introduced into the model
architecture. The feature maps obtained on DECam images at dif-
ferent layers of the baseline and AG augmented baseline models
are illustrated in Fig. 9. The AG models give the pixels higher
weightage with CR hits than the Non-CR pixels. Specifically, this
can be noticed from the last layer of the network (layer 31) from
Fig. 9.

4.2. Performance on LCOGT network images

Next, we evaluated the performance of the proposed models
on previously unseen data using the LCO CR test dataset. Test
data from the LCO CR dataset are from three distinct telescope
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Table 1

Quantitative findings on CR detection performance with DECam and LCO test datasets using conventional and deep-learning-based
models. The True-Positive Rate (TPR) is evaluated at a fixed False-Positive Rate (FPR) of 0.01%, 0.1% and Precision (or Purity) is
evaluated at a fixed TPR of 95% to access the model performance. The proposed baseline models with and without AG augmentation
outperform all other models with the DECam test data. The marginal gains with adding attention gates to the baseline models can
be noticed across most of the metrics listed. For the DECam test data, the Cosmic-CoNN model outperforms the deepCR model
with marginal performance gain. The proposed models trained using DECam (mounted on the Victor M. Blanco 4-meter Telescope)
data are validated on previously unseen LCO test datasets with images from three different telescope classes separately. These
telescope classes include 0.4 m, 1 m and 2 m. Given that both MaxiMask and our proposed models did not see the LCO data while
training, both these models are doing well on the LCO data. However, there are many false positives and false negatives with these
models. The proposed models and MaxiMask are better with 1 m and 2 m telescope data than 0.4 m. The classical LACosmic and
Astro-SCRAPPY are also doing well on the LCO data across all the telescope classes. These classical algorithms perform better than
the deep-learning-based algorithms for the 1 m and 2 m data. Almost all the models showed the least performance on the 0.4 m
data for all metrics. Further, the attention models achieve significant performance gain in all data classes with over 50% TPR at
0.01% FPR compared to their corresponding baseline models.

Data Algorithm TPR at 0.01% FPR TPR at 0.1% FPR Purity at 95% TPR
(loss in performance) (loss in performance)

DECam LACosmic 60.65 96.22 –
Astro-SCRAPPY 60.87 97.60 –
MaxiMask 82.49 93.50 68.21
Cosmic-CoNN (pre-trained on LCO) 94.41 98.20 96.60
deepCR 97.06 99.60 98.57
Att deepCR 97.17 99.59 98.70
Cosmic-CoNN 97.57 99.60 98.92
Att Cosmic-CoNN 97.69 99.60 98.99

LCO-data (0m4) LACosmic 55.69 80.83 –
Astro-SCRAPPY 59.70 78.37 –
MaxiMask 37.38 62.38 0.04
deepCR 46.53 95.24 31.13
Att deepCR 51.56 95.48 30.00
Cosmic-CoNN 46.73 95.69 31.23
Att Cosmic-CoNN 50.09 92.89 19.31

LCO-data (1m0) LACosmic 77.53 97.71 –
Astro-SCRAPPY 95.32 99.18 –
MaxiMask 86.94 99.09 54.59
deepCR 71.24 99.32 37.00
Att deepCR 74.17 99.38 41.92
Cosmic-CoNN 83.64 99.40 63.02
Att Cosmic-CoNN 86.83 99.21 64.14

LCO-data (2m0) LACosmic 86.10 99.38 –
Astro-SCRAPPY 86.72 99.49 –
MaxiMask 82.34 99.46 72.84
deepCR 75.56 99.12 66.31
Att deepCR 78.66 99.15 66.32
Cosmic-CoNN 80.85 99.37 68.51
Att Cosmic-CoNN 84.71 99.22 68.54

Note: The Cosmic-CoNN model was initially trained using the LCO CR dataset, and whenever it is used, we mentioned in the bracket
that it is pre-trained. The Cosmic-CoNN and Att Cosmic-CoNN represent our baseline, and attention added models trained using the
DECam dataset.

imagers with different diameters, namely 0.4-meter, 1-meter,
and 2-meter telescopes. First, we evaluated the CR detection
performance on the LCO test data with previously developed CR
detection models such as LACosmic, Astro-SCRAPPY, and Maxi-
Mask. The Cosmic-CoNN (pre-trained) model was initially trained
using LCOGT Network images, and further details on model per-
formance can be found in Xu et al. (2021b). The LCO CR test data
consists of 119 images with 55, 51, and 13 images from 0.4-meter,
1-meter and 2-meter telescopes, respectively. All these images
consist of three consecutive exposures with the same exposure
time, which is 100 s or longer. These images are of different sizes
including, 4K × 4K , 3K × 2K or 2K × 2K . We have used all the
available sequences from the LCO test data in our experiments.
For LACosmic and Astro-SCRAPPY, we used objlim=2.0 for LCO
1.0-meter and 2.0-meter telescopes’ data and objlim=0.5 for
0.4-meter telescope data for optimal performance in different
telescope classes. sigfrac=0.1 is held constant for all telescope
classes, and we produce the ROC curves by varying the sigclip
parameter between [1, 20]. While evaluating Astro-SCRAPPY and
LACosmic, we adopted similar parameters from Xu et al. (2021b).

Since our models and the MaxiMask model are trained using
the dilated CR masks as ground truth, for fair comparisons, we
used the dilated CR masks as ground truth on the LCO test dataset

as well (Tables 3 and 4). This is obtained by dilating the ground
truth CR mask using a 3 × 3 kernel. Except for the MaxiMask
and our proposed models, the output CR mask is dilated using
a 3 × 3 dilation kernel for all other models. Note that we are
assessing the performance of the proposed models which are
trained using images from a single imager (DECam), a single tele-
scope (4-meter Blanco telescope) and even with a single exposure
time (90 s). In order to understand the generalization capability
of the proposed models with varying telescope diameters, we
evaluated the proposed model’s performance on each telescope
class separately. The ROC and the PRC plots corresponding to the
LCO test data are shown from Figs. 10 to 13 for the 0.4-meter
telescope data, from Figs. 14 to 17 for the 1-meter telescope
data, and from Figs. 18 to 21 on data from the 2-meter telescope
class respectively, with both classical and deep-learning-based
models. The extended ROC and PRC plots are also presented to
better compare the performance of different CR detection algo-
rithms. Similarly, other performance metrics on the LCO data are
reported in Tables 1 and 2 again with individual telescope classes.
The conventional algorithms, LACosmic and Astro-SCRAPPY, per-
form decent CR detection on LCO test data across all telescope
classes. However, these algorithms are limited by run time and
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Table 2

Quantitative results on CR detection performance using conventional methods, proposed and pre-trained
deep-learning models on DECam and LCO test datasets. The first row corresponds to various CR detection
models with the DECam data. The second, third, and fourth rows have LCO data for 0.4 m, 1 m, and 2 m
telescope classes. The proposed baseline models with and without AG module augmentation perform better
on DECam test data than all the other models. Further, the proposed attention-based models show marginal
gains across all the metrics listed over the corresponding baselines. The proposed models also perform well
on previously unseen LCO data and can generalize well. However, the metrics are not as good as with
DECam data. The gain with AG models also can be noticed for each telescope class. For the 1 m telescope
data, the gains with attention models are consistent for all the metrics. The lowest FDR is achieved with
the MaxiMask model for DECam and LCO datasets.

Data Algorithm F1-Score IOU FDR

DECam LACosmic 0.8999 0.8180 0.1249
Astro-SCRAPPY 0.9011 0.8200 0.1412
MaxiMask 0.8544 0.7459 0.0129
Cosmic-CoNN (pre-trained on LCO) 0.9574 0.9184 0.0267
deepCR 0.9711 0.9438 0.0329
Att deepCR 0.9721 0.9458 0.0281
Cosmic-CoNN 0.9743 0.9499 0.0250
Att Cosmic-CoNN 0.9749 0.9511 0.0246

LCO-data (0m4) LACosmic 0.4458 0.2868 0.6711
Astro-SCRAPPY 0.3909 0.2429 0.7327
MaxiMask 0.4115 0.2590 0.2463
deepCR 0.6452 0.4763 0.4634
Att deepCR 0.6468 0.4780 0.4716
Cosmic-CoNN 0.6423 0.4731 0.4835
Att Cosmic-CoNN 0.6217 0.4511 0.5012

LCO-data (1m0) LACosmic 0.7656 0.6202 0.3113
Astro-SCRAPPY 0.8647 0.7616 0.1607
MaxiMask 0.7258 0.5696 0.1183
deepCR 0.5317 0.3621 0.6309
Att deepCR 0.5765 0.4050 0.5871
Cosmic-CoNN 0.7237 0.5670 0.4230
Att Cosmic-CoNN 0.7317 0.5769 0.4127

LCO-data (2m0) LACosmic 0.7201 0.5627 0.4154
Astro-SCRAPPY 0.7642 0.6184 0.3567
MaxiMask 0.7385 0.5854 0.1943
deepCR 0.7737 0.6309 0.3545
Att deepCR 0.7717 0.6282 0.3569
Cosmic-CoNN 0.7907 0.6538 0.3372
Att Cosmic-CoNN 0.7856 0.6470 0.3450

Note: The Cosmic-CoNN model was initially trained using the LCO CR dataset, and whenever it is used, we
have indicated in the parenthesis that it is pre-trained. The Cosmic-CoNN and Att Cosmic-CoNN represent
our baseline, and attention added models trained using the DECam dataset.

Fig. 8. CR Detection discrepancy on DECam imaging data (one image from each of the ‘griz’ DECam photometric bands) with different CR detection algorithms.
Incorrect or missing CR pixels are marked in red color. For LACosmic, Astro-SCRAPPY and Cosmic-CoNN (pre-trained on LCO), the output CR masks are dilated using
a 3 × 3 kernel for a fair comparison with the ground truth. Both baseline models with and without attention detect more peripheral CR pixels than other methods.
We notice that the LACosmic and Astro-SCRAPPY algorithms provide more False Positives, whereas the MaxiMask and Cosmic-CoNN (pre-trained) models provide
more False Negatives. Compared to all other CR detection models, the proposed model’s predictions are more faithful to the ground-truth labels.
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Fig. 9. Feature maps obtained on DECam image (DECam-g) at different channels of baseline and attention augmented baseline models. The first row of each image
is deepCR without AG augmentation, while the second row is deepCR with augmenting the AG module. Similarly, the third and fourth rows correspond to the
Cosmic-CoNN models with and without attention augmentation. The AG models help in better highlighting the image regions contaminated with CR hits than the
corresponding baselines.

Fig. 10. The ROC and PRC plots obtained with traditional CR detection algorithms, LACosmic and Astro-SCRAPPY on data with 0.4-meter telescope from LCO CR test
dataset are presented in (a) and (b). The performance on the same data with pre-trained MaxiMask algorithm is presented with ROC and PRC plots in (c) and (d)
respectively. The MaxiMask model has least performance than the LACosmic and Astro-SCRAPPY.

Fig. 11. The extended ROC and PRC plots for a better understanding of the model performances from Fig. 10. The high performance in CR detection is noticed with
the classical CR detection models. The performance is poor on LCO 0.4-meter telescope data with the MaxiMask model.

hard-coded decision rules to obtain the optimal CR mask per
image.

Since both MaxiMask and our trained models did not see the
LCO data previously while training, these models did not gener-
alize well when evaluated on the LCO test data. However, these
models’ performance is comparable to the classical LACosmic
and Astro-SCRAPPY in most cases. The MaxiMask performance
is inferior to our proposed models on the 0.4-meter LCO data,
while it is superior with data from the 1-meter and 2-meter

telescopes, across the majority of the metrics listed in Table 1.
Unlike our models, the MaxiMask model was trained using im-
ages from multiple imagers, telescopes and even exposure times.
From Table 1, we demonstrate that the proposed baseline models
and their attention-added variants perform closer to the classical
algorithms on previously unseen LCO test data across all telescope
classes. However, a high TPR is achieved at high FPR over all the
telescope data. Between the two baseline models considered, the
Cosmic-CoNN model shows better performance at 0.01% and 0.1%
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Fig. 12. Performance of the proposed models on previously unseen data from the LCO CR test dataset using the 0.4-meter telescope data is presented here. (a) and
(b) are the ROC and PRC plots on deepCR models with and without attention module insertion. Similar plots for the Cosmic-CoNN models are presented in (c) and
(d). The deepCR model performs well on this data compared to the Cosmic-CoNN model in most cases. Also, the deepCR model benefits more from adding AGs than
the Cosmic-CoNN model when testing on this data.

Fig. 13. The extended ROC and PRC plots for a better understanding of the proposed model performances from Fig. 12. The highest performance in CR detection
can be noticed with the deepCR model at 0.01% and 0.1% FPR and the gains by adding AGs.

Fig. 14. The ROC and PRC plots obtained with traditional CR detection algorithms, LACosmic and Astro-SCRAPPY on data with the 1-meter telescope from the LCO
CR test dataset are presented in (a) and (b). The performance on the same data with pre-trained MaxiMask model is presented with ROC and PRC plots in (c) and
(d), respectively. On this particular data, the Astro-SCRAPPY performs well than LACosmic and MaxiMask. The MaxiMask model also shows decent performance on
this data.

Fig. 15. The extended ROC and PRC plots for a better understanding of the model performances from Fig. 14. Both Astro-SCRAPPY and MaxiMask provide the highest
CR detection performance on the LCO 1-meter data at 0.1% FPR. The MaxiMask model also performs similar to Astro-SCRAPPY with a 1% difference in TPR at 0.1%
FPR. However, at 0.01% FPR, the TPR is significantly better with Astro-SCRAPPY than the MaxiMask model.

Fig. 16. Performance of the proposed models on previously unseen data from the LCO CR test dataset using the 1-meter telescope data is presented here. (a) and (b)
are the ROC and PRC plots on deepCR models with and without adding the attention gates. Similar plots for the Cosmic-CoNN models are presented in (c) and (d).
The Cosmic-CoNN model performs better on this data than the deepCR model in most cases. Also, both the deepCR and Cosmic-CoNN models benefit from adding
AGs more than the corresponding baselines on this data.

FPR than the deepCR model for all data classes. In all the cases, we
infer that the attention models provide significant CR detection

performance compared to their corresponding baselines at 0.01%
FPR for all classes of telescope data. Further, if we look at the
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Fig. 17. The extended ROC and PRC plots for a better understanding of the proposed model performances from Fig. 16. The highest performance in CR detection can
be noticed with the Cosmic-CoNN model both at 0.01% and 0.1% FPR, compared to baseline deepCR. The gains with adding AGs can be noticed with both baseline
models.

Fig. 18. The ROC and PRC plots obtained with traditional CR detection algorithms, LACosmic and Astro-SCRAPPY on data with the 2-meter telescope from the LCO
CR test dataset are presented in (a) and (b). The performance on the same data with pre-trained MaxiMask model is presented with ROC and PRC plots in (c) and
(d), respectively. Both classical and pre-trained MaxiMask models show decent performance on this data.

Fig. 19. The extended ROC and PRC plots for a better understanding of the model performances from Fig. 18. The cosmic-CoNN model provides the highest CR
detection performance on the LCO 2-meter data at 0.01% FPR. The detection rates are almost the same and above 99% with LACosmic, Astro-SCRAPPY and Cosmic-CoNN
models at 0.1% FPR. The MaxiMask model also performs similar to these models with a 1% difference in TPRs.

Fig. 20. Performance of the proposed models on previously unseen data from the LCO CR test dataset using the 2-meter telescope data is presented here. (a) and
(b) are the ROC and PRC plots on deepCR models with and without adding the attention gates. Similar plots for the Cosmic-CoNN models are presented in (c) and
(d). The Cosmic-CoNN model performs well on this data compared to the deepCR model. Also, both the deepCR and Cosmic-CoNN models benefit from adding AGs
more than the corresponding baselines when testing on this data.

Fig. 21. The extended ROC and PRC plots for a better understanding of the proposed model performances from Fig. 20. The highest performance in CR detection
can be noticed with the Cosmic-CoNN model both at 0.01% and 0.1% FPR. The gains with adding AGs can be noticed with both baseline models in all the cases.

TPR at 0.01% FPR, the baseline deepCR and Cosmic-CoNN models
deliver lower performance than the MaxiMask model on 1-meter

and 2-meter telescope data. Nevertheless, the proposed attention
augmentation is helping the baseline models improve their CR
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Fig. 22. CR Detection discrepancy on LCOGT imaging data (one image from each LCO telescope class (0.4-meter, 1.0- and 2.0- meter)) with different CR detection
algorithms. Incorrect or missing CR pixels are marked in red color. The pre-trained Cosmic-CoNN outperforms all other CR detection models since it was initially
trained using the LCO dataset. LACosmic and Astro-SCRAPPY give more False Positives and can be noticed clearly from a 2-meter telescope image. With the MaxiMask
model, we can notice False Negatives and False Positives. The proposed models also detect most CR hits in images from all telescope classes but with a few False
Positives. On 1-meter telescope data, the proposed models perform well compared to other data where we can notice more False Positives.

Table 3

Comparison of the number of trainable parame-
ters.

Model No. of parameters

deepCR 467233
Att deepCR 472887 (1% ↑)
Cosmic-CoNN 465953
Att Cosmic-CoNN 471219 (1% ↑)

Table 4

Comparison of runtime complexity for a DECam
image with 4K x 2K pixel size with different
algorithms.

Model CPU run time
(in s)

Maximask 250.93
deepCR 24.98
Att deepCR 27.19
Cosmic-CoNN 26.04
Att Cosmic-CoNN 26.70
Astro-SCRAPPY 16.23

detection rates. Thus, the proposed AG augmentation idea helps
improve the baseline models’ generalization capability. Compar-
atively, our proposed models work better on the 1-meter and
2-meter telescope data than data from the 0.4-meter telescope.
Further, Table 2 lists the performance metrics on the LCO test
data from the second row for each telescope class. While com-
puting the listed metrics for LACosmic and Astro-SCRAPPY, we
used sigclip=15.0 and sigfrac=0.1. As discussed before, the
objlim parameter is changed based on the telescope class. We
demonstrate that the AG models offer consistent and marginal
gains compared to the corresponding baseline models with the
1-meter data. However, for the data from the 0.4-meter and 2-
meter telescopes, the performance with both the attention-based
and baseline models is equivalent. The lowest FDR is noticed with
the MaxiMask model for the LCO test data for all telescope classes.

The CR detection performance of each model is compared
qualitatively with individual images from each telescope class
from the LCO test data, and the corresponding results are illus-
trated in Fig. 22. The conventional LACosmic, Astro-SCRAPPY, and
Cosmic-CoNN (pre-trained) detect more CR peripherals than the
MaxiMask and our proposed models. With the MaxiMask model,
we can notice either missing CR hits (False Negatives) or detecting
source or background pixels as CR hits (False Positives). Whereas
in the proposed models, we are mainly seeing False Positives than

the False Negatives. Hence, the proposed models perform well
on previously unseen data when tested using the LCO CR data.
However, high CR detection is achieved at high false-positive
rates. This indicates that our models can easily capture the unique
spatial signatures of the CR hits through the convolutional and
attention layers. Similarly the attention maps are illustrated in
Fig. 23, from the 0.4-meter telescope image. From here, we can in-
fer that the attention gate augmented models pay more attention
to the CR hits than the baseline models and thus help improve the
CR detection performance and the generalization performance.

Finally, we compare the run time complexity of the proposed
models with MaxiMask and Astro-SCRAPPY algorithms using an
Intel Core i3 processor running at 2.30 GHz. The baseline models
with and without attention augmentation are running up to 10
times faster than the MaxiMask model when checked with an
image of 4K ×2K pixel size. This is because the proposed models
are more lightweight than the MaxiMask model. Since the Maxi-
Mask was developed to detect several other contaminants in the
image along with the CR hits, this model has many parameters
and thus takes a long time to flag the contaminants. We noticed
that the run time for CR mask computation using Astro-SCRAPPY
depends on the parameters used. Furthermore, Astro-SCRAPPY
is an iterative algorithm that depends on hard-coded decision
rules to obtain the optimal CR mask per image. The reported
time for Astro-SCRAPPY is with sigclip=3.0, objlim=1.0, and
sigfrac=0.1 while making all other parameters set to default.

5. Conclusions

In conclusion, we have demonstrated the efficacy of the base-
line deep learning CR detection models on the ground-based
imaging data from two different imagers: DECam (mounted on
the 4-meter Blanco telescope) and LCOGT (with data from three
different telescope classes). We have constructed a dataset for
the DECam consisting of image pairs with CR hits and the cor-
responding ground truth CR mask. Specifically, these images and
the CR masks have been taken from the DECam observations. This
dataset is used to train the baseline, and the attention augmented
models. Furthermore, we have shown that adding an attention
gate module at each decoder layer of the baseline models consis-
tently improves qualitative and quantitative performance on the
DECam data for most cases with. Specifically, the improvement
with attention models is noticed with TPR at 0.01% FPR and Preci-
sion at 95% TPR from 1. However, the gains with attention models
are marginal. Qualitatively, the gain using the proposed attention
models is obtained with far fewer False Positives (cf. Fig. 8). We
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Fig. 23. Feature maps were obtained on LCO image (0.4-meter Telescope) at different channels of deepCR and Cosmic-CoNN models with and without attention
augmentation. The first row of each image is deepCR without AG augmentation, while the second row is deepCR with augmenting the AG module. Similarly, the
third and fourth rows correspond to the Cosmic-CoNN models with and without attention augmentation. The AG models help in highlighting the CR induced pixels
in an image better than the corresponding baseline models.

noticed that deepCR and cosmic-CoNN benefit more from adding
attention gates irrespective of the source normalization technique
used while training the models. The performance gained with
attention augmented models is with a small added computational
cost of increasing the number of trainable parameters by 1%. Also,
the proposed attention-based models outperform state-of-the-
art methods such as LACosmic, Astro-SCRAPPY, MaxiMask and
Cosmic-CoNN (pre-trained) on the DECam test data. The paired
dataset constructed in this work using DECam images could also
be used to train other CR detection algorithms on the DECam data
and made available online here. We have also made our training
codes and models available at our GitHubrepository.

We evaluated four of our models (including baseline deepCR,
Cosmic-CoNN and their attention added variants) on previously
unseen LCOGT test data to check the generalization capability
of the proposed CR detection models. We demonstrated the ef-
ficacy of the proposed deep-learning models, which are trained
using images from a single camera/instrument (DECam), a single
telescope (4-meter Blanco telescope) and even with a single
exposure time (90 s for all the images) on LCO test data. The
LCO CR dataset has been obtained from three distinct telescope
imagers with different diameters, namely 0.4-meter, 1-meter, and
2-meter telescopes. Even though these models do not perform as
well as with the DECam data, the majority of the CR streaks are
detected on LCO test data. However, this gain is at the cost of a
few false-positive rates. The Maximask model also performs close
to the classical LACosmic and Astro-SCRAPPY algorithms on the
LCO data, given that this model also did not use the LCO data
while training. Nevertheless, the MaxiMask model gives more
False Positives and False Negatives. MaxiMask achieves the lowest
FDR across the DECam and LCO data. The highest performance
with the proposed models can be seen with the LCO 1-meter

and 2-meter telescope data, whereas the 0.4-meter telescope
data has the least performance. With the proposed attention
augmentation, the baseline models can generalize well on the
LCO data with significant gains in TPR at 0.01% FPR across all
the telescope data. Further, attention helps the baseline models
perform similarly to the classical algorithms. Between the two
baseline models studied, we noticed that the Cosmic-CoNN model
marginally performs better than the deepCR model on DECam
data. However, this performance is significant on LCO data with
high detection rates at 0.01% FPR over all classes of telescopes.
The CR hits in the LCOGT images have different signatures than
those observed in the DECam images and can be visually noticed.
The difference in CR morphology between DECam and LCOGT
stems from the differences in CCD thickness between DECam
and LCOGT. The DECam has long CR streaks as the significant
contamination, and CRs with an area of one or two pixels are less.
On the other hand, dots with one or two pixels are the primary
CR contamination in the LCOGT images, whereas long worms are
the minor. Even the morphology of the data will change between
DECam and LCO data. All these factors made our models not
perform very well on the unseen data. In the future, we plan
to improve the generalization capabilities of the models to make
them independent of the underlying image generation process.
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Appendix

We have implemented our deep-learning models in PyTorch

1.9.0 with Adam optimizer (Kingma and Ba, 2014). While train-
ing our models using the DECam dataset, we randomly sampled
and withheld 1% of the training set for validation. We trained
the deepCR models with identical networks and adopted the
two-phase training procedure used in Zhang and Bloom (2020).
The network is first trained in ‘‘training mode’’, in which batch
normalization layers record running statistics of layer activations
with a momentum of 0.005 and use training batch statistics
for normalizing for 40% of epochs. Following the initial training
phase, the network is switched to ‘‘evaluation mode’’ for the next
60% of the epochs, in which the running statistics are frozen and
used in both forward and backward batch normalization passes.
Similarly, while training Cosmic-CoNN (Xu et al., 2021b) models,
which use group normalization, we adopt a fixed number of
groups (equal to eight) for all feature layers.

An initial learning rate of 0.005 was used for both the baseline
and their attention augmented variant models. During training,
we monitor the validation loss for each model and automate to
decay the learning rate by 0.1 when the validation loss does not

improve by 0.1% for four consecutive epochs. Both deepCR and
Cosmic-CoNN models and their attention variants are converged
within 60 epochs of training. In order to make a fair comparison,
both Cosmic-CoNN and deepCR models were carefully tuned, and
the best models were used for evaluation. Each training epoch
took approximately 235 s (or 4 min) for all the models on Nvidia
Titan Xp with 12 GB GPU.
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