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Coordinate Rotation based Design Methodology for

Square root and Division computation
Suresh Mopuri∗, Swati Bhardwaj∗, Amit Acharyya, Member, IEEE

Abstract—In this paper, we propose a low-complexity design
methodology to compute square-root and division using circular
CORDIC. Unlike the state of the art methods, the proposed
methodology eliminates the requirement of a separate hardware
for square root and division computation in the CORDIC based
applications without compromising the computational speed,
throughput and accuracy. The ASIC implementation of the
proposed architecture has been performed using UMC 90nm
Technology node with 1.08V @1MHz and subsequently Xil-
inx Virtex-6 (XC6v1x240t) based FPGA-prototyping has been
done. The performance of the proposed methodology has been
compared with the reported literature and significant power
consumption improvement was observed without any additional
area overhead.

Index Terms—Square root, Division, CORDIC.

I. INTRODUCTION

C
ORDIC (COordinate Rotation DIgital Computer) has

been used in many signal processing applications in-

cluding Independent Component Analysis (ICA) and Under

determined Blind Source Separation (UBSS) [1]-[8]. These

signal processing applications very often require the compu-

tation of square root and division. For Example in UBSS,

to recover the sources, it is necessary to compute inverse

square root of co-variance matrix and inverse of mixing matrix

[7]-[8]. The inverse of a matrix can be computed using QR

factorization followed by the reciprocal operation [1]-[8]]. The

inverse square root of a matrix can be computed using Eigen

Value Decomposition (EVD) followed by the square root

and reciprocal operation. The QR decomposition and EVD

computation can be performed using the circular CORDIC for

low-complexity applications [1]-[4].

Several methods are available for the implementation of

square root [9]-[15] and reciprocal computation [16]-[24].

From the available literature for square root and reciprocal im-

plementations [9]-[24], it is apparent that the circular CORDIC

have not been used till now to perform the square root and divi-

sion operations. The complex square root and complex division

can be performed using circular CORDIC [25]-[26]. Various

bio-medical applications based on Electrophysiological sig-

nals like Electrocardiography (ECG), Electroencephalography

(EEG) and Electromyography (EMG), uses ICA and UBSS

for pervasive health monitoring and disease diagnosis. In

such applications for remote health monitoring, the monitoring

devices need to be portable and battery powered. This gives
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rise to the necessity for low complex implementations for the

underlying algorithms like ICA and UBSS [5]-[8]. Motivated

by the aforementioned facts, in this paper, we introduce a low-

complex design methodology for the computation of square

root (
√
X) and division (XZ ) using circular CORDIC. Using

the proposed method along with the aforementioned CORDIC

based applications [1]-[8], the pre-existing circular CORDIC

can be re-used for computation square root and division. The

re-utilization of CORDIC reduces the area overhead in the

ICA and UBSS implementations for bio-medical applications.

The rest of this paper is organized as follows: Section II

provides the necessary theoretical background followed by the

proposed methodology and architectural details in Section III.

The Hardware complexity and timing are analyzed in Section

IV-A and followed by experimental results and error analysis

in Section IV-B. Finally Section V concludes the discussion.

II. THEORETICAL BACKGROUND

The square root is computed using the derivative Newton
Raphson (NR) formula i.e, y1 = 1√

X
is computed first and

then multiplied by X i.e, y = y1 ∗X =
√
X . The reciprocal

square root function using NR method is expressed as follows
[12]:

y1 =
x0

2
(3−X ∗ x2

0) (1)

where x0 is the initial approximation. Most often, the division
is computed by multiplying the dividend with the reciprocal of
divisor. The reciprocal function computed using NR method
can be expressed as follows [24]:

y = x1(2− x1X) (2)

where x1 is the initial approximation. The initial approxima-
tion xi (i = 0 for the square root and i = 1 for the reciprocal
function) can be computed using the following second order
approximation expression

xi = a2X
2 + a1X + a0 (3)

To compute the xi from the above expression the input x is
divided into different segments. Coefficients a2, a1, a0 are
varied for each input segment, i = 0 and i = 1. To compute
the square root by using (1), (3) and the division by using
(2), (3) on the hardware require seven and six multiplications
respectively [12], [24]. The basic working principle of circular
CORDIC, on the other hand, can be expressed as follows:

[

xf

yf

]

=

[

cosθ −sinθ
sinθ cosθ

] [

x0

y0

]

=

[

Rotx(x0, y0, θ)
Roty(x0, y0, θ)

]

(4a)

θ = V ecθ/x(x0, y0, xc/yc) (4b)

where x0, y0 and xf , yf are the initial and final components

of the vector and θ is angle of rotation. The output of

x/y component of the rotation mode CORDIC denoted as

Rotx/y(.). V ecθ/x(.) denotes the θ/x output of the vectoring

mode CORDIC by equating one of the xf/yf co-ordinates

with either of xc/yc respectively. The details are omitted here,

[1],[5] can be referred for the same.
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III. PROPOSED METHODOLOGY AND ARCHITECTURE

A. Square root computation

Consider a positive real number X ≤ 1. If X > 1, it can be

scaled down to less than or equal to 1 by performing simple

shifting operation. For example, if 2(k−2) < X ≤ 2k where

k is an even number, X is scaled down to 1 by right shifting

it by k bits. After
√
X computation, it could be brought to

the original value by shifting k
2 bits to left. As an example,

consider X = 49 then 24 < X ≤ 26 and k = 6. After

shifting k = 6 bits to right X will become 0.765625 and√
X = 0.875. Thereafter

√
X should be brought to its original

value by shifting k
2 = 3 bits to the left i.e,

√
X = 7.

Since X ≤ 1, by assuming X = cos2Φ, we will get Φ =
(p− 1)π+ (−1)p−1cos−1

√
X where p is an integer. To limit

the rotations to first quadrant, we consider p = 1 and thus

cosΦ =
√
X . From the trigonometric identities,

cos2Φ = 2cos2Φ− 1 (5)

Since X = cos2Φ, now (5) can be written as:

cos2Φ = 2X − 1. (6)

In order to compute the
√
X , it is necessary to compute the

angle Φ and corresponding cosΦ which can be computed by
using circular CORDIC. Since X is known, consider x0 = 1
and y0 = 0, operating the circular CORDIC in vectoring mode
until xc = 2X − 1 as shown in Fig.1(a), Φ can be computed
using (4b)

Φ =
V ecθ(1, 0, 2X − 1)

2
(7)

From (7), Φ can be computed by shifting one bit to the right.
Since Φ is known, consider x0 = 1 and y0 = 0 to the circular
CORDIC once again, operating in rotation mode as shown in
Fig.1(a), cosΦ can be computed using (4a)

cosΦ =
√
X = Rotx(1, 0,Φ) (8)

B. Division computation

Consider two real numbers X and Z, assume that cosβ =
X
Z . Since |cosβ| ≤ 1, then |X| ≤ |Z|. If |X| > |Z|, |X| can be

easily scaled down to less than or equal to |Z| by performing

simple shifting operation to meet the above assumption. For

example, if 2(k−1) ≤ (|X| − |Z|) ≤ 2k where k is an integer,

|X| is scaled down to |Z| shifting by k bits to the right.

After X
Z computation, it could be brought to the original value

shifting by k bits to the left. As an example, consider X = 55
and Z = 30 then |X| − |Z| = 25, 24 < |X| − |Z| ≤ 25

and k = 5. After shifting by k = 5 bits to the right X will

become 1.71875 and X
Z = 0.0573. There after X

Z should be

brought to its original value by shifting k = 5 bits to the left

i.e, X
Z = 1.833.

In order to compute X
Z , it is necessary to compute the angle

β and corresponding cosβ which can be computed by using
circular CORDIC. Consider the input to the circular CORDIC
as a vector [Z, 0] lying on the x-axis i.e, x0 = Z and y0 =
0 as shown in Fig. 1(b). Since X is known, operating the
circular CORDIC in vectoring mode until xc = X as shown
in Fig.1(b), θ = β can be computed using (4b)

β = V ecθ(Z, 0, X) (9)

Since β is known from (9), considering x0 = 1 and y0 = 0 to
the circular CORDIC, operating in rotation mode as shown in
Fig.1(b), cosβ can be computed using (4a):

cosβ =
X

Z
= Rotx(1, 0, β) (10)

C. Proposed Architecture

Fig.2(a) shows the architecture designed based on the pro-
posed methodology as described in Section III-A and III-
B. From (7), (8), (9), (10), Fig.1(a) and Fig.1(b), it can
be noted that the angle of rotation is computed from the
circular vectoring mode CORDIC (CVCORDIC) which is fed
as input to the circular rotation mode CORDIC (CRCORDIC)
as shown in Fig.2(b). The Doubly Pipelining (DP) can be used
to minimize the latency of the proposed architecture as shown
in Fig.2(c) [5]. The CORDIC performs the rotation iteratively
through an angle θi instead of rotation directly through an
angle θ, where θi = tan−1(2−i). The θ can be represented in
terms of θi as given below

θ =

n−1
∑

i=0

σiθi;σi = ±1 (11)

where σi is decomposition factor. Consider µi as micro-

rotation corresponding to σi, where σi = −1 corresponds

to corresponds to anti-clockwise rotation with µi = 0 and

σi = 1 corresponds to clockwise rotation with µi = 1.

It is apparent from (7), (8) and Fig.1(a), that for square

root computation, the micro-rotations corresponding to φ are

not directly available using existing DP CORDIC. Hence,

we propose a methodology for computing micro-rotations

corresponding to φ on-the-fly directly from micro-rotations

for 2φ.

Consider two angles A and B, with micro-rotations Aµ,

Bµ respectively. Aµi
, Bµi

represent the micro-rotation at ith

iteration. The micro-rotation ABµi
corresponds to the angle

ABµ, where ABµ = A+B
2 can be computed from Fig.3 and

Table I. For example, if (Aµi
, Bµi

) = (0, 1) or (1, 0); ABµi
=

01 or 10, it corresponds to no rotated and the inputs will be

directly passed to outputs making xi+1 = xi, yi+1 = yi. On
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Fig. 2. = (a) Architecture for square root and division (b) With out Pipelining and (c) Doubly Pipelined architecture

the other hand if (Aµi
, Bµi

) = (0, 0) or (1, 1); ABµi
= 00

or 11 corresponds to anti-clock wise and clock wise rotation

respectively, which is same as the usual CORDIC operation.

For example, if A = 70◦ and B = 0◦ then for n = 16
TABLE I

MICRO-ROTATION TABLE FOR COMPUTATION
A+B

2

Aµi
Bµi

ABµi

0 0 00-Anti Clock wise
0 1 01-No rotation
1 0 10-No rotation
1 1 11- Clock wise

stage CORDIC using (11) the Aµ = 1101110111111010 and

Bµ = 1000101100001011. The resultant angle A+B
2 will

become 35◦ and corresponding ABµ can be computed using

Table I and Fig.3. To use DP in the square root computation,

the micro-rotations for φ i.e, φµ can be computed from 2φ by

considering A = 2φ and B = 0.

The architecture performs square root or division computa-

tion based on selection line sqrt/div. When sqrt/div = 0,

the input vector to the CVCORDIC [x0, y0] = [1, 0] (7). The

CVCORDIC will rotate the input vector until xc = (2X − 1).
The output of CVCORDIC micro-rotation µ corresponds to

angle 2φ. The micro-rotations φµ corresponds to angle φ
are computed by considering Aµ = 2φµ, Bµ = 0µ =
1000101100001011 using Table I and fed as input to CR-

CORDIC (µ = ABµ = φµ). The input vector to CRCORDIC

is [x0, y0] = [1, 0] (8) and the input micro-rotation µ = φµ.

The output of CRCORDIC is xn = cosφ =
√
X . When

sqrt/div = 1, the architecture performs division computation

and the input vector to the CVCORDIC [x0, y0] = [Z, 0] (9).

The CVCORDIC will rotate the input vector xc = X . The

output of CVCORDIC micro-rotation µ corresponds to angle

β which is input to the CRCORDIC. The input vector to CR-

CORDIC is [x0, y0] = [1, 0] (10) and the input micro-rotation

µ = βµ. The outputs of CRCORDIC is xn = cosβ = X
Z .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Hardware Complexity and Timing Analysis

In this subsection, we analyze the performance of the
proposed architecture in terms of the hardware complexity,

Fig. 3. micro-rotation computation angle A+B
2

latency and throughput. Throughout the analysis we keep
a generalized view on number of stages in CORDIC as n
and word-length as b. To provide comparison on a uniform
platform considering only Ripple Carry Adder (RCA) and
Conventional Array Multiplier (CAM). A b-bit RCA requires
b full adders (FA), bXb CAM requires b(b − 2) FA plus b
half adders (HA) and b2 AND gates. In addition, one FA cell
requires 24 transistors, one HA cell consist of 12 transistors
and a two input AND gates consists of 6 transistors. Based on
the approach presented in [5] and [26], Transistor count for
the proposed architecture is expressed in terms of Transistor
Count (TC) of RCA and CAM. We can calculate TCRCA =
24b, TCCAM = 6b(5b−6). The proposed architecture consists
of two CORDICs. Each CORDIC has two additions and two
subtractions, the total TC involved in proposed design can be
expressed as

TCproposed = 8 ∗ n ∗ TCRCA (12)
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The TC involved in the NR method for square root and
division implementation can be expressed as

TCSqrt = 7 ∗ TCCAM + 4 ∗ TCA (13a)

TCDiv = 6 ∗ TCCAM + 3 ∗ TCA (13b)

Fig.4 shows the TCPW (Transistor count per word-length) for
the proposed design(n = 4, 8, 16) and compared with the NR
based square root and division implementations. The TSPW
(Transistor saving per word-length) is defined as follows

TSPW = 1− TCproposed

TCSqrt + TCDiv
(14)

As can be seen from Fig.4 that the proposed design saves 49%
TSPW for n = 16 and b = 16 when compared with the NR

based approaches. Since the CORDIC consists of n stages,

the proposed architecture (with out pipelining as shown in

Fig.2(b)) requires 2 ∗n clock-cycles to compute
√
X and X

Z .

The latency of the designed architecture is 2n clock cycles. But

by using DP architecture the latency of the proposed design

can be reduced to n clock cycles as shown in Fig.2(c). The

throughput of the proposed design is100%.

B. Implementation Results and Error analysis

The proposed architecture is coded in VHDL for 16 bit input

word length. The FPGA prototype for this architecture has

done on the Xilinx Virtex-6 FPGA (XC6v1x240t).The ASIC

implementation was done for the proposed architecture at

UMC 90nm technology @ V DD=1.08V and clock frequency

@ 1MHz with the help of Synopsis Design Compiler (DC)

and IC compiler. It is to be noted that, the proposed method-

ology is independent of the technology node used. The use of

lower technology node to validate the proposed methodology,

will further reduce the area and power consumption for the

proposed technology. However, due to the unavailibility of

lower technology with us, we could not demonstrate that

here. The synthesis results of ASIC implementation and FPGA

prototype for the proposed methodology and implementation

of other architectures are shown in Table II. However, all

the reported literature have been implemented with different

specifications using different technology nodes and implemen-

tations platform. Thus, it is hard to make comparison on a

uniform platform

Accuracy of the designed architecture based on the proposed

methodology is determined by comparing outputs from FPGA

with Matlab’s inbuilt ‘sqrt’ and ‘division’ functions. Two set

of 2048 randomly generated numbers are considered as input

X and Z. The functionality is validated both for square root

(
√
X) and division (XZ ). Mean Absolute Error (MAE) was

calculated with various stages of CORDIC for different input

word lengths. Fig.5(a) and Fig.5(b) are shown the variation of

MAE for the square root and division with different CORDIC

stages n = 4, 8, 16, and with word length b = 4, 8, 16. From

Fig.5(a) and Fig.5(b), it is evident that as number of CORDIC

stages increases, MAE decreases due to the improvement in

resolution of CORDIC.

V. CONCLUSION

In this paper, a low-complexity design methodology to com-

pute square-root and division using only circular CORDIC.

Subsequently, the ASIC implementation of the proposed

architecture architecture has been performed using UMC

90nm Technology node with 1.08V @1MHz and FPGA-

prototyping on Xilinx Virtex-6 (XC6v1x240t). The archi-

tecture implementation shows that the proposed architecture

design eliminates a separate requirement of square-root and

division implementation in the reported CORDIC based ap-

plications without compromising the computational speed,

throughput and accuracy.
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