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Abstract

Annihilating dark matter (DM) models based on a scalar hidden sector with Higgs portal-like couplings to
the Standard Model are considered as a possible explanation for recently observed cosmic ray excesses. Two
versions of the model are studied, one with non-thermal DM as the origin of the boost factor and one with
Sommerfeld enhancement. In the case of non-thermal DM, four hidden sector scalars which transform under
a U(1)x symmetry are added. The heaviest scalars decouple and later decay to DM scalars, so providing
the boost factor necessary to explain the present DM annihilation rate. The mass of the annihilating scalars
is limited to < 600 GeV for the model to remain perturbative. U(1)x breaking to Z, at the electroweak
transition mixes light O(100) MeV hidden sector scalars with the Higgs. The DM scalars annihilate to these
light scalars, which subsequently decay to two ™y~ pairs via Higgs mixing, so generating a positron excess
without antiprotons. Decay to u i~ rather than e*e™ is necessary to ensure a fast enough light scalar decay
rate to evade light scalar domination at nucleosynthesis. In the version with Sommerfeld enhancement
only three new scalars are necessary. TeV scale DM masses can be accomodated, allowing both the higher
energy electron plus positron excess and the lower energy PAMELA positron excess to be explained. DM
annihilates to 2u*u~ pairs as in the non-thermal model. This annihilation mode may be favoured by recent

observations of the electron plus positron excess by FERMI and HESS.
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. INTRODUCTION

Recent results from the satellite experiment PAMELA [1] indicate an excess of positrons at
10-100 GeV as compared with the expected galactic background, confirming the earlier results
from HEAT [2] and AMS [3]. Surprisingly, PAMELA did not find any antiproton excess below
100 GeV as compared with the galactic background [4]. Evidence was obtained from the balloon
experiments ATIC [5] and PPB-BETS [6] of an excess electron plus positron flux as compared
with the galactic background in the energy range 100-800 GeV. These results have recently been
reconsidered by FERMI [7] and HESS [8], which do not confirm the large excess and spectral
features observed by ATIC and PPB-BETS. However, HESS does not rule out the possibility of
an electron plus positron excess, although there is no indication of structure in the electron plus
positron spectrum [8], while FERMI observes a flattening of the electron spectrum relative to
that predicted by a conventional diffusive model for the background, which suggests new physics,
although again no prominent spectral features are observed [7]. Therefore an electron plus positron
excess remains a possibility. These results raise the exciting prospect that the positron and the
electron plus positron excesses could be attributed to annihilation of dark matter (DM) particles!.
If DM annihilation is the explanation for the positron excess at lower energies and the possible
electron plus positron excess at higher energies, then the annihilation rate of DM at present should
be larger than that expected from the canonical thermal relic annihilation cross-section in the case
of a smooth distribution of DM in the galaxy (= 3 x 10726 cm?/s) [14]. This is the boost factor?.
The origin of the boost factor could be astrophysical, because of the merger of sub-structures, or
entirely from particle physics, or a combination of the two.

A popular method to achieve the boost factor is Sommerfeld enhancement of the DM anni-
hilation cross-section [14—17]. This typically requires the introduction of new light bosons of
mass Mg ~ AMpy, in order to mediate a force between the DM particles, where Mpy, is the DM
particle mass and O is the interaction’s fine-structure constant. (An exception is discussed in [15],
where the enhancement is mediated by electroweak interactions.) An alternative approach is to

use non-thermal production of DM to accomodate a large annihilation cross-section, usually via

! Nearby astrophysical sources [9-11] and decaying DM [12, 13] are also possible explanations.
2 Different authors define the boost factor in different ways, with some reserving this term for the astrophysical boost

due to clumpy DM. We will use it to refer to the total enhancement of the DM annihilation rate.



heavy particle decay? [18]. In the following we will consider both possibilities*.

In addition, in order to produce positrons without a sizable amount of antiprotons, a mechanism
to allow DM to annihilate primarily to leptons is required. One approach is to introduce new
‘leptophilic’ couplings of the DM particles to leptons [23]. In this paper we will instead consider
a DM sector which interacts with the SM via generic (non-leptophilic) couplings. Our goal is to
determine whether such non-leptophilic models can account for the observed cosmic ray excesses
and to obtain the necessary conditions on their masses, couplings and field content. Our analysis
of the ingredients required to construct successful non-leptophilic models may then guide the
construction of more complete models which can explain the necessary features.

Our models are based on a SM singlet scalar sector interacting with the SM via Higgs portal-
like interactions. Adding a scalar DM particle S is a particularly simple way to extend the SM to
account for DM [24, 25]. The scalar is typically stabilised by either a discrete Z, or U(1) symme-
try. It interacts with the SM sector via the coupling STSH"H (which has come to be known as the
‘Higgs portal’ [26]), which is the only renormalizable coupling of the S to SM particles. Several
DM models based on this type of coupling have been proposed [27]. However, this coupling alone
cannot account for DM annihilation primarily to leptons, nor can it account for the boost factor.
Here we extend the symmetry of the DM particle to a sector of SM singlet scalar fields. The DM
sector is composed of the DM scalar S and additional scalar fields X;, all of which carry non-trivial
charges under a symmetry U(1)x. In the model with non-thermal DM, three scalars X;,i = 1,2,3,
are introduced. The heaviest scalar X; populates the number density of DM, so providing the boost
factor, while the lightest scalar X3 ensures an annihilation channel of DM to two u"u~ pairs. The
role of X7 is to mix X3 with the Higgs via its vacuum expectation value (VEV), inducing its decay
to leptonic final states. In order to ensure that X3 decays before dominating at nucleosynthesis,
U (1)x must be broken to a discrete Z, symmetry which maintains the stability of S. This occurs
spontaneously at the electroweak phase transition, when X acquires a VEV. U (1)x breaking also
mixes the lightest scalar X3 with the Higgs boson, providing a mechanism for leptonic annihilation
of S to 2 T~ pairs®. In this version of the model the mass of S is constrained by perturbativity to
be less than approximately 600 GeV. In the version of the model with Sommerfeld enhancement,

the light scalar X3 which mixes with the Higgs is also used to mediate the enhancement. This

3 We note that in SUSY models a natural alternative is Q-ball decay [19, 20].
4 Another possibility, annihilation close to a pole, has been considered in [21, 22].
> The Higgs mixing mechanism was first described in [16].



model requires only two scalars, X2 and X3, and can accomodate a larger range of S mass. DM
again annihilates to 2 y*u~ pairs via Higgs mixing as in the model with non-thermal DM. An-
nihilation to muons appears to be favoured by recent data from FERMI and HESS [28, 29], with
annihilation to 4u being favoured by the analysis of [29].

Our paper is organised as follows. In Section II we present and discuss a Higgs portal model
with non-thermal production of DM as the source of the boost factor. In Section III we discuss
a version of the model with Sommerfeld enhancement in place of non-thermal production. In

Section IV we present our conclusions.

1. AHIGGSPORTAL MODEL WITH NON-THERMAL DARK MATTER
A. Overview

We extend the SM by adding a dark sector composed of a singlet DM scalar S of mass Mg and
three additional scalar fields X;, i = 1,2,3 with masses m;, i = 1,2,3, such that m; > my > ms.
We impose a symmetry U (1)x, under which the fields X; carry a charge +1 and S carries a charge
+3/2. In order to avoid a Goldstone boson from U(1)yx breaking we will consider this to be a
gauge symmetry. The gauge interaction will not have any significant effect on the cosmological
evolution of the model, only contributing to the already rapid annihilation and scattering between
the hidden sector scalars. The SM fields are neutral under U(1)x. The dark sector fields interact
with the SM via Higgs portal-type couplings to the Higgs bilinear H'H. U (1)x will be broken at
the electroweak (EW) phase transition to a surviving Z, symmetry under which S is odd while rest
of the fields, including the SM fields, are even. Since S is odd under the surviving Z, symmetry, it
is stable and a candidate for DM.

Our model is based on generic couplings of the gauge singlet scalars to H'H. The renormaliz-

able couplings of the scalar sector of the Lagrangian are given by
L D mXixi+M3S'S+myH'H
+ As(STS)? +Ay(H'H)> +yS'SH'H

+ nijleijX]tXl‘f‘(nS)inijSTS‘i‘(nH)inijHTHa (1)

where H is the SM Higgs and i = 1,2,3. We assume that all couplings are real and that all particles

in the dark sector have positive masses squared (ml-z,Mg > 0). As usual m%, < 0 so that H acquires



a vacuum expectation value (VEV). If (nNg)22 < 0 and m% is sufficiently small then X, gains a
U (1)x-breaking VEV when the electroweak (EW) phase transition occurs.
The cosmological evolution of the model can be summarized as follows. X is assumed to have

~ 100 GeV if its annihilation is to account

~

the largest mass in the hidden sector. S has a mass
for the PAMELA observations and so freezes-out at a temperature - 5 GeV. A key requirement
of the model is that X; decay occurs sufficiently long after the S density has frozen out of thermal
equilibrium that it can boost the S relic density. X; can decay to X,TX Xk XiSTS or X;HTH (i, j, k #
1). After the EW phase transition, when X, acquires a VEV, X also decays through the two body
processes: X1 — X}L'Xk’ with j,k# 1 and X1 — S8, hh, X jh with j # 1, where h is the physical Higgs
scalar. We will see that late decay of X requires these couplings to be very small, of order 10~1°.
Due to U (1)x-breaking, X3 mixes with the physical Higgs scalar & and decays to SM fermions via
the Yukawa couplings. If the X3 mass is in the range 2m,, to 2mp (212-270 MeV) then it decays
predominantly to 4" u~ pairs. For larger X3 mass, X3 decay to T pairs produces photons while
X3 decay to nucleon-antinucleon pairs produces antiprotons. Whether the photon flux from pion
decay is excluded depends on the nature of the DM halo, with cuspy NFW halos excluded but
cored isothermal halos still likely to be consistent with present bounds® [30, 31]. In the following
we will consider the X3 mass to be in the range 2m,, to 2myp, although the upper bound may be
increased to 21,00, 1f the photon flux from pion decay is within observational limits. This range
of X3 mass requires that the couplings of X3 to H and X» are less than 107°. The lifetime for X3
decay to Ty~ is short compared with the time at which nucleosynthesis begins, so the relic X3
density, which would otherwise dominate at nucleosynthesis, safely decays away. This would not
be true for decay to e*e~, which would apply if the X3 mass was less than 2m,,. The present S
density annihilates primarily to X3 pairs which promptly decay to muons. The subsequent decay

u" — e" 4V, +V, then accounts for the positron flux without any antiproton flux.

6 A possible problem with photons from pion decay was previously noted in the context of an axion decay model for

cosmic ray anomalies [13].



B. Electroweak Phase Transition and Spontaneous Breaking of U(1)x

After the EW phase transition H develops a VEV, which triggers a VEV for X,. The VEV of H
and X» also induce a VEV for X through the couplings Ni222 and (Ng)12

3 2
_|_
(x1) ~ N u (an)lz uy )

my

where (X2) = u and (H) = v. As we will show, N227 and (ng )12 are required to be no larger than
O(107 1) in order to ensure the late decay of X;. Therefore with u ~ v ~ 100 GeV and m; ~ O(1)
TeV we find that (X;) is negligibly small, O(100) eV. Similarly, X3 also gains a VEV

2

N2333 @7+ (N)23 wv
m3

3)

(X3) ~

We will show later that the mass of the lightest mass eigenstate )(/3 must be less than O(1) GeV
in order to ensure that it will decay primarily to leptons. This is most easily understood if all the
terms in the mass matrix are less than 1 GeV, which in turn requires that all the couplings of X3
to X2 and H are less than 0(10_6). (Larger entries in the mass matrix are possible but would
require sufficient cancellation between the contributions to the lightest mass eigenvalue.) Since
m3 is also no larger than O(1) GeV, this means that (x3) < u, v. Although a value for < X3 >
which is comparable to (H) and (X») is possible, this will not qualitatively alter our results from
the case where (X3) < u, v, since it will only alter the admixtures of X and H in the lightest
mass eigenstate by O(1) factors. Therefore, to simplify the analysis we will set < X3 >= 0 in the

following and consider

X1) =0, (§)=0, (H)=v, (X2)=u (X3) =0, )
with « and v obtained by minimizing the scalar potential

V = miv? +miu® +Noooou® + Ny + (N ) 01V (5)

We assume that (Ng )22 and m%{ are negative with all other terms positive. Vacuum stability re-

quires that (Ng)22 > —2+/N2222Ay. Minimizing Eq. (5) gives

Y (2Aum3 — (Nu)22my;)
((N#)3, — 4N2222An)

(6)




and

:\/(Zﬂzzzzmﬂ—(ﬂﬂ)zzmg)‘ o

((N&)3, —4N2222A1)
In the following we will assume that N»222, |(Ng)22| are ~ 0.1 and that m; < 100 GeV, therefore
un~v.

The X, expectation value breaks the U(1)x symmetry to a discrete symmetry, under which the
scalars transform as @ — e?™q, where Q is the U(1)x charge of @. Thus X; (Q = 1) transforms
as X; — Xi» while S (Q = 3/2) transforms as § — —S. Therefore S is stable due to the residual
discrete symmetry.

Once X, gains a U(1)x-breaking expectation value, the Higgs /4 (defined by Re(H®) = (h +
v)/ v/2) mixes with the real parts of X1, X2 and X3. The X» expectation value is assumed to be ~ v,
so X2 —h mixing will be large, which should have significant consequences for Higgs phenomenol-
ogy. X3-h mixing provides the mechanism for DM to annihilate primarily to lepton final states.
For simplicity we will consider only the mixing of the Higgs with X3, which is responsible for the
important physics. In the basis spanned by v/2ReX3 and A, the effective mass squared matrix is

given by
)

2 — m%—i—6l’]2233u2+(ﬂH)33V2 (N&)23uv
(Na)23uv A2+ (N)oou® )

In this we have assumed that ), is independent of the order of i, j, k,l. Diagonalising this gives

mass eigenstates )(/3 and i with

2
23UV

M2~ m3 4 6Noo33u” + (N )33v° — W 9)

X3 M

and

%~ 20 + (Nu)oau” (10)

where we assume X3 — & mixing is small. The X3 — 4 mixing angle is
g~ (Ni)zsuv. (11)

2
M,
In order to have DM annihilation to muon final states we require that MX/ is in the range 212-270
3
MeV. Therefore we require that m3 < 300 MeV, N2233 < 1075, (Ng)33 S 1070 and (ng)23 < 1079,

assuming that u ~ v ~ M, ~ 100 GeV. Although for simplicity we considered only the mixing

between X3 and 4, in general X3 will mix with X2 and X; in addition to X3. The corresponding



couplings will also be constrained by the requirement that the light eigenstate mass is ~ O(100)
MeV, therefore the additional mixings will not change the model qualitatively. This illustrates an
important feature of generic Higgs portal models for cosmic ray excesses: some couplings must
be strongly suppressed. We will show that suppressed couplings are also necessary to produce the

boost factor via non-thermal production of DM.

C. Non-Thermal Production of S Dark M atter

The S density is due to out-of-equilibrium decay of X;. This must occur at a sufficiently low
temperature that the S scalars can have a boosted annihilation cross-section without annihilating
away after being produced by X; decay. An initial density produced by X; decay at temperature
Tyecay Will annihilate down to a density at Tj..qy given by

H(Tdecay)

(Olveal)s (12

ng ( Td ecay ) —

where ng is the number density and (O|ve|)s is the annihilation cross-section times relative ve-
locity (which is T independent for the case of annihilating scalars). Eq. (12) is true if the initial S
number density from X; decay is larger than g (Tyecay). Since ns 0 g(T)T3 while H O g(T)'/?T?,
where g(T) is the effective number of relativistic degrees of freedom, Eq. (12) implies that the
present ratio of the S number density from X; decay to that from thermal freeze-out (which is
given by Eq. (12) with T,y replaced by the S freeze-out temperature 7Ty) is

nSdecay:( g(TS) )1/2 Ts (13)
&(Tuccay) '

nsth (Tdecay Tdecay

Since the annihilation cross-section is enhanced by a factor B over that which accounts for ob-
served DM via a thermal relic density, it follows that the thermal relic S density is smaller than
that observed by a factor B. So in order to account for the observed DM via X; decay we must
require that ng gecqy = B X ng;,. Therefore

8(Ts) )1/2 Ty
Tioeay = | L) 25 14
decar (g(Tdecay) B ( )

In this we have neglected the logarithmic dependence of the freeze-out temperature on the annihi-
lation cross-section and therefore treated Ty as a constant. T is related to the S mass by Ts = Ms/zg
with zg ~ 20 [33]. For example, if mg ~ 400 GeV then Ty ~ 20 GeV. Since the observed positron

and electron excess requires that B ~ 103, we would then require that Tyecqy ~ 20 MeV.

8



This very low decay temperature is difficult to achieve via particle decay, as it implies a very
long-lived particle with lifetime T ~ H~' ~ 1073s. ¥; can decay to S pairs via the three-body
decays X1 — X257S and x;STS. The decay rate is given by

2

X1~ %WMXII , (15)
where A2 = (Ns)?, + (Ns)3;. In order to have a late enough X; decay we require that [y, < H at
T = 0(10) MeV, which implies that A < 1071°. x; can also decay to S pairs via the two-body
decay X1 — STS once X» gains a VEV. The decay rate is given by

2 .2

MRS %AZ—XI . (16)
With u ~ 100 GeV and MX/1 ~ 1 TeV, this decay rate as a function of (ng);2 is comparable to
Eq.(15) as a function of A. Therefore we also require that (ng)i2 < 10719, (Similar constraints
apply to other X; two-body decay modes.)

The above assumes that the initial S density from X decay is larger than that given in Eq. (12).
This requires that ny, (Tyecay) > 15(Tdecay)/2, since each X; decay produces 2 S. ny, (Tyecay) i8

given by

3
8 (Tdecay) Tdecay H (TX 1)
g(Ty,) Tx31 (Olveetl)y;

where Ty, is the X freeze-out temperature. The condition ny, (Tyecay) > 15(Tyecay)/2 then implies

(17)

ny, (Tdecay> =

that
g<Tdecay)l/2 Tdecay 1(0-|Vrel|))(1 (18)
g(TX1>1/2 Ty, 2 (Olvrel|)s
This translates into an upper bound on B,
2(o Ms g(Ts)'/?

(0|Vrel|)X1 zs MX1 g(TX1>1/2 '

Therefore if B < By = (O|vrel|)s/(O|vrel|)x, (assuming that My, ~ Ms and zy, ~ zs) then the re-
quired X; decay temperature will be given by Eq. (14). The cross-section times relative velocity
for non-relativistic X; pair annihilation to S and H is given by

1

= 3243, [((ns)T, + ()] - (20)

(O]Vrel| >X1

The annihilation cross-section times relative velocity for non-relativistic S is given by

(Ovrel)s [(Ns)Fi+Y] ,i=23 . 21)

1
3213



With B ~ 10? — 103, Eq. (19) is therefore satisfied if (Ng)11,(Ns)11 < 1072, assuming that y~ 0.1.
If this is not satisfied and B > By, then the boost factor is given by By rather than B. In this case the
S density comes directly from X; decay without subsequent annihilations. An even lower X decay
temperature and smaller (Ng);2 would then be necessary in order to account for the observed DM

density.

D. Dark Matter Annihilation Rate

The dominant S annihilation mode is assumed to be to )(/3 pairs. In this case the annihilation

cross-section times relative velocity is given by

(rls)%3
re = . 22
(0|V 1‘)5 3071 {g ( )

In order to account for the cosmic ray excesses, the annihilation cross-section times relative veloc-
ity necessary to account for thermal relic DM, (G|v,|) ~ 3 x 107%6cm? /s = 2.6 x 107° GeV 2,
must be boosted by B ~ 10> — 10 for DM masses in the range O(100)GeV - O(1)TeV. This re-

quires that

1TeV
Therefore for the theory to remain perturbative ((Ns)33 < 3) we require that Mg < 600 (190) GeV

(ns)33w<5—16>><< s ) : (23)

for B = 10 (10°). Thus while the model can account for the positron excess in the range 1-100
GeV observed by PAMELA, an electron plus positron excess at energies up to O(1)TeV cannot be
explained if the model is to remain perturbative, in which case an alternative explanation for the
electron plus positron excess is required, most likely astrophysical. This conclusion is likely to
apply rather generally to models which do not have Sommerfeld enhancement of the annihilation
cross-section. (However, this does not exclude the possibility of a large annihilation cross-section

due to strong coupling between S and X3, which is only constrained by unitarity [32].)

E. Leptonic Final Statesvia Dark Matter Annihilation to x;

In order to account for the positron excess without an accompanying antiproton flux, the S
annihilations at present should proceed primarily through leptonic decay channels. In our model
this is achieved through a mixture of X3-Higgs mixing and kinematics. U(1)x breaking due to

< X2 > causes the real part of X3 to mix with . If the dominant S annihilation mode is TS — )(/;)(/3

10



and if the )(/3 mass is in the range 2m, < MX/3 < 2myp, then the mixing of X3 with 4 leads to the
decay )(/3 — uTu~ via the muon Yukawa coupling. This is illustrated in Figure 1, treating the
mixing as a mass insertion. Thus § annihilation will produce a 4u final state via the process shown
in Figure 2.

The decay rate for )(/3 — uTu~ is given by

2v2 2 yv2 2
Y (Na)5Y: (uy
= H T 723 Ll —_— /
rX3 8T MX3 o 8 (M%) MX3, (24)

where Y, is the Yukawa coupling of the SM Higgs to u#u . This gives for the lifetime of )(/3

—6 \ 2 4N 2
oo :4><10—4<10 ) (6.07><10 )
X3 M (r]H>23 Yﬂ

X3
4
M, 200MeV
X(lSOGeV) ( M, )S’ 25)
3

where we have used u = 100 GeV and v = 174 GeV. The short lifetime of )(/3 ensures that the ther-

mally produced )(/3 will decay well before the onset of nucleosynthesis at O(1)s. This is essential,
as the )(/3 will freeze-out while relativistic (since there are no annihilation channels for )(/3 once
T < My,,M /) and so they will dominate the energy density at nucleosynthesis. The decay rate to
ete™ is suppressed by Y?/ sz ~ 107, leading to a lifetime ~ 10 s. Thus for )(/3 to decay before

nucleosynthesis, decay to muon pairs must be kinematically allowed’ .

<X2> +

<H>

FIG. 1: )(/3 decay into u"u~ via X3-Higgs mixing and the muon Yukawa coupling.

7 We note that the mechanism described in [16], which is based on a single scalar field @ and which gives a decay rate
equivalent to that here but with < X, > replaced by < X3 >~ 200 MeV (where X3 is the equivalent of @ in [16]),
results in a lifetime which is too long and so (¢ domination at nucleosynthesis.
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FIG. 2: The primary S annihilation process to 4u via )('3 decay.

The previous discussion applies to the decay of the real part of X3, which mixes with the physi-
cal Higgs. The imaginary part of X3 does not mix with the Higgs and is therefore stable. However,
so long as the X3 self-coupling N3333 is large, the X3 scalars will maintain a thermal equilibrium
with each other even after they have decoupled from thermal equilibrium with other particles.
Since the imaginary part of X3 is generally heavier than the real part after the latter mixes with the
Higgs, the imaginary part of X3 will annihilate to the lighter real part once T < My, thus ensuring

that the entire X3 density can decay to muons prior to nucleosynthesis.

F.  Sub-dominant S annihilation to Higgs pairs

We have so far considered the annihilation STS — )(/3)(/3 via the quartic coupling (Ns)33, which
primarily produces utu~ pairs. However, it is also possible to have S'S — H'H via the cou-
pling® y. The branching ratio to Higgs pairs Bgig iy =~ Y*/(Ns)3; should be small enough
that the production of Higgs pairs does not result in a large antiproton signal. This requires that
Bgig_ g < 0.1. However, this still allows a significant coupling to Higgs pairs, which can con-

tribute a small antiproton component to the cosmic rays from DM annihilation. The STSH'H

8 We are assuming that the S mass is sufficiently large that we can approximately calculate the annihilation rate in
the < H >— 0 limit.
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coupling also mediates the coupling of S to nucleons, which may allow direct detection of DM.
These possibilities are distinctive features of Higgs portal models which distinguish them from

models based on purely leptophilic couplings.

G. Positron Excessesfrom S'S Annihilation

The annihilation of STS pairs will give rise to mostly u* pairs which finally decay to e* and
neutrinos. The electrons and positrons from S'S annihilation then travel under the influence of the
galactic magnetic field and therefore the motion of e™ is expected to be a random walk. As a result
a fraction of e™ flux will reach the solar system.

The positron flux in the vicinity of the solar system can be obtained by solving the diffusion
equation [15, 34, 35]

0

at[ (E)fﬁ(Ev?vt)]"’Q(E??) ) (26)

%]}(E,?,t) K+ (E)O?f,+ (E,7,1) +

where f,+(E,7,t) is the number density of positrons per unit energy E, K,+(E) is the diffusion
constant, b(E) is the energy-loss rate and Q(E,7) is the positron source term. The positron source
term Q(E,7) from S'S annihilation is given by

dN,+

O(E, ) = n(7)slvral £

(27)

In the above equation the fragmentation function dN,+ /dE represents the number of positrons
with energy E which are produced from the annihilation of S'S.
We assume that the positrons are in a steady state, i.e. 0f,+ /0t = 0. Then from Eq. (26), the

positron flux in the vicinity of the solar system can be given in a semi-analytical form [15, 34, 35]

Vot dN ,+

Mg
O (E75) = e (ns)2 05 el /E 4B 1D (E,E')), (28)

where Ap(E,E') is the diffusion length from energy E’ to energy E and I(Ap(E,E")) is the halo
function which is independent of particle physics. An analogous solution for electron flux can also
be obtained.

Positrons in our galaxy are not only produced by S'S annihilation but also by the scattering
of cosmic-ray protons with the interstellar medium [36]. Thus the positrons produced from the

latter sources can act as background for the positrons produced from the annihilation of STS.
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The background fluxes [36] of primary and secondary electrons and secondary positrons can be

parameterized as [37]:

~1.1
bkg 0.16¢ 211
orim, e~ 1+11€o.9+3.282.15GeV cm s st
0.7
bkg 0.70¢ S S, O P
q)sec7e* - l+1181'5—1—6()()82'9+58084'2Gev cm =S St
4.5¢%7
bke GeV_lcm_zs_lsr_l, (29)

sec,et T 1 +650€23 4 1500e42

where the dimensionless parameter €=E/(1 GeV). The net positron flux in the galactic medium is
then given by
(Pe+)Gal = (Pert Jokg + P+ (E, 7o) - (30)

The second term in the above equation is given by Eq. (28), which depends on various factors:
b(E), \p(E,E"), IA\p(E,E")), v+, (ns)e and the injection spectrum dN,+ /dE’. The energy loss
term b(E) (due to inverse Compton scattering and synchrotron radiation due to the galactic mag-
netic field) is determined by the photon density and the strength of magnetic field. Its value is
taken to be b(E) = 1071962GeVs~! [37]. The number density of S DM in the solar system is
given by

(ns)e = —— (31)

where ps ~ 0.3GeV/ cm’. In the energy range we are interested in, the value of v,+ is taken
approximately to be c, the velocity of light. The values of diffusion length Ap(E,E’) and the
corresponding halo function I(Ap(E,E")) are based on astrophysical assumptions [15, 34, 35]. By
considering different heights of the galactic plane and different DM halo profiles the results may
vary slightly. In the following we take the height of the galactic plane to be < 4 kpc, which is
referred to as the "MED" model [15, 34, 35], and we have used the NFW DM halo profile [38],
o)
p(r) = pe () Q) , (32)
o\ 1+ ()
to determine the halo function I(Ap(E,E")), where ry ~ 20kpc and rq, =~ 8.5kpc. (We find that our
results are not strongly sensitive to the halo profile.) In Figure 3, plotted using DARKSUSY [39],
the positron fraction from S'S annihilation is compared with the data from AMS, HEAT and
PAMELA for the case of Mg = 600 GeV, showing that a good fit is obtained in this case.
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FIG. 3: Positron fraction from S™S — 2u™u~ at Mg = 600 GeV. We have used the annihilation cross-section

(alv]) =4.5x 10723cm? /s.

H. Nucleosynthesis, Gamma-Ray and CMB Constraints on Enhanced S'S Annihilation

So far we have considered large annihilation cross sections of the order of 10723 cm? s™! in

order to fit the excess of the observed cosmic-ray electron fraction. This value is approximately
10? — 10° times larger than the canonical value of the annihilation cross section for thermal relic
DM (~ 3 x 1072cm? s~ !). Therefore we have to check if this value is consistent with other
cosmological and astrophysical constraints, in particular those from nucleosynthesis and due to
gamma-rays from the galactic centre (GC) and halo. We will consider S annihilation primarily
to )(/3 pairs, but we will include the possibility of a small but significant branching ratio to Higgs
pairs.

First we shall discuss constraints which come from BBN [40-43]. Even after the freeze-out
of STS annihilations, a small amount of S pairs continue to annihilate. In our model, the N pair
dominantly annihilates into g+ u~ pairs with some fraction into H'H.

The photodissociation of D and “He is severely constrained by observational value of He/D.
According to [42] we have a constraint on the annihilation cross section into u™ ™ pairs,

oo 1010720 5 | (Eu/Ms\ ™' [ Ms
ov) < (av)P! = L2 33
@) <O =g\ Tor ) Tey) @Y

where E.is/Ms represents the fraction of the total energy 2Ms which goes into visible energy Ey;s

i.e. charged particles and photons. Bgig_ .5+, is the branching ratio for S'S annihilation into 2
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FIG. 4: Upper bounds from BBN on the annihilation cross section of S'S into a Higgs H'H pair as a
function of the DM mass, where the branching ratio is normalized to Bgig_,y+y = 1. Here we have assumed
the mass of Higgs boson is 130 GeV. The name of the light element used for the constraint is written near

each line. The vertical band at the left side indicates the region which is not kinematically allowed.

u ™y~ pairs. In case of the muon decay, Ey;s ~ 0.7Ms.

In addition, in order to limit the branching ratio to Higgs pairs, we have calculated the con-
straints on the cross section to H'H which follow from photodissociation and hadron emission.
For photodissociation we find [42]

) -1
photo 7.0x 10 3 1 Evis/MS MS
oy) < (O = - 34
< V) < v>STS—>HTH BS"'S—)H"’H cm-s 1.0 1 TeV ) ( )

where PYTHIA [44] gives Ey;s ~ 1.0Ms and and Bg:g_,y+y 1 the branching ratio into H TH. (In

the low energy limit this becomes the total branching ratio to W, Z and h.) In the current case

. . photo
Bgis iy = 1 —Bgis_,2,+,~ - The dominant upper bound comes from the smaller of (Gv) SHS—s 2t
and (Ov)lz,ﬁ.l(s)t_o> gy These bounds are generally compatible with the range of values required to

account for the cosmic ray excesses, (0v) ~ 3 x 1072* —3 x 1072*cm3s~! for boost factors 10> —
10°.

The most severe bound on hadron emission comes from the overproduction of deuterium by the
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destruction of “He. This process is constrained by observational D/H [42]. From this we obtain
the hadron emission constraint

131023 NNV Mg \ PP
had 3,1 n S
(ov) <{oW) s pm Bosomn (1,o> <1TeV) ’ 59

with N, the number of emitted neutrons per single annihilation. In the case of H'H emission, N,, is
approximately 1.0, which is obtained using PYTHIA [44]. This is again consistent with the range
of (ov) required to account for the observed cosmic ray excesses. We have plotted the results for
annihilation into H'H in Figure 4, with the normalization Bgig , gip = 1.

In summary, for the range of S mass which is compatible with perturbative couplings, the boost
factor required to account for the positron and/or electron plus positron excess via annihilation to
muons is compatible with present BBN constraints.

We next consider constraints from gamma-rays. A possible gamma-ray signal from the GC due
to DM annihilation has been extensively studied as it could provide a good method to study the
nature of DM astrophysically. So far the HESS group has reported that power-law signals were
observed from the GC [45, 46] for 200 GeV = Ey < 700 GeV. Quite recently the FERMI satellite
group also reported their preliminary result for the signals observed from the galactic mid-latitude
(10° < |b| < 20°) for 200 MeV < Ey < 10 GeV. When we adopt a cuspy profile of the galaxy, such
as the NFW profile, the gamma-ray signal from muon emission can exceed the observed signal.
However, if we take a milder profile such as the cored isothermal profile, then for the moment DM
annihilation is not constrained by the current observations [30, 31, 47] ?. To clarify the dependence
of the DM constraints on the density profile, we need more accurate data on the diffuse gamma-ray
background, which will be provided by FERMI in the near future.

In addition, there are CMB constraints on the enhanced STS annihilation cross-section. It has
been shown in ref. [48, 49] that energetic particles from rapid S'S annihilation can reionize neu-
tral hydrogen at the last scattering surface, leaving an imprint on the CMB. The analysis of [48]
concludes that current data from WMAPS imposes a 2-0 upper bound on the S'S annihilation

cross-section which is given by

(ov)

3.6 x 107 %*cm? /s < Mg ) , 36)

sTs-xixs < 7 1TeV

° Note that the positron and electron plus positron signals will not change even if we used the cored isothermal
profile because local annihilation within 1 kpc dominates the production of electrons and positrons with 2 10 GeV
energies.
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where f is in the range 0.2 — 0.3 for annihilation to 2 4~ pairs. Thus a boost factor of O(1000)
is marginally allowed by the current data.

Finally, we briefly comment of the possibility of neutrino signals from the GC. Detecting such
neutrino signals in the future might be useful to distinguish the Higgs portal DM model from
others, since muon neutrinos are produced by the decay of the y"u~ pairs coming from DM
annihilation and subsequent )(/3 decay. So far Super-K has reported upper bounds on the up-going
muon flux coming from neutrinos emitted from the GC [50]. We can compare the theoretical
prediction of the neutrino flux in our model with this Super-K upper bound. According to the
discussion of Ref. [51], our model is presently allowed since neutrinos are not produced directly
but indirectly through the decay of the charged leptons and possibly mesons. It is expected that
future neutrino experiments such as KM3NeT [52, 53] or IceCube DeepCore [54, 55] will be able

to detect the up-going muons induced by the neutrinos emitted from the GC.

1. A SOMMERFELD ENHANCED VERSION OF THE MODEL

In the previous section we studied the conditions for a successful Higgs portal model with
non-thermal production of DM. In this section we will replace non-thermal production with Som-
merfeld enhancement of the annihilation cross-section as the source of the boost factor. The main
difference between the two models is the reduced number of hidden sector scalar fields, since
X1is no longer needed as the source of the non-thermal DM density. This will also eliminate the
most heavily suppressed O(10~1%) couplings, which were necessary to ensure the late decay of X .
The S DM annihilation to X3 pairs and subsequent X3 decay to "y~ pairs is unchanged from the
non-thermal scenario.

Since in the non-thermal model there must exist a light scalar X3 if we wish to avoid leptophilic
couplings, it is natural to ask whether we can eliminate X; and consider instead thermal DM
with a Sommerfeld enhanced annihilation cross-section, with the attractive force mediated by X3-
exchange. The correct thermal relic density of S DM is obtained if the STS)(;Xg coupling is in
the range 0.1-1 for Mg ~ 0.1 — 1 TeV [24]. If we then consider the coupling (ng)»3 in Eq.(1) and

introduce < X, >, we obtain the interaction
(Ns)23 < X2 > X38'S + hc.. (37)
This interaction can produce the required long-range force between S particles via X3 exchange.
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The condition for a Sommerfeld enhanced annihilation rate is My, < oMy, where o = A2 /41t and

the effective coupling from X3 exchange is A &~ (Ns)23 < X2 > /Mjy. Therefore

<X2>\?[/1TeV
My, S 1GeV(ns)s (=22 )( - ) (38)

100 GeV Mg

Since My, ~ 200 MeV in our model, this will be satisfied if (Ns)23 2 0.4 when Mg ~ 1 TeV.
Therefore, in addition to simplifying the model by eliminating X;, Sommerfeld enhancement
permits larger DM masses, Mg ~ 1 TeV. This may be significant in light of recent analyses [28, 29]
of the new FERMI and HESS electron plus positron data, which favour DM particles with TeV
scale masses which annihilate to muons (with the case of annihilation to 4u being favoured by
the analysis of [29]). Since the Higgs portal models generally predict that DM annihilates to two
utu~ pairs via decay of the primary X3 pair, a Sommerfeld enhanced version of the Higgs portal
model, in contrast with the non-thermal model, could provide an explanation for both the higher

energy electron plus positron excess and the lower energy PAMELA positron excess.

IV. CONCLUSIONS

We have considered two DM models for cosmic ray excesses which are based on Higgs portal-
type couplings of a scalar DM sector to the SM, one with non-thermal DM as the explanation of
the boost factor and the other with thermal DM and Sommerfeld enhancement of the annihilation
cross-section.

In the case of the model with non-thermal production of DM, the DM scalar mass must be less
than about 600 GeV if the model is to remain perturbative. Therefore if this model is correct then
the PAMELA positron excess can be explained by DM annihilation but the higher energy electron
plus positron flux suggested by FERMI and HESS must have a different explanation. This is likely
to be true of most models without Sommerfeld enhancement. Non-thermal production of DM is
possible via quartic scalar couplings. However, the couplings leading to decay of the heavy scalar
which produces the DM density must be highly suppressed, = 107!, in order to ensure that the
heavy particle decays well after the DM particle freezes-out.

A successful model must also account for DM annihilation to primarily leptonic states. If we
do not wish to introduce DM which couples preferentially to leptons then the only way to achieve
this is kinematically, by ensuring that DM annihilates to unstable final states which are too light

to subsequently decay to hadrons. Our model can generate the required decay process via mixing
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of the X3 scalar of the hidden sector with the Higgs, leading to the decay of X3 primarily to u™u~
via the muon Yukawa coupling if its mass is in the range 2m,, — 2mrp (212 —270 MeV). The small

<107°. The

~

X3 mass requires that the quartic scalar couplings of X3 to the Higgs and to X, are
uu~ final state is essential if we require that the X3 density decays prior to nucleosynthesis (which
X3 would otherwise dominate) but does not decay to pions or nucleons, which would produce a
potentially dangerous photon or antiproton flux. This is a clear prediction of the Higgs portal
model, which applies equally to the Sommerfeld enhanced version.

We conclude that quartic couplings of a relatively simple scalar DM sector can achieve the
required enhancement of the annihilation rate and leptonic final states, but appropriate mixtures
of strongly suppressed and unsuppressed quartic couplings and large and small mass terms are
required. In the absence of symmetries or dynamical effects which can explain them, such hierar-
chies would appear unnatural. It is therefore to be hoped that the pattern of masses and couplings
can be understood in terms of the symmetries or dynamics of a complete theory, for which the
present model is the low energy effective theory.

A significant feature of the Higgs portal model, which can distinguish it from those with purely
leptophilic annihilation modes, is that there can be a significant coupling of DM to Higgs pairs.
This could produce a non-negligible antiproton component in the cosmic rays from DM annihila-
tion if the annihilation process STS — H'H is not too suppressed relative to the dominant process
STS — )(;)(3. The STSHTH coupling may also allow direct detection of DM.

Constraints from BBN are important for the model with non-thermal DM, since the annihilation
rate is large at all temperatures. We found that both the muon and Higgs final states are consistent
with an annihilation cross section as large as 10723 cm? s~! for Mg < 600 GeV. The model is also
consistent with the gamma-ray signal from the galactic centre and from the diffuse gamma-ray
background in the case of a cored isothermal halo profile, but not in the case of a cuspy NFW
profile.

In the Sommerfeld enhanced version of the model, the low mass X3 scalar which accounts for
leptonic DM annihilation also mediates the force responsible for the Sommerfeld enhancement.
In this case we can reduce the number of additional scalars by one, since X is no longer needed to
produce the DM non-thermally, which also eliminates the most highly suppressed couplings. This
version of the model can accomodate a TeV scale DM particle, allowing it to explain the electron
plus positron excess suggested by FERMI and HESS as well as the positron excess observed by
PAMELA. Exactly as in the non-thermal model, DM annihilates to X3 pairs which subsequently
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decay via Higgs mixing to 2 u*u~ pairs. This may be significant, as recent analyses suggest that
the new FERMI and HESS electron plus positron data favours TeV scale DM particles annihilating
to muons [28, 29], with annihilation to 4u via intermediate decaying scalars being favoured by
[29].

The Higgs portal models considered here should have phenomenological signals due to the
coupling of the DM sector to the Higgs bilinear and the mixing of the Higgs with the SM singlet
X2 [56]. If S or X2 are light enough then they may be produced via Higgs decay at the LHC.
The mass eigenstate Higgs boson is also be expected to have a large singlet component, with
consequences for Higgs phenomenology. These features may not be unique to our model, but they
would provide indirect support for it. In addition, the muon neutrinos produced by the decay of the
u "y~ pair from DM annihilation may be detectable via upward-moving muons at future neutrino

experiments.
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