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Abstract—Genomics has the potential to transform medicine from reactive to a personalized, predictive, preventive and participatory

(P4) form. Being a Big Data application with continuously increasing rate of data production, the computational costs of genomics have

become a daunting challenge. Most modern computing systems are heterogeneous consisting of various combinations of computing

resources, such as CPUs, GPUs and FPGAs. They require platform-specific software and languages to program making their

simultaneous operation challenging. Existing read mappers and analysis tools in the whole genome sequencing (WGS) pipeline do not

scale for such heterogeneity. Additionally, the computational cost of mapping reads is high due to expensive dynamic programming

based verification, where optimized implementations are already available. Thus, improvement in filtration techniques is needed to

reduce verification overhead. To address the aforementioned limitations with regards to the mapping element of the WGS pipeline, we

propose a Cross-platfOrm Read mApper using opencL (CORAL). CORAL is capable of executing on heterogeneous devices/platforms

simultaneously. It can reduce computational time by suitably distributing the workload without any additional programming effort. We

showcase this on a quadcore Intel CPU along with two Nvidia GTX 590 GPUs, distributing the workload judiciously to achieve up to 2×

speedup compared to when only CPUs are used. To reduce the verification overhead, CORAL dynamically adapts k-mer length during

filtration. We demonstrate competitive timings in comparison with other mappers using real and simulated reads. CORAL is available

at: https://github.com/nclaes/CORAL

Index Terms—Genome, read alignment, OpenCL, heterogeneous systems, whole genome sequencing.

✦

1 INTRODUCTION

G ENOMICS will become a major generator of Big Data
in the coming decade due to the advent of high-

throughput sequencing and continued advances in the se-
quencing technology [1], [2]. The trickle-down effect has
led to the establishment and expansion of the genomic
data centers worldwide, to carry research in various fields
including medicine, agriculture and forensics. Currently,
over 6000 single-gene genetic conditions are known, and
many other diseases involve genetic variants across the
genome, making medicine the foremost application of ge-
nomics. Medicine is undergoing a transformation from its,
largely, reactive nature to a personalized, predictive, preven-
tive and participatory (P4) one [3]. Countries like the UK,
Saudi Arabia, US and China are envisioning sequencing the
genomes of a large part of their population [1] and working
towards making genome sequencing and analysis a part of
the routine tests performed at the hospitals. Genomic data,
today, is largely generated in big sequencing centers or large
commercial sequencing labs which generally employ state-
of-the-art high-performance many-core systems made of
monolithic hardware. In the P4 scenario, however, the instal-
lation and maintenance of such high-performance systems
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will be a bottleneck in setting up of cost-effective genomic
healthcare infrastructure. Additionally, most modern plat-
forms available are heterogeneous and consists of different
computing hardware. Hence, whole genome sequencing
(WGS) pipeline require platform independent computing
framework to use all the available resources on the system
for effective performance gains.

There are various categories of hardware computing
resources such as central processing unit (CPU), graphi-
cal processing unit (GPU), field-programmable gate arrays
(FPGA) and digital signal processors (DSP). These resources
can be found in off-the-shelf platforms, provided by a range
of electronics manufacturers such as Intel, AMD, Nvidia,
ARM and Xilinx. They can be found either solo or in
different combinations such as CPU + GPU, CPU + GPU +
FPGA or CPU + FPGA. Most modern computing systems
including many supercomputers, are heterogeneous and
have a combination of CPU + GPU available on the same
platform [4]. On the other hand, state-of-the-art bioinfor-
matics tools, have focused on algorithmic innovations and
software optimizations targeting, mainly, CPU [5], [6], [7],
[8]. There are many communications available that have
focused on acceleration of genomics algorithms on either
GPU or FPGA, as summarized in [9]. However, to the best of
our knowledge, a standalone tool capable of mapping reads
using different devices, simultaneously, in a heterogeneous
system is yet to be developed. It is arduous and challenging
as these platforms have different architectures and, often,
require vendor specific software and languages to program
and use them. This will require rewriting or tailoring of the
algorithms for portability.
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Read
mappers

Cross-
platform

Mapping locations reported Preprocessing Filtering

Best All First-n Hashing FM-Index Suffix Array Pigeonhole q-gram lemma Other

RazerS3

Hobbes3

Yara

FEM

GEM

BWA-MEM

CORAL

TABLE 1
Characteristics of previously proposed read mappers along with our proposed CORAL. Other in the table implies a combination of multiple data

structure, search algorithms and heuristics, the one, specifically, employed by BWA-MEM.

In this paper, we propose a Cross-platfOrm Read
mApper using opencL (CORAL) to map reads on any
OpenCL conformant device. Today, majority of platforms
manufactured by different vendors comply with OpenCL
standards [10]. We use OpenCL framework as a baseline to
design the CORAL kernel and apply a series of algorithmic
optimizations to subdue memory constraints. The aim is
to enhance the portability of our aligner across various
devices and platforms mitigating the need for restructur-
ing or rewriting. CORAL is equipped to launch kernels,
simultaneously, on all the available compute units, provided
enough memory is available, to distribute the workload
and achieve enhanced performance. With this feature, we
address the limitations encountered in multi-device het-
erogeneous systems, ranging from servers to workstations,
for the assembly element of the whole genome sequenc-
ing pipeline. The CORAL algorithm is fully sensitive and
capable of reporting all mapping positions, however, the
actual number of mappings reported is, mainly, limited due
to the memory allocation restrictions imposed by OpenCL.
We elaborate on this further in section 4.1. CORAL is
verification-aware as it dynamically adapts the k-mer1 length
during filtration to reduce verification costs. It employs
FM-Index [11] backward search to detect the number of
candidate locations for a particular k-mer and in accordance
with a threshold, it extends the k-mer to reduce the number
of candidate locations to be verified. The candidate locations
are obtained from suffix array data structure [12], prepro-
cessed using reference genome, and are verified in-situ using
banded Myers bit-vector algorithm [13], [14]. CORAL, auto-
matically, determines the number of workitems (or threads)
in a workgroup for a particular device based on user given
workload allocation, distributes the workload and executes
them in a task-parallel fashion. We write the host code in
Python and kernel in C using OpenCL primitives. We use
PyOpenCL rather than conventional C-based OpenCL as
scripting language requires low programming effort. This,
we believe, is an additional feature of CORAL as it enables
fast modifications and prototyping.

Several investigations have been reported on perfor-
mance and power-driven explorations of simultaneous ker-
nel execution on CPU and GPU. The authors in [15] use
OpenCL to run benchmarks, concurrently, on CPU and GPU
cores of Odroid XU3 embedded platform. The goal is to ex-

1. k-mer is a subsection, of length k, of a read or genome.

ploit heterogeneity for better power-performance tradeoffs.
They test it using Polybench benchmark suite [16] which
contains general-purpose computing workloads. In [17],
the authors present an investigation of simultaneous kernel
execution on both CPU and GPU in a fused CPU-GPU
architecture with shared LLC, mainly targeting the Intel
platforms as they are the only one that, currently, supports
OpenCL 2.0’s fine grained SVM. They dynamically allocate
the workitems, of Rodina benchmark suite, on devices to
maximize performance. Dynamic work-item allocation is
an ability provided in OpenCL 2.0 standard. In [18], the
authors propose an energy-efficient run-time thread map-
ping and partitioning methodology for concurrent applica-
tions on Odroid XU3. All aforementioned works investigate
the scheduling of kernels and partitioning of workitems
between CPU and GPU on different platforms. They use
workloads from standard benchmarking suites and attempt
to improve performance-power tradeoffs. CORAL, on the
other hand, is an application specific tool where we propose
an algorithm for mapping reads efficiently and accurately
across different platforms. It can be used on any OpenCL
compatible device provided sufficient memory is available.
We demonstrate, for the first time, a cross-platform read
mapping scenario, which utilizes two Nvidia GTX 590
GPUs along with a quadcore Intel CPU to obtain better
performance without any additional programming effort.
We perform extensive validation and experimentation using
both simulated and real reads and compare them with state-
of-the-art read mappers.

2 BACKGROUND

Read mappers can be classified as all-mappers, including
RazerS3 [6], Yara [19], Hobbes3 [7] and FEM [8], and best-
mappers including BWA-MEM [20], Bowtie2 [21] and GEM
[5]. All-mappers attempt to identify all the mapping locations
of the reads in the reference genome while best-mappers em-
ploy heuristics to identify the best mapping location. In gen-
eral, best-mappers are faster than all-mappers, however, they
may not report other mapping positions that are desired in
downstream analyses and experiments including the ChIP-
seq experiments, CNVs (copy number variation) calling and
detecting structural variants. Aforementioned read mappers
are based on read-alignment approach which assumes the
availability of the reference genome. This approach has
three methodological divisions: preprocessing, filtration and
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verification, also known as, seed-and-extend in the case of all-
mappers. The preprocessing stage uses data structures such
as hashing, FM-Index [11] and suffix arrays [12] to store
the reference genome. Filtration uses the preprocessed data
structures and performs approximate string search of the
reads with the reference genome. It prunes the reference
genome using q-gram lemma or pigeonhole principle [2]
to identify candidate locations where the reads may be
located. The verification stage identifies the exact mapping
location of the read. Most modern mappers employ banded
Myers bit-vector algorithm [13], [14], which is a variant
of semi-global dynamic programming. As verifications are
expensive and runtimes of dynamic programming increase
exponentially with the length of the strings, efficient fil-
tration techniques are desired to narrow down the search
space and reduce the total number of candidate locations
per read. Every aligner, thus, attempts to extract appropriate
k-mer from the read for low runtimes. [22] proposes one
such technique, Optimal Seed Solver (OSS), to select the best
possible k-mers so as to reduce the total number of candidate
locations.

Table 1 shows the characteristics of previously proposed
state-of-the-art read mappers. RazerS3 [6] uses hashing with
open addressing to store the reference genome or the given
reads and provides a choice of using either pigeonhole or q-
gram lemma filter to map reads. It employs banded Myers
bit-vector algorithm for verification. The tool achieves faster
mapping times through user given sensitivity levels based
on their proposed theory. Hobbes3 [7] uses pigeonhole filter
along with a proposed novel dynamic programming based
k-mer selection method to minimize the number of candidate
locations, thereby, reducing the total verification time. FEM
[8] is the latest mapping tool which constructs a succinct
hashing index with low memory footprint to preprocess
reference genome. It employs pigeonhole filter and uses
OSS to select optimum k-mer lengths to minimize the total
number of candidate location ensuring full sensitivity. GEM
[5] is a best-mapper that uses FM-Index to preprocess the
reference genome and employs heuristics to find the best
matching position for a read. It uses adaptive seeds to reduce
the total number of candidate locations during filtration and
uses Myers bit-vector algorithm for verification. BWA-MEM
[20] is a best-mapper that employs FM-Index, suffix arrays,

dynamic programming based filtration and heuristics to re-
port best mapping locations for the reads. Yara [19] is an all-
mapper that uses pigeonhole along with approximate seeds
to increase specificity of filtration and stores the reference
genome using FM-Index and suffix arrays.

3 METHODS

In Section 3.1, we discuss OpenCL’s unique way of looking
at any hardware because of which CORAL can be used
across different devices and platforms. It preprocesses the
reference genome using FM-Index and suffix array. FM-
Index offers flexibility in the variation of length of k-mers
without any additional penalty, thus, accelerates search
of any pattern in a text. The corresponding positions of
occurrences can be found from suffix array. Details on the
advantages of FM-Index are provided Section 3.3. Follow-
ing that we elaborate on the preprocessing and filtration

Host

Device

Compute unit
Local memoryGlobal Memory

Core

Private 

memory

Fig. 1. OpenCL programming model with memory hierarchy.

methodologies implemented by CORAL. For verification,
we use banded Myers bit-vector algorithms whose details
can be found in [6], [13], [14].

3.1 OpenCL view of the hardware

Fig. 1 vizualizes how OpenCL [23] views a compatible
hardware. From an execution standpoint, it recognizes two
computational divisions viz. host and device; and three
layers of memory with different access rights viz. global,
local and private memory. Host is the master which issues
instructions and data to the device for execution. The host
and device communicate data through the global memory
i.e. host cannot access the local and private memory of the
device. The host and device need not be different platforms
like a CPU-GPU pair or CPU-FPGA pair, it can be CPU-
CPU pair where the host and device share the same global
memory and compute resources in different time slots,
meaning the host can launch kernels on itself along with
other devices, if present. As we know, memory hierarchy
in CPU consists of off-chip RAM and on-chip caches. Most
CPUs have three levels of caches viz. level 1 (L1), level 2 (L2)
and level 3 (L3), with increasing size and access times. These
caches hold data which are accessed frequently, recently or
both to improve the runtime of programs. GPU, in general,
have “CPU-like” cores with multiple arithmetic logic units,
cache and registers. Depending on the vendor, the internal
architecture of the core varies along with the definition of
GPU-core, however, all “CPU-like” cores in modern GPUs
have registers and cache, generally, referred as L1 cache.
OpenCL, generally, recognizes off-chip RAM and the L1
cache as global and local memory, respectively. Private
memory, generally, are the registers available to the cores.
Host issues instructions in the form of kernel, which are
executed by workitems (or threads). workitems are equally
divided into workgroups, with each workgroup occupying
a single compute unit during execution. The workitems
within a workgroup execute on all the available cores in
the compute unit. As all compute units have separate L1
caches, all the workitems inside a workgroup share the local
memory. The private memory, however, is only accessible to
the workitem deployed on the core.

It is imperative to consider the memory capacities at
all levels while designing the kernel. An efficient kernel
minimizes private memory usage and the intra-data move-
ments between private, global and local memory. There
is no limit on the number of workgroups, however, the
maximum number of workitems allowed in a workgroup
depends on the device specification along with the private
and local memory consumed by the kernel. Generally, GPUs
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Fig. 2. Preprocessing methodology of CORAL for a small text:
GAAATCGZATCATZACCGTG$ using FM-Index and suffix arrays. We store
tally matrix, suffix array and modified F array to be used for querying k-
mers in the filtration stage.

require low memory footprint kernels to achieve higher
utilizations by engaging a greater number of workitems
in a workgroup. Thus, designing of kernels with memory
constraints require series of algorithmic optimization with
respect to hardware. Our proposed CORAL kernel requires
380-480 bytes of private memory, depending on the read
size, and does not use the local memory. Discarding the use
of local memory in the kernel enhances the portability of
CORAL as the size of local memory varies across different
devices. Each workitem executes the kernel for a single read
and performs the following operations: loading read in the
private memory, identifying the candidate locations for both
forward and reverse strand, performing in situ verification
and writing the verification result back to global memory.
As all reads are independent, asynchronous executions of
the workitems result in better execution times.

3.2 Preprocessing

We use FM-Index and suffix array data structures to store
the reference genome. FM-Index uses the first and last
columns, denoted as F and L, of a matrix obtained by
applying Burrows-Wheeler transform [24] on a string. This
transform lexicographically sorts list of all reversible per-
mutation of characters of a string, as shown in Fig. 2. Using
the array L, we construct the tally matrix where each row
stores the number of occurrences of alphabets starting from
the first row up to and including a particular row, as shown
in Fig. 2. Alongside, we also build a suffix array to indicate
the position at which a particular alphabet from L occurs in
the original string. F array can be compressed using run-
length encoding to represent the total occurrences of all
the alphabets in the string. We further modify F to provide
cumulative numbers in the increasing order rather than the
exact number of occurrences, as shown in bottom right
of Fig. 2. The undetermined bases during sequencing of

reads are represented as N. In our proposed preprocessing
methodology, we replace N with Z as it occurs in the end
of the lexicographical order of alphabets, thus, appearing in
the end of F array, after bases A, C, G and T. For further
details on FM-Index and suffix arrays, interested readers
may refer to [11], [12], [25].

3.3 Verification-Aware Filtration

We demonstrate our pattern matching methodology,
that employs FM-Index backward search, using an ex-
ample where pattern ATC is searched in the text
GAAATCGZATCATZACCGTG$, as shown in Fig. 3. We, also,
show how search results can be extended if the pattern
changes to AATC by prepending a character in the begin-
ning, thus, increasing its size by one. Following that, we
explain how pigeonhole principle along with verification-
aware FM-Index backward search can reduce total number
of candidate locations without affecting sensitivity.

3.3.1 FM-Index Backward Search

Before we proceed with FM-Index backward search, the
concept of ranking of characters in the text needs to be
explained. Rank of a character indicates the number of
times that character has occurred in the text including the
current instance. For example, the rank of bold character A
in GAAATCGZATCATZACCGTG$ is 4. The purpose of the tally
matrix obtained in Section 3.2 is to store the ranks of all the
desired characters in the text. We do not store ranks for Z or
N as they are considered errors and the corresponding k-mer,
where it occurs, need not be searched.

Searching starts from the last character and moves up to
the first taking as many cycles as the length of the pattern.
Cycle 1 in Fig. 3 shows the number and positions of occur-
rence of C in the F array. We then look for the occurrence of
next character i.e. T in the corresponding locations in L array
and store the corresponding ranks from the tally matrix. We
can see that T precedes C at two locations with ranks 1 and
2. Cycle 2 uses the, previously, stored ranks to locate the
corresponding Ts in the F array. We, again, look for the next
character i.e. A in the corresponding locations in L array and
store the corresponding ranks from the tally matrix. At the
end of cycle 2, we find that A precedes TC at two locations
with ranks 4 and 5. Cycle 3, then, locates A in F array and
reports the corresponding locations of occurrence from the
suffix array. Fig. 3 shows that pattern ACT matches the text
at positions 3 and 8 (zero based numbering). We can further
continue searching if the pattern size is increased in a similar
fashion using extended cycle 3 and cycle 4. At the end of
cycle 4, the pattern AACT can found at location 2 with help
of the suffix array. For all practical application, we do not
need to store the L array rather the tally matrix, modified
F array (Fig. 2), suffix array and the reference genome are
required.

3.3.2 Verification-Aware filtration using Pigeonhole Princi-

ple

For mapping reads with an edit distance (or permissible
error) of δ using pigeonhole principle, a read is divided
into (δ + 1) non-overlapping k-mers. CORAL measures the
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Fig. 3. Visualization of the searching method using FM-Index and suffix arrays. We search for pattern: ATC in the text: GAAATCGZATCATZACCGTG$
in three cycles and then show how the search can be extended if the pattern size increases on dynamically to AATC, using four cycles.

maximum possible k for equal length non-overlapping k-
mers, as k = ⌊ n

δ+1
⌋, where n is the read length. For example,

given n = 100 and δ = 5, k = ⌊ 100

6
⌋ = 16 and for n = 150

and δ = 7, k = ⌊ 150

8
⌋ = 18. We limit ourselves to n = 100

to 150 and δ = 0 to 8 for reasons explained in Section 5.
Upon obtaining k, we can calculate the number of extra

or spare bases (eb) that remain after securing (δ + 1) non-
overlapping k-mers. For example, eb = n − k × (δ + 1) = 4
for n = 100, δ = 5, and eb = 6 for n = 150 and δ = 7. These
extra bases can be used to extend the length of any k-mer as
discussed in Fig. 3, to minimize the number of occurrences
(or candidate locations) depending on the given threshold.
It should be noted that the number of non-overlapping k-
mers remain intact despite of extensions, thus, not affecting
sensitivity.

Table 2 presents the characterization of chromosome 2 on
the basis of the number of occurrences of k-mers for different
k. We found that over 90% k-mers occur only once, however,
a consistent number of k-mers can be encountered more than
1000 times. The maximum value ranged up to 1, 644, 958 for
few k-mers. Intuitively, it can be understood that to reduce
the average number of candidate locations per read, k-mers
that produce over 1000 occurrences should be extended.
We assume a threshold of 1000 in CORAL, although, as
this value is heuristic it can be changed. The impact of
verification-aware k-mer length adaptation is discussed in
Section 5.

3.4 Kernel Algorithm: Search and Verification

Input to the kernel are: Integer encoded genome, reads, suf-
fix array, tally matrix, modified F array and other constants.
The constants include read length, minimum k-mer length,
number of k-mers, δ and eb. Fig. 4 visualizes the algorithmic
procedure followed by the kernel. It starts with loading
read to the private memory followed by integer coding and
storage of forward and reverse strand of the read. Integer
encoding is performed to access the elements of a particular

Occurr-
ence

count

k-mer lengths

16 17 18 19 20 21 22

Proportion of total k-mers in %

One 91.68 95.13 96.47 97.02 97.29 97.46 97.59

≤100 8.30 4.85 3.51 2.96 2.69 2.52 2.40

≤1000 0.022 0.020 0.019 0.018 0.017 0.016 0.015

>1000 .0015 .0013 .0012 .0011 .001 .0009 .0008

TABLE 2
Charaterization of number of occurrences of k-mers for

k = 16, 17, 18, 19, 20, 21, 22 in chromosome 2. Values given are in
percentage approximated to the nearest decimal.

column and row of tally matrix and is performed using the
following scheme: {(A : 0), (C : 1), (G : 2), (T : 3), (Z : 4)}.
After preprocessing of reads, we perform filtration and
verification of forward strand followed by reverse strand
of the read.

Filtration is divided into two stages: Pre-search and
Search, as highlighted in Fig. 4. Pre-search is a preliminary
search of all the k-mers using our proposed dynamic ex-
tension approach to identify the unused extra bases, u eb,
if any, and records the corresponding unextended k-mer.
The unused bases remain when few or all k-mers are not
extended as the number of candidate locations reported by
them are within the threshold. These extra unused bases can
still be used to extend some of the k-mers to further reduce
the overall number of candidate locations reported by all
the k-mers. For example, given n = 100, δ = 5 and eb = 4, if
each of 6 k-mers result in < 1000 candidate locations, then,
u eb = 4. The goal, here, is to consume the entire read in
filtration step irrespective of the k-mer lengths. Therefore,
to utilize all the u eb, we extend 4 out of 6 k-mers by one
base each, increasing k to 17 from 16. The information on
u eb is used during the Search stage, each unextended k-
mer is elongated by one base until u eb = 0. The choice
of k-mers is serial starting from the first. This ensures that



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Load reads to 

pivate memory

CORAL kernel

Integer encoding of 

forward and reverse 

complement of read

mapping

found?
Report mapping 

position, edit 

distance and the 

strand

all k-mers

searched?

k-mer

found?

Verification

of all occurrences 

of k-mer

Search

k-mer

Next search for reverse strand

k-mer

found?

Verification

of all occurrences 

of k-mer

all k-mers

searched?

mapping

found?

Search

k-mer

Yes

No

No

Yes

No

Start with forward strand

Yes

No

No

No

Yes

Tally matrix, 

suffix array 

and F array

Search

k-mer

Yes

Pre-search to count 

unused extra bases 

(u_eb) and obtain 

unextended k-mers 

Pre-search to count 

unused extra bases 

(u_eb) and obtain 

unextended k-mers 

Report mapping 

position, edit 

distance and the 

strand

END

Yes

Search 

current k-mer

Is u_eb > 0 and 

current k-mer 

unextended?

Extend 

current k-mer 

by one base

Yes

No

Fig. 4. Algorithm for the CORAL kernel.

all the extra bases are utilized to minimize the number of
candidate locations. Both Pre-search and Search start from the
end of the read and depending on the number of eb, u eb
and candidate locations, it extends the k-mer till the number
of candidate locations are < 1000 or all the spare bases are
exhausted. As Search proceeds, all the candidate locations of
each k-mer are verified in-situ and the mappings found are
reported. The same procedure is followed for the reverse
strand.

4 EXPERIMENTAL RESULTS

As stated in section 1, the host program of CORAL is
written in Python and the kernel is in C. We use PyOpenCL
rather than conventional C-based OpenCL because scripting
languages, such as Python, enables fast modifications and
prototyping and is more programmer friendly. We used
OpenCL 1.2 standard to compile the kernel. We choose
Python because it considerably eases string operations and
manipulation, especially, the outlier operations which do
not affect the assembly directly.

4.1 Experimental setup

We use both real and simulated reads to compare CORAL
with RazerS3, Yara, Hobbes3 and FEM from the all-mapper
category and BWA-MEM and GEM from the best-mapper

category. We use a total of 6 million simulated reads and
2 million real reads. Wherever possible, only the mapping
times and accuracy have been compared. We have mapped
both simulated and real single-end reads to chromosome
(chr) 2 and 21 of the human genome. The latest version of
Mason [26] (mason2-2.0.9) is used to produce simulated
reads. We use 12 sets of 500,000 reads each, 6 of them are
derived from chr 2 and other 6 from chr 21. Out of the 6 sets,
three of them have reads of length 100 and the other three
have reads of length 150. The three sets, with read length
of 100, are segregated based on edit distances with which
they are sequenced from the chromosomes viz. 3 or less, 4
or less and 5 or less. Similarly, the reads of length 150 are
segregated based on edit distance viz. 5 or less, 6 or less and
7 or less. Thus, resulting in a total of 6 million simulated
reads to be mapped by all the mappers. The chromosomes
used in this paper are from the human genome version
GRCh38/hg38, dated Dec. 2013, and were downloaded from
the UCSC genome browser [27]. We used 1 million (M) real
reads each from NCBI ERR012100 1 and SRR826460 1 of
length 100 and 150, respectively. We run all the mapping
tools including CORAL on two separate systems with the
following configurations:

System 1: Intel Core i5-6600 CPU @ 3.30GHz, 64GB
RAM
System 2: Intel Core i7-2600 CPU @ 3.40GHz, 16GB
RAM + 2 × GeForce GTX 590, 1.5 GB RAM

OpenCL computing framework imposes the following
two restrictions:

a) OpenCL 1.2 standard does not permit dynamic mem-
ory allocation. Because of this, CORAL requires the
number of outputs per read to be mentioned be-
forehand, in order to allocate sufficient memory for
each read to store the mapping locations, strands and
edit distances. Thus, it reports a maximum of first-n
mapping locations per read as informed in Table 1.

b) It does not permit allocation of more than (1/4)th

of the RAM capacity to a single variable. Example,
with 16 GB RAM no variable can have more than
4GB of memory allocated. It limits both the size of
the data structure to be stored and the number of
outputs desired per read.

To elaborate further on (a), if a read matches only at few
locations, it will still require to be allotted sufficient space
for the given number of outputs desired per read. As we
have limited RAM on system 2, especially, in the GPUs, the
number of outputs per read must be assigned accordingly
to ensure we do not run out of memory resource. As system
1 has large RAM capacity, we allot 3500 outputs per read
to show the accuracy of CORAL and allot 100 outputs per
read on system 2 to demonstrate speedups obtained by
using multiple devices. The preprocessed tally matrix size
depends on the length of the chromosome i.e. the size for
chr 2 is 3.9GB which is much larger than that of 747.4 MB
for chr 21. As GPUs have limited RAM size of 1.5 GB, the
data structure for chr2 cannot be loaded on them. Hence,
to demonstrate the implementation on multiple devices
simultaneously, we use smaller chr21 to map the real and
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simulated reads. In summary, we present the results for the
following combinations:

CORAL on System 1: Both real and simulated reads
are mapped to chr2 and chr21 with 3500 outputs per
read for different number of errors, using only the
CPU.
CORAL-cpu on System 2: Both real and simulated
reads are mapped to chr2 and chr21 with 100 outputs
per read for different number of errors, using only
the CPU.
CORAL-all on System 2: Both real and simulated
reads are mapped to chr21, only, with 100 outputs
per read for different number of errors, using CPU
along with the GPUs.

4.1.1 Estimating accuracy with respect to simulated reads

For the simulated reads, the SAM file obtained from Mason
is used as the gold standard for measuring mapping ac-
curacy. On system 1, CORAL, RazerS3, Hobbes3 and GEM
report up to 3500 mapping locations per read while BWA-
MEM, FEM and Yara report all the mapping locations, since
they do not provide the facility to report fixed number of
mappings. On system 2, all the mappers are configured
to either report up to 100 mapping locations per read,
wherever possible, or all the mapping locations. Simulated
reads originate from a known position reported in the SAM
file obtained from Mason. Hence, to determine the mapping
accuracy, the output files from the mappers are parsed and
searched for original mapping location, strand and edit
distance. If any of outputs reported by the mappers match
to that of the gold standard for a particular read, we record
an accurate mapping. This procedure is followed for all the
simulated reads and all the mappers under consideration.
While comparison with the gold standard, we allow for a
threshold, τ = ±10 bases with respect to the original loca-
tion. Irrespective of the chosen τ , the criteria for measuring
a match remains uniform for all the mappers.

4.1.2 Estimating accuracy with respect to real reads

A similar approach is followed for real reads, however,
the SAM file obtained from RazerS3 is used as the gold
standard. We use RazerS3 as it has been used in Hobbes3,
FEM and Yara to build the gold standard due to its high
accuracy and all-mapper capability. On System 1, we use
RazerS3 to produce SAM file with up to 1000 outputs per
read and all the other mappers (including CORAL) are
configured to report 3500 mapping locations per read, if
possible, or all the mapping locations. Following that, we
identify if all the, up to 1000, mapping locations per read
reported in the gold standard are present in the output of
other mappers. In comparison with section 4.1.1, where it
is sufficient to find a single known location of origin of
a simulated read, here, for the real reads all the locations
reported (up to 1000) by the gold standard is compared with
3500 outputs of other mappers, thus, making the evaluation
criteria relatively stringent.

On System 2, we do the opposite. We configure RazerS3
to produce up to 1000 outputs per read and configure the
mappers to map up to 100 outputs per read. Here, we
measure accuracy by identifying if all the reads mapped

by the gold standard i.e. RazerS3, have been reported by
other mappers with at least one matching mapping location,
strand and edit distance. We limit the number of outputs to
100 because of the limitations on RAM capacity of System
2. Using the aforementioned configurations for evaluation
of accuracy, we present results similar to the benchmarking
method used in Rabema [28] i.e. the all and all-best scenario
on System 1, and any-best scenario on System 2.

4.1.3 Configurations of read mappers

RazerS3: We used the latest version available viz.
razers3-3.5.8. Pigeonhole filter was used with thread
count of 16 for different percentage identity or error rates
and number of outputs. The following provides an example
of the command line parameters used:
razers -fl pigeonhole -tc 16 -i 95 -rr 100

-m 3500 -v -o OUTPUT.sam chr2.fa INPUT.fq

Yara: The latest version 1.0.2 was used with 16 thread in
full sensitivity mode.
yara_mapper chr2.index INPUT.fq -v -e 4 -y

full -t 16 -o OUTPUT.sam

Hobbes3: We used latest version 3.0 with 16 threads and
varying number of maximum number of outputs and errors
per read.
hobbes -sref chr2.fa -i

chr2_hobbes3_index.hix -k 3500 --indel -q

INPUT.fq -v 5 -p 16 --mapout

OUTPUT.sam

FEM: We used latest FEM version available dated
03/13/2018. For index construction, we used window
size of 12 and step size of 4 (e.g. FEM index 12 4

chr2.fa) and for mapping we used 16 threads with edit
distance configuration. FEM, by default, reports all the
mapping positions. The following provides an example of
the command line parameters used:
FEM align -t 16 -f "vl" --ref chr2.fa --read

INPUT.fq -o OUTPUT.sam -e 5

GEM: We used the latest version 3. For simulated reads, we
run GEM in sensitive mapping mode, however, for real
reads we used fast mapping mode, as sensitive took
hours to produce results. We used 16 threads with varying
number of outputs i.e. 100 or 3500, and error rates viz. 3 to
7. The following provides an example of the command line
parameters used:
gem-mapper --index chr2.gem -v -t 16 -M 3500

--mapping-mode sensitive -i INPUT.fq

-o OUTPUT5.sam -e 0.05

BWA-MEM: We used latest BWA version 0.7.17. We
configured BWA-MEM to find all mapping locations with
a thread count of 16. BWA-MEM is configured to skip
k-mers(or seeds) with more than 500 occurrences by default.
We increased it to 1000 similar to the threshold value used
for CORAL. BWA-MEM does not permit specifying edit
distance for read mapping unlike BWA-aln, hence, for real
reads we could not obtain mapping times for different edit
distance values. The following provides an example of the
command line parameters used:
bwa mem -t 16 -c 1000 -v 3 -a chr2.fa

INPUT.fq > OUTPUT.sam
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Chromosome 2
Read length 100 150

Error 3 4 5 5 6 7

Time/Accuracy T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%)

System 1: Intel
Core i5-6600

CPU@3.30GHz,
64GB RAM

RazerS3 169.2 99.99 215.8 99.99 265.9 100 190.7 99.99 224.5 100 294.3 99.99
Hobber3 16.18 99.99 19.52 99.99 28.14 100 35.47 99.99 36.55 100 41.24 99.99

FEM 3.30 41.18 4.58 41.10 6.51 41.17 5.71 37.32 7.49 37.47 9.67 37.48
Yara 13.35 97.92 33.85 97.91 41.42 97.85 38.73 98.60 47.46 98.59 102.44 98.57

BWA-MEM 53.30 99.71 61.53 99.32 66.96 98.65 74.35 99.61 80.46 99.36 85.39 99.03
GEM 14 97.90 21 97.89 48 97.81 13 98.57 18 98.57 25 98.54

CORAL-cpu 11.89 99.77 19.35 99.71 30.99 99.75 23.24 99.91 34.50 99.91 45.04 99.92

System 2: Intel
Core i7-2600

CPU@3.40GHz,
16GB RAM + 2 ×

GeForce GTX 590,
1.5 GB

RazerS3 125.5 99.78 165.2 99.77 193.7 99.77 131.8 99.93 158.0 99.93 218.4 99.93
Hobber3 11.70 99.77 10.58 99.76 10 99.73 32.54 99.90 28.80 99.88 24.86 99.86

FEM 1.97 41.18 2.63 41.10 5.02 41.17 2.87 37.32 3.49 37.47 5.37 37.48
Yara 8.87 97.92 25.04 97.91 28.92 97.85 28.34 98.60 33.07 98.59 72.1 98.57

BWA-MEM 39.43 99.71 45.88 99.31 50.79 98.65 56.06 99.61 61.17 99.36 65.97 99.03
GEM 7 97.90 12 97.89 27 97.81 7 98.57 11 98.57 14 98.54

CORAL-cpu 8.14 99.48 15.67 99.31 27.71 99.24 16.89 99.67 29.8 99.60 40.13 99.50

TABLE 3
The results of mapping three sets of 500,000 simulated reads, with different maximum edit distances viz. 3,4 and 5, to chromosome (chr) 2 on the
CPU. RazerS3, Hobbes3, GEM and CORAL-cpu reported up to 3500 mapping per read on System 1 and 100 outputs per read on System 2. FEM,
Yara, however, by default report all the mapping positions and BWA-MEM was configured to report all mapping positions. T and A are abbreviations

for time and accuracy and have been reported in seconds and proportional percentage of accurate mapping against the total number of reads.

Chromosome 21
Read length 100 150

Error 3 4 5 5 6 7

Time/Accuracy T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%)

System 1: Intel
Core i5-6600

CPU@3.30GHz,
64GB RAM

RazerS3 29.95 99.99 48.30 99.99 49.13 99.99 35.12 99.99 42.43 99.99 56.31 99.99
Hobber3 13.42 99.99 14 99.99 17.19 99.99 31.75 99.99 30.73 99.99 32.13 99.99

FEM 1.535 39.45 1.79 39.45 2.31 39.51 2.14 36.09 2.30 36.14 2.82 36.25
Yara 10.58 92.71 18.57 92.64 22.62 92.58 27.75 94.25 32.07 94.17 41.09 94.13

BWA-MEM 60.14 99.72 74.35 99.37 72.08 98.78 80.69 99.64 86.64 99.37 92.37 99.04
GEM 10 92.69 13 92.59 20 92.54 11 94.12 15 94.10 17 94.04

CORAL-cpu 7.55 99.99 11.87 99.98 19.31 99.98 13.31 99.99 20.78 99.99 27.35 99.99

System 2: Intel
Core i7-2600

CPU@3.40GHz,
16GB RAM + 2 ×

GeForce GTX 590,
1.5 GB

RazerS3 23.39 99.74 31.42 99.72 39.21 99.70 26.52 99.98 33.39 99.98 46.53 99.98
Hobber3 11.12 99.60 9.37 99.54 7.92 99.44 31.91 99.89 27.55 99.86 23.15 99.81

FEM 1.16 39.45 1.29 39.45 1.59 39.51 1.59 36.09 1.73 36.14 1.89 36.25
Yara 7.26 92.71 14.41 92.64 16.67 92.58 20.67 94.25 23.19 94.17 29.19 94.13

BWA-MEM 43.27 99.71 51.16 99.37 57.55 98.78 73.98 99.64 78.05 99.37 85.05 99.04
GEM 5 92.69 7 92.59 12 92.54 7 94.12 9 94.10 11 94.04

CORAL-cpu 4.42 99.43 8.12 99.25 14.85 99.10 9.13 99.70 15.01 99.53 21.88 99.30
CORAL-all 3.09 99.43 5.40 99.25 8.55 99.10 6.15 99.70 9.20 99.53 13.04 99.30

TABLE 4
The results of mapping three sets of 500,000 simulated reads, with different maximum edit distances viz. 3,4 and 5, to chromosome (chr) 21.

RazerS3, Hobbes3, GEM and CORAL-cpu reported up to 3500 mapping per read on System 1 and 100 outputs per read on System 2.
CORAL-all, also, produce 100 outputs per read but executes on CPU and both the GPUs, simultaneously. FEM, Yara, however, by default report all
the mapping positions and BWA-MEM was configured to report all mapping positions. T and A are abbreviations for time and accuracy and have

been reported in seconds and proportional percentage of accurate mapping against the total number of reads.

4.2 Results

4.2.1 Simulated reads mapped to chr 2

Table 3 presents the results of mapping three sets of 500,000
simulated reads to chr 2 on the CPU of System 1 and
2. The three sets of reads have different maximum error
or edit distances viz. 3, 4 and 5, respectively. We can
observe that CORAL is 5 − 16× faster than RazerS3 and
maps over 99% of reads, showing comparable accuracy. The
runtime of CORAL is better than Hobbes3 for low error
rates and comparable for higher error rates, for example,
n = 100, δ = 5 and n = 150, δ = 7. On System 2, as
the number of outputs is small, Hobbes3 performs better
than CORAL for high error rates. The accuracy of both
Hobbes3 and CORAL are comparable and are over 99%.
CORAL outperforms Yara and BWA-MEM in all the cases,

with up to 2.27× and 4.84× speed-up, respectively. CORAL
beats GEM in runtime for n = 100 and accuracy, however,
it lags for n = 150. FEM runtimes are faster than that of
CORAL but it maps less than 40% of reads. GEM performs
better as it is a best-mapper and designed to produce fewer
accurate solutions. From the accuracy point of view, CORAL
performs comparable to RazerS3, Hobbes3 and BWA-MEM
and outperforms Yara, FEM and GEM in all cases. With
regards to mapping time CORAL is better than Yara, BWA-
MEM and RazerS3, and comparable to Hobbes3 and GEM.
It, however, underperforms with respect to FEM, which is
fast but the accuracy is low.

4.2.2 Simulated reads mapped to chr 21

Table 4 presents the results of mapping three sets of 500,000
simulated reads to chr 21 on the CPU of system 1 and 2
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Chromosome 2
Read length 100 150

Error 3 4 5 5 6 7

Time/Accuracy T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%)

System 1: Intel
Core i5-6600

CPU@3.30GHz,
64GB RAM

RazerS3 229.7 100 334.4 100 443.5 100 268 100 388.6 100 631.6 100
Hobber3 38.24 100 38.67 100 52.12 99.99 61.63 100 56.89 100 58.81 100

FEM 4.80 0.65 6.87 0.44 12.14 0.32 5.23 0.20 6.73 0.83 9.33 0.11
Yara 22.52 1.88 96.70 1.32 118.34 1.01 178 1.18 873.84 0.96 1971.8 0.83

BWA-MEM T(s) - 120.5 A(%) - 14.24 T(s) - 234.9 A(%) - 11.45

GEM 25 1.78 25 1.22 29 0.92 58 1.03 57 0.15 55 0.70
CORAL-cpu 31.19 96.05 52.75 95.77 89.09 94.04 68.57 99.89 125.6 99.5 187.88 97.72

System 2: Intel
Core i7-2600

CPU@3.40GHz,
16GB RAM + 2
× GeForce GTX

590, 1.5 GB

RazerS3 160.1 100 247.5 100 363 100 185.9 100 307.2 100 560.1 100
Hobber3 24.92 100 24.37 100 27.85 100 63.49 100 56.36 100 52.60 100

FEM 3.03 31.8 4.21 29.61 7.61 27.41 3.36 16.13 4.23 14.41 5.86 12.73
Yara 13.44 100 74.17 100 87.15 99.99 136.5 100 824.9 100 1877 100

BWA-MEM T(s) - 85.44 A(%) - 97.49 T(s) - 161.6 A(%) - 93.51

GEM 22 94.54 22 92.97 21 91.33 55 86.80 52 86.93 52 84.34
CORAL-cpu 22.18 99.91 44.45 99.75 81.53 99.66 69.3 99.89 129.6 99.79 198.6 99.71

TABLE 5
The results of mapping 1M real reads to chromosome (chr) 2 on the CPU. RazerS3, Hobbes3, GEM and CORAL-cpu reported up to 3500

mapping per read on System 1 and 100 outputs per read on System 2. FEM, Yara, however, by default report all the mapping positions and
BWA-MEM was configured to report all mapping positions. T and A are abbreviations for time and accuracy and have been reported in seconds

and proportional percentage of accurate mapping against the total number of reads.

Chromosome
21

Read length 100 150

Error 3 4 5 5 6 7

Time/Accuracy T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%) T(s) A(%)

System 1: Intel
Core i5-6600

CPU@3.30GHz,
64GB RAM

RazerS3 39.33 100 58.56 100 77.85 100 43.86 100 62.69 100 100.5 100
Hobber3 24.57 100 24.1 100 22.22 100 53.31 100 45.75 100 38.31 100

FEM 2.34 0.459 2.58 0.373 3.50 0.313 2.06 0.074 2.33 0.077 2.81 0.061
Yara 12.58 100 26.65 100 36.18 100 52.48 100 135.9 100 357.58 100

BWA-MEM T(s) - 127.39 A(%) - 22.96 T(s) - 219.15 A(%) - 28.64

GEM 24 2.03 25 1.81 24 1.66 61 4.65 60 3.97 59 3.41
CORAL-cpu 11.68 99.93 21.39 99.87 42.14 99.91 21.52 100 45.33 100 75.80 100

System 2: Intel
Core i7-2600

CPU@3.40GHz,
16GB RAM + 2
× GeForce GTX

590, 1.5 GB

RazerS3 26.79 100 42.37 100 64.52 100 30 100 49.10 100 88.92 100
Hobber3 20.31 100 16.87 100 14.44 100 58.36 100 49.88 100 40.7 100

FEM 2.50 16.45 2.15 14.52 2.27 12.72 2.27 1.44 2.12 1.75 3.04 1.59
Yara 6.09 100 18.59 100 24.34 100 35.77 100 110.7 100 309.7 100

BWA-MEM T(s) - 184.38 A(%) - 97.17 T(s) - 359.56 A(%) - 95.09

GEM 23 93.66 22 92.04 22 89.97 56 90.20 54 91.35 54 89.07
CORAL-cpu 7.72 100 18.33 99.98 39.79 99.99 20.18 100 45.38 100 81.42 100

CORAL-all 5.36 100 12.41 99.98 27.95 99.99 12.5 100 27.41 100 49.6 100

TABLE 6
The results of mapping 1M real reads to chromosome (chr) 21. RazerS3, Hobbes3, GEM and CORAL-cpu reported up to 3500 mapping per read

on System 1 and 100 outputs per read on System 2. CORAL-all, also, produce 100 outputs per read but executes on CPU and both the GPUs,
simultaneously. FEM, Yara, however, by default report all the mapping positions and BWA-MEM was configured to report all mapping positions. T
and A are abbreviations for time and accuracy and have been reported in seconds and proportional percentage of accurate mapping against the

total number of reads.

and CPU+GPU combination of system 2. As mentioned
in previous section, the three sets of simulated reads have
maximum error of 3, 4 and 5. Compared to RazerS3, CORAL
is 2 − 8× faster and maps over 99% of the reads accu-
rately. CORAL outperforms Hobbes3 in all cases except for
n = 100 and e = 5. It, considerably, outperforms FEM
on mapping accuracy. From table 4, we can observe that
CORAL-all, which distributes a portion of the workload on
Nvidia GPUs, results in up to 2× speedup with the same
accuracy. CORAL outperforms Yara and BWA-MEM in all
the cases on System 1, with up to 2.08× and 7.96× speed-
up, respectively. For CORAL-all, we equally distributed

256,000 out of 500,000 reads on two Nvidia devices and the
remaining 244,000 on the CPU to obtain speedups. From
the experiments, we conclude that CORAL-cpu outperforms
RazerS3, Hobbes3, GEM, Yara and BWA-MEM in most of
the cases on either mapping time or accuracy or both and
if not produce comparable results. Similar to section 4.2.1,
FEM is faster than CORAL but lags considerably in accu-
racy. CORAL-all which uses multiple devices provide an
additional speedup of up to 2×, unlike other mappers who
are optimized to operate only on the CPU.
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4.2.3 Real reads mapped to chr 2

System 1: Table 5 presents the results of mapping 1 M real
reads on chr2, from two different databases with different
read lengths. RazerS3, Hobbes3, GEM and CORAL-cpu
reported up to 3500 mapping per read. We can observe that
CORAL is 3 − 7× faster than RazerS3 and accurately maps
over 94% of reads. It is also evident that it is considerably
better than FEM and GEM in accuracy of mapping reads.
We could not run GEM in the sensitive mode for real
reads as it was taking very long runs. For δ = 3, CORAL
outperforms Hobbes3, however, it lags behind for higher
error rates. On the contrary, CORAL outperforms Yara on
all cases, especially, for higher error rates, leaving single
case where δ = 3 and n = 100, and beats it on accuracy in
all cases. CORAL beats BWA-MEM on all parameters and
cases.

System 2: On System 2, all the mappers are configured to
map up to 100 positions per read. Yet again it can be seen
that CORAL outperforms Yara and BWA-MEM in all the
cases on mapping times. On accuracy, leaving for a few
cases with respect to Yara, with a marginal < 0.4% differ-
ence, CORAL outperforms both Yara and BWA-MEM. The
accuracy for Yara, BWA-MEM, FEM and GEM are higher
on System 2 due to different comparison criteria used,
as discussed in Section 4.1.2. Here, we measure any-best
accuracy of Rabema. For all cases, CORAL, considerably,
outperforms GEM and FEM in accuracy.

4.2.4 Real reads mapped to chr 21

System 1: Table 6 presents the results of mapping 1 M
real reads, from two different databases with different read
lengths, on chr 21. On System 1, all mappers produce 3500
outputs per read, except, the RazerS3 which serves as the
gold standard. We can observe that CORAL is 2 − 4×
faster than RazerS3 in all cases. Leaving for n = 100, δ = 5,
CORAL is up to 5× faster than Yara with similar accuracy. It
outperforms BWA-MEM on all accounts. CORAL mapping
times are better than Hobbes3 and GEM for lower error
rates except for n = 100, δ = 5 and n = 150, δ = 7. FEM
and GEM reportedly mapped only a small number of reads,
hence, CORAL mapping accuracy supersedes them.

System 2: On System 2, all mappers report up to 100 outputs
per read, except, the RazerS3 which serves as the gold
standard. The results, here, follow similar trend as explained
above. However, we can see that mapping times can be
halved if all the available resources are used with judicious
workload distribution. CORAL-all executes on CPU and
both the GPUs producing up to 2× speedup. For n = 150,
we mapped 368,000 reads on GPUs and remaining 632,000
reads on the CPU. For n = 100, we mapped 340,000 reads
on the GPU and remaining 660,000 reads on the CPU.
These numbers were chosen depending on the memory
capacity of GPUs and kernel requirements. CORAL-cpu and
CORAL-all outperform RazerS3 and BWA-MEM in all the
cases. Except for n = 100, δ = 5 and n = 150, δ = 7,
it outperforms Hobbes3, GEM and Yara in all other cases.
In case of FEM, the mapping accuracy were found to be
considerably low despite successive experiments.
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Fig. 5. Average number of verifications per read using different filtration
schemes for real data sets, viz. ERR012100 1 (n = 100, δ = 5) and
SRR826460 1 (n = 150, δ = 7), on chr2. NVA - non verification-aware,
VA - verification-aware and VA+A - verification-aware along with approx-
imation. The approximation used, here, limits the maximum number of
verifications per k-mer to 1000.

4.2.5 Evaluation of Verification-Aware Filtration

Fig. 5 shows the average number of verifications performed
per read using three filtration schemes: non verification-
aware (NVA), verification-aware (VA) and verification-
aware with approximations (VA+A). In NVA scheme, we
fix the lengths of k-mer and calculate the total number of
verifications required for all the reads. For example, given
n = 100, δ = 5 and n = 150, δ = 7, the k-mer lengths
are (17, 17, 17, 17, 16, 16) and (19, 19, 19, 19, 19, 19, 18, 18),
respectively. In VA scheme, CORAL dynamically deter-
mines the lengths of k-mer by extending them depending
on the number of verifications encountered. VA+A scheme
is similar to VA with an additional condition that limits the
maximum allowed candidate locations per k-mer to 1000.
Experiments performed on both the real data sets show
that the number of verifications reduces significantly (up
to 3.67×) across the filtration schemes.

5 DISCUSSION

From Section 4.2, we see that, even though GEM uses a
similar approach of k-mer length variation on FM-Index,
CORAL outperforms GEM on either mapping times, accu-
racy or both for different read lengths, errors and datasets.
For real reads, GEM could not produce any output in the
sensitive mode, even, after long runtimes. Compared to
GEM, CORAL is an all-mapper with portability and flexi-
bility to work on heterogeneous systems. We observe that
Hobbes3 outperforms CORAL in few cases, like, with longer
chromosome, chr2, and high error rates, δ = 5, 7. One of the
major reasons is that the latest mappers use Streaming SIMD
Extensions (SSE) instruction set. SSE instruction set utilizes
128-bit registers to accelerate computations. It enables load-
ing of multiple bit vectors into a machine word, therefore,
accelerating the banded Myers bit-vector algorithm, which
is a major bottleneck in read mappers. OpenCL abstracts
different hardware manifestations of parallel architecture
including SIMD, but does not support the SSE instructions,
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yet, for portability on wide-spectrum of devices. Difference
in performance between CORAL and Hobbes3 is, also, due
to k-mer selection criteria. CORAL selects the maximum
possible length for each k-mer with an objective to reduce
the number of candidate location, of a particular k-mer, by
increasing its length using excess bases, if available. While
Hobbes3 uses a dynamic programming based filtration
scheme.

As mentioned in Section 1, the state-of-the-art mappers
have focused on algorithmic innovations and software opti-
mizations targeting only the CPU. To use them on different
hardware, such as GPU or FPGAs, will require to be either
rewritten or tailored. K. Reinert et al [2] present a review
of the existing methods and algorithms, and predict in
their concluding remarks that further improvements in the
assembling time will result from accelerators and copro-
cessors. S. Aluru and N. Jammula [9] present a review on
hardware accelerators for genome assembly on FPGAs and
GPUs. Darwin [29] is a FPGA based coprocessor for whole
genome alignment aiming at aligning genomes of two or
more species. The authors have reported significant im-
provements in performance/$ and sensitivity by employing
ungapped seeds. Darwin differs from CORAL as it aligns
two genomes while we are mapping reads to assemble
genome. A similarity between the two is the use of approxi-
mate string search algorithms. GateKeeper [30] implements
the filtration stage on the FPGA and reports speedups
over existing filtration schemes. The FPGA implementation,
however, suffers from flexibility in mapping parameters
such as read length and permissible edit distance. FPGAs,
also, lack in on-board memory and communication band-
width for faster data transfer between host processors, RAM
and the FPGA chip, thereby, lagging behind the CPU in
performance unless a large or multiple FPGA chips are used.
Additionally, any change in the parameters may require
extensive recoding and verification cycles. Jeremie S. Kim
et al [31] present processing-in-memory (PIM) approach
towards acceleration of filtration stage by implementing
their filter on a 3D-stacked DRAM. It aims to optimize
the filtration algorithm for 3D-stacked memory with high
memory bandwidth and PIM capabilities. This, however,
limits its portability to other hardware architectures.

In the case of GPU acceleration, the kernels are, often, de-
signed targeting specific GPU architecture, often, using ven-
dor specified programming framework. GPU architecture is
optimized for floating-point operations while genome as-
sembly involves integer based operations; hence, GPU may
or may not serve as the best possible choice for accelerating
genome assembly. Thus, mappers optimized for just one
platform, be it CPU, GPU or FPGA, are unable to use the
advantage of all the available resources. GPUs, for example,
accompany CPU in most of the modern platforms ranging
from workstations to servers. To the best of our knowledge,
CORAL, for the first time, demonstrates simultaneous usage
of all available resources on a system without any additional
programming effort and achieving up to 2× speedups. We
showcase this by simultaneously deploying kernels on a
quad-core CPU and two Nvidia GPUs. CORAL determines
the maximum number of workitems in a workgroup in mul-
tiples of 2, as recommended by the Khronos group for better
performance. OpenCL, then, automatically determines the
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total number of workgroups.

CORAL employs verification-aware filtration scheme
which significantly reduces the average number of verifi-
cations performed per read, as shown in Fig. 5. The filtra-
tion methodology employing FM-Index backward search
along with pigeonhole principle makes it fully sensitive,
however, the approximation imposed in VA+A filtration
scheme, i.e. limiting the maximum number of candidate
locations per k-mer to 1000, as discussed in Section 4.1 and
4.2, permits for verification of maximum 12000 locations for
both forward and backward strand combined. We observed
that only about 3.22% and 4.77% of reads in ERR012100 1
and SRR826460 1, respectively, produce large numbers of
candidate locations in the VA case, as can observed in
Fig. 5. Although, the proportion of reads is small, however,
number of the candidate locations produced per read is
huge enough to skew the average number of verifications
from 479 to 1313 and 726 to 1580, respectively. Therefore,
we limit the maximum possible verification cycles to 1000.

CORAL, algorithmically, doesn’t impose restrictions on
the read lengths per se, however, in the current implementa-
tion it is practical to use it with short reads. This is because
CORAL kernel loads read from the global memory to the
private memory, as shown in Fig. 4, to reduce frequent mem-
ory accesses and from Fig. 6, we can see that the minimum
private memory size used by each workitem in the kernel
is proportional to the real length. In the current CORAL
implementation, thus, the practicality of using longer reads
depends on the availability of the private memory. CORAL
does not produce the CIGAR string and SAM output format,
yet. The memory footprint of CORAL is large due to tally
and suffix array matrices, as mentioned in Section 4.1. These
data structures, however, have the capability to significantly
reduce their memory footprint as demonstrated in [21].
We envisage that our future work will have better k-mer
selection methodology, SAM output and reduced memory
footprint. With OpenCL based framework, CORAL can be
run on credit-card sized single board computers (SBCs), de-
signed for embedded scenarios. Such board have multicore
architectures along with GPU, however, limited memory.
All the compute units available in the form of CPU and
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GPU can be simultaneously used using CORAL unlike other
mappers proposed till date. We envisage aforementioned
improvements as our future work.

6 CONCLUSION

In this paper, we presented, for the first time, a Cross-
platfOrm Read mApper using opencL (CORAL) for het-
erogeneous systems. Such systems have different kinds of
devices in various combinations on a single platform. For
example, we present a case where a quad-core Intel CPU is
accompanied by two Nvdia GTX 590 GPUs. To efficiently
use all the compute resources on a system, CORAL employs
OpenCL programming framework to launch kernels on
the chosen devices and distributes the workload with the
maximum possible workgroup size. Without any additional
programming effort, CORAL can be used on any OpenCL
conformant devices such as CPUs and GPUs, from dif-
ferent vendors, stiched together on embedded platforms,
workstations and servers. Additionally, it uses a number
of algorithmic optimisations, including verification-aware
filtration, to significantly reduce the computational costs.
We have used both simulated and real reads to compare the
runtimes and accuracy of our tool with the state-of-the-art
read mappers and showed that it offers competitive trade-
offs besides portability. We envisage an improved filtration
methodology, low memory footprint for data structures and
SAM output capability as our future work.
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