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Abstract. In this article, necessary and sufficient conditions for the cone
nonnegativity of Moore–Penrose inverses of unbounded Gram operators are
derived. These conditions include statements on acuteness of certain closed
convex cones in infinite-dimensional real Hilbert spaces.

1. Introduction

A real square matrix T is called monotone if x ≥ 0 whenever Tx ≥ 0. Here
x = (xi) ≥ 0 means that xi ≥ 0 for all i. The concept of monotonicity was
first proposed by Collatz [4] in connection with the application of finite difference
methods for solving elliptic partial differential equations. He showed that a matrix
is monotone if and only if it is invertible and the inverse is entrywise nonnegative;
hence, the monotonicity of a matrix is equivalent to the nonnegativity of the
inverse of a matrix.

The notion of monotonicity has been extended in a great variety of ways. We
present a brief review here. Mangasarian [12] considered a rectangular matrix
T to be monotone if Tx ≥ 0 ⇒ x ≥ 0. He showed, using the duality theorem
of linear programming, that T is monotone if and only if T has a nonnegative
left inverse. Berman and Plemmons generalized the concept of monotonicity in
several ways in a series of articles, where they studied their relationships with
nonnegativity of generalized inverses. The book by Berman and Plemmons [2]
contains numerous examples of applications of nonnegative generalized inverses
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that include numerical analysis and linear economic models. Sivakumar [14] and
several others extended the concept of monotonicity to the infinite-dimensional
setting. (We refer the reader to Kammerer and Plemmons [7, Section 6] for appli-
cations of nonnegative Moore–Penrose inverses of operators in solving operator
equations.)

The monotonicity of Gram matrices and Gram operators has received a lot of
attention in recent years. This has been primarily motivated by applications in
convex optimization problems. In this connection, there is a well-known result by
Cegielski that characterizes nonnegative invertibility of Gram matrices in terms
of obtuseness (or acuteness) of certain polyhedral cones (see, for instance, [3,
Lemma 1.6]). Later, this characterization of nonnegativity of inverses of Gram
matrices was extended to Gram operators over infinite-dimensional real Hilbert
spaces (see [10, Theorem 3.6]).

The objective of this article is to obtain results similar to the results of [10]
for unbounded Gram operators. In fact, we consider here densely defined closed
linear operators (not necessarily bounded) between real Hilbert spaces and ob-
tain the necessary and sufficient conditions for the cone nonnegativity (defined
in the next section) of Moore–Penrose inverses of Gram operators in terms of
acuteness of certain closed convex cones. This is achieved by taking cones in the
domain of the Gram operator. It is pertinent to mention that our results are new,
and that their proofs involve several results from the theory of Moore–Penrose
inverses of unbounded operators. We also mention that our results generalize the
existing results due to Kurmayya and Sivakumar [10] and the related results in
the literature (see, for instance, [3, Lemma 1.6]).

This article has the following organization. In Section 2, notation, basic defini-
tions, and results are introduced. In Section 3, some preliminary results and the
main theorem of this article are presented. Finally, in Section 4 the main theorem
is illustrated with examples.

2. Notation and preliminary results

In this section, notation and basic definitions are introduced. Note that, through-
out the article, H,H1, and H2 denote infinite-dimensional real Hilbert spaces,
while 〈·, ·〉 and ‖ · ‖ denote the inner product and the induced norm, respectively.
For a closed subspace M of H, PM denotes the orthogonal projection on H with
range M .

Let T be a linear operator with domain D(T ), a subspace of H1, and taking val-
ues inH2. Then the graphG(T ) of T is defined byG(T ) := {(x, Tx) : x ∈ D(T )} ⊆
H1 ×H2. If G(T ) is closed, then T is called a closed operator. If D(T ) is dense in
H1, then T is called a densely defined operator. For a densely defined operator,
there exists a unique linear operator T ∗ : D(T ∗) → H1, where

D(T ∗) :=
{

y ∈ H2 : the functional x→ 〈Tx, y〉 for all x ∈ D(T ) is continuous
}

and 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗). This operator is called
the adjoint of T . Note that T ∗ is always closed whether or not T is closed.
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The set of all closed operators between H1 and H2 is denoted by C(H1, H2)
and C(H) := C(H,H). By the closed graph theorem [13, Theorem 2.15], an
everywhere-defined closed operator is bounded; hence, the domain of an un-
bounded closed operator is a proper subspace of a Hilbert space. For T ∈ C(H1, H2),
the null space and the range space of T are denoted by N(T ) and R(T ), re-
spectively, and the space C(T ) := D(T ) ∩ N(T )⊥ is called the carrier of T .
In fact, D(T ) = N(T ) ⊕⊥ C(T ). The following properties of a densely defined
T ∈ C(H1, H2) will be used in the sequel: N(T ) = R(T ∗)⊥; N(T ∗) = R(T )⊥;

N(T ∗T ) = N(T ); and R(T ∗T ) = R(T ∗) (see [1] for a detailed study of these
properties).

Some more properties of a densely defined T ∈ C(H1, H2) are collected in the
following lemma.

Proposition 2.1 ([1, Exercise 9, p. 336]). For a densely defined T ∈ C(H1, H2),
the following statements are equivalent:

(1) R(T ) is closed,
(2) R(T ∗)is closed,
(3) R(T ∗T ) is closed, and in this case, R(T ∗T ) = R(T ∗),
(4) R(TT ∗) is closed, and in this case, R(TT ∗) = R(T ).

(For further results on unbounded operators, we refer the reader to [5].)
Now, we move on to the definition of the Moore–Penrose inverse of a densely

defined closed linear operator between real Hilbert spaces.

Definition 2.2. ([1, Definition 2, p. 339]) Let T ∈ C(H1, H2) be densely defined.
Then there exists a unique densely defined operator T † ∈ C(H2, H1) with domain
D(T †) = R(T )⊕⊥ R(T )⊥ that has the following properties:

(1) TT †y = P
R(T )y, for all y ∈ D(T †),

(2) T †Tx = PN(T )⊥x, for all x ∈ D(T ),

(3) N(T †) = R(T )⊥.

This unique operator T † is called the Moore–Penrose inverse of T .

The next lemma presents well-known properties of T † that will be used in
proving the main result of this paper.

Theorem 2.3. ([1, Theorem 2, p. 341]) Let T ∈ C(H1, H2) be densely defined.
Then

(1) D(T †) = R(T )⊕⊥ R(T )⊥,
(2) R(T †) = C(T ),
(3) T † is densely defined and T † ∈ C(H2, H1),
(4) T † is continuous if and only R(T ) is closed,
(5) T †† = T ,
(6) T ∗† = T †∗,
(7) N(T ∗†) = N(T ),
(8) (T ∗T )† = T †T ∗†,
(9) (TT ∗)† = T ∗†T †.

The notion of a least square solution is adopted next.
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Definition 2.4. Let P := P
R(T ). If y ∈ R(T )⊕⊥ R(T )⊥, then the equation

Tx = Py (2.1)

always has a solution. This solution is called a least square solution. If x ∈ D(T )
is a least square solution, then

‖Tx− y‖2 = ‖Py − y‖2 = min
z∈D(T )

‖Tz − y‖2.

The unique vector with the minimal norm among all least square solutions is
called the least square solution of minimal norm of equation (2.1) and is given
x = T †y.

(For further results related to generalized inverses of unbounded densely defined
closed operators, we refer the reader to [6] and [11].)

The following result from [9] will be used in proving the main theorem.

Theorem 2.5. Let T ∈ C(H1, H2) be densely defined. Assume that R(T ) is closed.
Then

(T ∗T )†T ∗ ⊆ T ∗(TT ∗)† = T †.

Here, by A ⊆ B we mean D(A) = D(B) and Ax = Bx for all x ∈ D(A).
Next, we introduce the definition of the Gram operator that plays a key role

in our discussions.

Definition 2.6. Let T ∈ C(H1, H2) be densely defined. Then the operator T ∗T is
called the Gram operator of T .

Now, we briefly describe the notion of a cone. A subset K of a Hilbert space
H is called a cone if (i) x, y ∈ K ⇒ x + y ∈ K and (ii) x ∈ K, α ∈ R,
α ≥ 0 ⇒ αx ∈ K. For a subset K of a Hilbert space H, the dual of K is
denoted by K∗ and is defined by K∗ = {x ∈ H : 〈x, t〉 ≥ 0, for all t ∈ K} and
K∗∗ = (K∗)∗. Note that, in general, K∗∗ = K, where the bar denotes the closure
of K. If H = ℓ2, the Hilbert space of all square summable real sequences, and
K = ℓ2+ = {x ∈ ℓ2 : xi ≥ 0, ∀i}, then K∗ = ℓ2+, and hence K∗∗ = ℓ2+. A cone C is
said to be acute if 〈x, y〉 ≥ 0, for all x, y ∈ C.

Finally, we end up this section with the definition of cone nonnegativity of an
operator.

Definition 2.7. Let K1 and K2 be two closed convex cones in Hilbert spaces
H1 and H2, respectively. Then a linear operator T : H1 → H2 is said to be
(K1, K2)-nonnegative (or simply cone nonnegative with respect to K1, K2) if
T (K1) ⊆ K2.

Suppose that T is a real matrix of order m × n. Then T ≥ 0 (or simply T

nonnegative) is equivalent to T (Rn
+) ⊆ R

m
+ , where R

n
+ and R

m
+ denote nonnegative

orthants in R
n and R

m, respectively. Thus, we emphasize that usual entrywise
nonnegativity of matrices is equivalent to cone nonnegativity of matrices with
respect to nonnegative orthants as cones.
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3. Main results

As mentioned in the Introduction, nonnegative invertibility (or monotonicity)
of Gram matrices has applications in the convex optimization problems. Also,
it has applications in solving equations of the form T ∗Tx = y, where T is a
matrix. So far, many results have been derived on characterization of nonnegative
invertibility of Gram matrices and Gram operators. Some of these results have
been generalized for bounded operators which are not invertible. These results
motivated us to prove Theorem 3.4 for densely defined closed operators (not
necessarily bounded). First, we prove some preliminary results.

Lemma 3.1. Let T ∈ C(H1, H2) be densely defined with closed range, and let K
be a closed convex cone in D(T ∗T ) such that K∗ ⊂ D(T ∗T ). Let C = T (K). If
u ∈ C∗ ∩D(T ∗), then T ∗u ∈ K∗.

Proof. Let u ∈ C∗ ∩D(T ∗), and let r ∈ K. Then 0 ≤ 〈u, Tr〉 = 〈T ∗u, r〉. �

Lemma 3.2. Let T ∈ C(H1, H2) be densely defined with closed range. Let K be
a closed convex cone in D(T ∗T ) such that K∗ ⊂ D(T ∗T ). Let C = T (K), and let
D = (T †)∗(K∗). Then the following are equivalent:

(1) C∗ ∩D(T ∗) ∩R(T ) is acute;
(2) for all x, y ∈ D(T ∗T ) with T ∗Tx ∈ K∗, T ∗Ty ∈ K∗, the inequality

〈T ∗Tx, y〉 ≥ 0 holds.

Proof. (1) =⇒ (2): Let x, y ∈ D(T ∗T ) satisfy T ∗Tx ∈ K∗ and T ∗Ty ∈ K∗. For
r ∈ K, we have Tr ∈ C; hence,

〈Tx, Tr〉 = 〈T ∗Tx, r〉 ≥ 0,

so Tx ∈ C∗. Similarly, we can show that Ty ∈ C∗. Since C∗ ∩ D(T ∗) ∩ R(T ) is
acute, we have 0 ≤ 〈Tx, Ty〉 = 〈T ∗Tx, y〉.

(2) =⇒ (1): Let u, v ∈ C∗ ∩ D(T ∗) ∩ R(T ). Let u = Tx for some x ∈ D(T ).
Since u ∈ D(T ∗), T ∗u is defined; that is, x ∈ D(T ∗T ). Similarly, v = Ty for some
y ∈ D(T ∗T ).

Next we show that 〈u, v〉 ≥ 0. Since u ∈ C∗, for r ∈ K we have

0 ≤ 〈Tx, Tr〉 = 〈T ∗Tx, r〉.

Thus, T ∗Tx ∈ K∗. With a similar argument, we can conclude that T ∗Ty ∈ K∗.
By assumption,

〈u, v〉 = 〈Tx, Ty〉 = 〈T ∗Tx, y〉 ≥ 0;

hence C∗ ∩D(T ∗) ∩R(T ) is acute. �

Lemma 3.3. Let T ∈ C(H1, H2) be densely defined with closed range. Let K be
a closed convex cone in D(T ∗T ) such that K∗ ⊂ D(T ∗T ). Let D = (T †)∗(K∗).
Then D is acute if and only if 〈r, (T ∗T )†s〉 ≥ 0, for every r, s ∈ K∗.

Proof. Let x, y ∈ D. Then x = (T †)∗r, y = (T †)∗s for some r, s ∈ K∗. Then D is
acute if and only if

0 ≤ 〈x, y〉 =
〈

(T †)∗r, (T †)∗s
〉

=
〈

r, T †(T †)∗s
〉

=
〈

r, (T ∗T )†s
〉

by (8) of Theorem 2.3. �
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Next, we prove the main result of this paper.

Theorem 3.4. Let T ∈ C(H1, H2) be densely defined with closed range. Let K
be a closed convex cone in D(T ∗T ) with T †T (K) ⊆ K. Let C = T (K), and let
D = (T †)∗(K∗). Then the following conditions are equivalent:

(1) (T ∗T )†(K∗) ⊆ K,
(2) C∗ ∩D(T ∗) ∩R(T ) ⊆ C,
(3) D is acute,
(4) C∗ ∩D(T ∗) ∩R(T ) is acute,
(5) T ∗Tx ∈ PR(T ∗)(K

∗) =⇒ x ∈ K,
(6) T ∗Tx ∈ K∗ =⇒ x ∈ K.

Proof. (1) =⇒ (2): Let u ∈ C∗∩D(T ∗)∩R(T ). Then u = Tp for some p ∈ C(T ).
Then T †u = T †Tp = PN(T )⊥p = p. Since u ∈ D(T ∗), by Theorem 2.5, T †u =

(T ∗T )†T ∗u. Set z = T †u. Then Tz = TT †u = PR(T )u = u. Also, T ∗u ∈ K∗ by
Lemma 3.1 so that, by the assumption, z = (T ∗T )†T ∗u ∈ K. Thus, u ∈ C.

(2) =⇒ (3): Let x = (T †)∗u and y = (T †)∗v with u, v ∈ K∗. Since

R
(

(T †)∗
)

= R
(

(T ∗)†
)

= C(T ∗) = D(T ∗) ∩N(T ∗)⊥

= D(T ∗) ∩R(T )

= D(T ∗) ∩R(T ),

x, y ∈ D(T ∗) ∩ R(T ). Let r ∈ K. We have r′ = T †Tr ∈ K (as T †T (K) ⊆ K).
Then

〈x, Tr〉 =
〈

(T †)∗u, Tr
〉

= 〈u, T †Tr〉 = 〈u, r′〉 ≥ 0.

Thus, x ∈ C∗. Since C∗ ∩D(T ∗) ∩ R(T ) ⊆ C, we have x ∈ C. Thus, x = Tp for
some p ∈ K.

Finally, with p′ = T †Tp ∈ K, we have

〈x, y〉 =
〈

Tp, (T †)∗v
〉

= 〈T †Tp, v〉 = 〈p′, v〉 ≥ 0;

hence D is acute.
(3) =⇒ (4): Let x, y be such that r = T ∗Tx ∈ K∗ and s = T ∗Ty ∈ K∗. Since

D is acute, by Lemma 3.3,

0 ≤
〈

r, (T ∗T )†s
〉

=
〈

T ∗Tx, (T ∗T )†T ∗Ty
〉

=
〈

x, (T ∗T )(T ∗T )†(T ∗T )y
〉

=
〈

x, (T ∗T )y
〉

= 〈T ∗Tx, y〉.

By Lemma 3.2, C∗ ∩D(T ∗) ∩R(T ) is acute.
(4) =⇒ (5): Let T ∗Tx = PR(T ∗)w for some w ∈ K∗. Since R(T ∗T ) = R(T ∗),

we have T ∗Tx = PR(T ∗T )w; hence x = (T ∗T )†w (by Definition 2.4).
Let r ∈ K∗. Then

〈x, r〉 =
〈

(T ∗T )†w, r
〉

=
〈

T †(T †)∗w, r
〉

=
〈

(T †)∗w, (T †)∗r
〉

.
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Set u = (T †)∗w, v = (T †)∗r. Then, as was shown earlier, u, v ∈ R(T ) ∩ D(T ∗).
For t ∈ K, with t′ = T †Tt ∈ K, we have

〈u, T t〉 =
〈

(T †)∗w, T t
〉

= 〈w, T †Tt〉 = 〈w, t′〉 ≥ 0,

so u ∈ C∗. Along similar lines, it can be shown that v ∈ C∗. Thus, for all
r ∈ K∗, 〈x, r〉 = 〈u, v〉 ≥ 0 so that x ∈ (K∗)∗ = K.

(5) =⇒ (6): Choose x such that T ∗Tx ∈ K∗. We have

T ∗Tx = PR(T ∗T )(T
∗Tx) = PR(T ∗)(T

∗Tx) ∈ PR(T ∗)(K
∗);

hence, by (5), x ∈ K.
(6) =⇒ (1): Let u = (T ∗T )†v with v ∈ K∗.
Then T ∗Tu = T ∗T (T ∗T )†v = PR(T ∗)v = T †Tv. Then, for r ∈ K with r′ =

T †Tr ∈ K, we have

〈T ∗Tu, r〉 = 〈T †Tv, r〉 = 〈v, T †Tr〉 = 〈v, r′〉 ≥ 0.

Thus, T ∗Tu ∈ K∗. As (6) holds, u ∈ K. Thus, (T ∗T )†(K∗) ⊆ K.
This completes the proof of the theorem. �

The following result gives equivalent conditions, under which (T ∗T )† leaves a
cone invariant if K is self-dual.

Corollary 3.5. In addition to the conditions of Theorem 3.4, suppose that K
is self-dual (i.e., K∗ = K). Then the conditions (2)–(6) are equivalent to
(T ∗T )†(K) ⊆ K.

Remark 3.6.

(1) If K ⊆ C(T ∗T ), then the condition T †T (K) ⊆ K is satisfied automati-
cally.

(2) If T is one-to-one, then T †T = I, and hence, in this case, T †T (K) ⊆ K

holds for any cone in D(T ).

4. Examples

In this section, we illustrate Theorem 3.4 with examples.

Example 4.1. Let H = ℓ2, and let D(T ) = {(x1, x2, . . . ) ∈ H :
∑∞

j=1 |jxj|
2 <∞}.

Define T : D(T ) → H by

T (x1, x2, x3, . . . , xn, . . . )

= (x1, 2x2, 3x3, . . . , nxn, . . . ) for all (x1, x2, . . . ) ∈ D(T ).

Since D(T ) contains c00, the space of all sequences having at most finitely many

nonzero terms, we have D(T ) = H. Clearly, T is unbounded and closed since
T ∗ = T . Also, R(T ) is closed. In fact, T−1 exists, and

T−1(y1, y2, y3, . . . , yn, . . . ) =
(

y1,
y2

2
,
y3

3
, . . . ,

yn

n
, . . .

)

, for all (yn) ∈ H.

Note that D(T ∗T ) = {(xn) ∈ H :
∑∞

n=1 n
4|xn|

4 <∞}. Let

K =
{

(xn) ∈ D(T 2) : xn ≥ 0 for all n ∈ N
}

.
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Clearly, K∗ = K and T †T (K) = K; hence K satisfies the hypothesis of Theo-
rem 3.4. In this case, D = T †∗(K∗) = T−1(K). Let x, y ∈ D. Then x = T−1u, y =
T−1v for some u, v ∈ H. Let u =

∑∞

n=1〈u, en〉en and v =
∑∞

n=1〈v, en〉en. (Here
{en : n ∈ N} is the standard orthonormal basis for H.) Then

〈x, y〉 = 〈T−2u, v〉

=
∞
∑

n=1

1

n2
〈u, en〉〈v, en〉

≥ 0
(

since 〈u, en〉, 〈v, en〉 ≥ 0
)

.

Therefore, D is acute. Hence, by Theorem 3.4, (T ∗T )† is nonnegative with respect
to the cone K. This can be easily verified independently by using the definition.

Example 4.2. Let H = ℓ2 and D(T ) = {(x1, x2, . . . , xn, . . . ) :
∑∞

j=2 |jxj|
2 < ∞}.

Define T : D(T ) → H by

T (x1, x2, . . . , xn, . . . ) = (0, 2x2, 3x3, 4x4, . . . ) for all (x1, x2, . . . ) ∈ H.

Observe that T is densely defined, T = T ∗, and N(T ) = {(x1, 0, 0, . . . ) : x1 ∈ C};
hence C(T ) = {(0, x2, x3, . . . ) :

∑∞

j=2 |jxj|
2 < ∞}. We can show that R(T ) is

closed and

T †(y1, y2, y3, . . . , ) =
(

0,
y2

2
,
y3

3
, . . .

)

, (yn) ∈ ℓ2.

It can be seen that T = T ∗ and D(T 2) = {(xn) ∈ H :
∑∞

n=2 n
4|xn|

4 <∞}.
Take

K =
{

(xn) ∈ D(T 2) : xn ≥ 0 for all n = 2, 3, . . .
}

.

It is easy to verify that K∗ = K and T †T (K) ⊆ K. Also, D = T †∗(K∗) = T †(K).
Let x, y ∈ D. Then x = T †u, y = T †v for some u, v ∈ H. Let u =

∑∞

n=1〈u, en〉en
and v =

∑∞

n=1〈v, en〉en. Then

〈x, y〉 = 〈T †u, T †v〉

=
∞
∑

n=2

1

n2
〈u, en〉〈v, en〉

≥ 0
(

since 〈u, en〉, 〈v, en〉 ≥ 0
)

.

Therefore, D is acute. Hence, by Theorem 3.4, (T ∗T )† is positive with respect to
the cone K.

Example 4.3. Let AC[0, π] denote the space of all absolutely continuous functions
on [0, π]. Let

H := the real space L2[0, π] of real-valued functions,

H ′ :=
{

φ ∈ AC[0, π] : φ′ ∈ H
}

,

H ′′ := {φ ∈ H ′ : φ′ ∈ H ′}.

Let L := d
dt

with D(L) = {x ∈ H ′ : φ(0) = φ(π) = 0}.
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It can be shown using the fundamental theorem of integral calculus that L ∈
C(H). Let φn = sin(nt), n ∈ N. Then {φn : n ∈ N} is an orthonormal basis for
H and is contained in D(L); hence L is densely defined. Also, C(L) = D(L);
that is, L is one-to-one. It can be shown that R(L) = {y ∈ H :

∫ π

0
y(t) dt = 0} =

span {1}⊥; hence, in this case, D(L†) = H. Let ψn =
√

2
π
cos(nt), t ∈ [0, π], n ∈ N.

Then {ψn : n ∈ N} is an orthonormal basis for R(L).

We have L∗L = − d2

dt2
with D(L∗L) = {φ ∈ H ′′ : φ(0) = 0 = φ(π)} (see [1,

p. 349]). By using the projection method, we can show that

L†(y) =
∞
∑

n=1

1

n
〈y, ψn〉φn (4.1)

(see [8, Example 3.5]). Let K = {φ ∈ D(L∗L) : 〈φ, φn〉 ≥ 0, for all n ∈ N}. Then
K is a cone and K∗ = K. We verify condition (1) of Theorem 3.4. First note
that, by equation 4.1, we have

L†∗φ =
∞
∑

n=1

1

n
〈φ, φn〉ψn, for all φ ∈ H. (4.2)

Now, let f ∈ K. Then

(L∗L)†(f) = L†(L†)∗(f)

=
∞
∑

n=1

1

n2
〈f, φn〉φn.

Since f ∈ K, we have 〈f, φn〉 ≥ 0 for all n ∈ N and so 1
n2 〈f, φn〉 ≥ 0 for all n ∈ N.

This concludes that (L∗L)†(K∗) ⊆ K.
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