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a b s t r a c t

The concept and synthesis approach for planar Compliant Fluidic Control Structures (CFCSs), monolithic

flexible continua with embedded functional pores, is presented in this manuscript. Such structures are

envisioned to find application in biomedicine as tunable microfluidic devices for drug/nutrient delivery.

The functional pores enlarge and/or contract upon deformation of the compliant structure in response to

external stimuli, facilitating the regulated control of fluid/nutrient/drug transport. A thickness design

variable based topology optimization problem is formulated to generate effective designs of these struc-

tures. An objective based on hydraulic diameter(s) is conceptualized, and it is extremized using a gradient

based optimizer. Both geometrical and material nonlinearities are considered. The nonlinear behaviour of

employed hyperelastic material is modeled via the Arruda-Boyce constitutive material model. Large-

displacement finite element analysis is performed using the updated Lagrangian formulation in plane-

stress setting. The proposed synthesis approach is applied to various CFCSs for a variety of fluidic control

functionalities. The optimized designs of various CFCSs with single and/or multiple functional pores are

fabricated via a Polydimethylsiloxane (PDMS) soft lithography process, using a high precision 3D printed

mold and their performances are compared with the numerical predictions.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

A compliant mechanism (CM) is a monolithic structure which

performs a task by deriving a part or whole of its relative motion

from small/large elastic deformation of its constituting flexible

members. By virtue of flexible monolithic design/flexible parts,

such mechanisms possess many advantages over conventional

linkage-type mechanisms, e.g., low manufacturing/assembly cost,

less frictional losses and less wear/tear due to the absence of kine-

matic joints, low maintenance cost, high precision, repeatability,

and scalability, to name a few [1]. Therefore, the use of CMs is on

rise in various fields which span from simple house clothespins

to applications requiring highly precise motion/deformation char-

acteristics, e.g., medical instruments [2], MEMS [3], adaptive struc-

tures [4], path generation [5,6], etc. In this manuscript, we present

the concept and synthesis approach for Compliant Fluidic Control

Structures (CFCSs). Such structures, monolithic flexible continua

with embedded functional pores, can find application in biomedi-

cine as tunable devices for delivering nutrients/drugs to cells.

The embedded functional pores are the regions which facilitate

regulation of fluid/nutrient/drug transport by enlarging and/or

contracting in response to external loading(s). For the intended

applications, one can ultimately target typical controllable pore

sizes between 5 and 50 micrometers. Herein, we primarily focus

on the synthesis approach, and evaluate the results on larger-

scale demonstrator devices for convenience.

Microfluidic cell-, tissue- and organ-on-chip systems have

shown the potential to revolutionize biomedicine and drug discov-

ery wherein tunable devices are required [7,8]. However, designing

such devices which can render high-precision control over localized

transport of nutrient and drugs, is challenging. In addition, from a

manufacturing point of view, it is difficult to integrate local actua-

tors near the functional pores within the device to achieve the

desired fluid flow in response to control inputs. Therefore, instead

of integrating local actuators, our focus is on achieving desired

localized effects by remote actuation through a suitablemechanical

transfer mechanism. It may be possible to design such tunable

microfluidic devices intuitively, however, obtaining high-

performance designs with multiple functional pores, may require

numerous iterations of trial and error, and does not offer systematic

solution procedures. As an alternative, we use topology optimiza-

tion to generate such devices by extremizing the formulated objec-

tive with the given resource constraints (if any). The embedded

functional pores of a CFCS either are enlarged or contracted in

response to the input loadings wherein the structure can experi-

ence large deformation. To give an indication, the devices designed

as examples in this paper are subject to strains up to 100%.
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Polydimethylsiloxane (PDMS) elastomer material is widely

used to fabricate microfluidic devices since it offers various advan-

tages [9] including adequate optical transparency, low cost for

mass production using, e.g., lithographic techniques, bio-

compatibility, and permitting large deformation. Because of these

properties, we use PDMS material to fabricate the optimized CFCS

continua. Mechanically, PDMS exhibits characteristics similar to

rubber-like materials [10]. Therefore, it is essential to consider

material nonlinearity in the synthesis approach. Herein, the mate-

rial definition proposed by Arruda and Boyce [11,12] is employed

to model the behavior of the PDMS.

Topology optimization (TO) determines an optimized material

layout within a given design domain B0 with known boundary

conditions by extremizing the formulated objective(s) for the

desired output response(s) under the specified constraint(s) (if

any). Each TO iteration solves the associated boundary value prob-

lem(s). In the considered structural optimization context, typically,

a ubiquitous option is to use finite element (FE) analysis wherein

one can either employ discrete (beam/frame) or continuous

(quad/triangular/polygonal) FEs to parameterize B0. There exist

many approaches [13] which consider linear FE analysis to achieve

the optimized design for a wide range of single/multi-physics

mechanical problems. Numerous approaches involving TO have

been presented to synthesize CMs. Normally, these methods find

a trade-off between stiffness measures (e.g., compliance/strain

energy) and flexibility measures (e.g., output displacements/mu-

tual strain energy) of the compliant continua [14]. On the other

hand, TO approaches involving large deformation with/without

nonlinear constitutive models [15–25] are much less common. This

could be mostly due to numerical difficulties in handling signifi-

cantly large deformation characterized via geometrical and mate-

rial nonlinearities and distortion/inversion of low-stiffness FEs.

To avoid the numerical instabilities in large deformation TO, the

approach in [15] did not regard the internal forces originating at

nodes surrounded by low-stiffness elements in its Newton–Raph-

son convergence criteria. The method in [16] treated such instabil-

ities by removing and reintroducing low-stiffness elements during

optimization. Yoon and Kim [17] proposed connectivity parame-

terization using fictitious springs and Langelaar et al. [19] used this

approach to design planar shape memory alloy thermal actuators

experiencing large deformation. Van Dijk et al. [18] presented an

element deformation scaling approach. Refs. [15–18] considered

a St. Venant–Kirchhoff material model in their approaches. Saxena

and Sauer [20] combined zeroth and first order optimization tech-

niques wherein the material nonlinearity was modeled using a

neo-Hookean constitutive model. Wang et al. [23] proposed an

interpolation scheme to deal with distortion/inversion of low-

stiffness elements and they solved problems using both St.

Venant–Kirchhoff and neo-Hookean material models. Noting the

fact that a St. Venant–Kirchhoff material model fails to provide

the actual response in a large compression regime, Lahuerta et al.

[22] and Klarbring et al. [21] employed relatively more realistic

hyperelastic material models in their large-deformation TO

approaches. Luo et al. [24] proposed a method using an additive

hyperelasticity technique. To generate CMs experiencing large

deformation, Liu et al. [25] presented a modified additive hypere-

laticity based approach. Presumably, the large-deformation CFCS

optimization is more robust than general large-deformation TO

because the stiffness differences that occur in the structure are

smaller in our case due to manufacturing restrictions (geometrical

construction) and thus, no special techniques are needed to reach a

stable optimization result. This is discussed in more detail in

Section 2.

This paper presents an approach using TO to synthesize planar

Compliant Fluidic Control Structures. To provide a proper treat-

ment of large deformation of the CFCSs (fabricated using PDMS),

both geometrical and material nonlinearities are incorporated

within the approach. In addition, as planar structures are targeted

in this paper, plane-stress conditions are explicitly imposed within

the nonlinear FE formulation using the method described in

[26,27]. An objective based on hydraulic diameter(s) of the pore

(s) is formulated and extremized to achieve the desired perfor-

mances, i.e., enlarging and/or contracting of the functional pores

to facilitate the required fluid flow. Depending upon the various

applications, there can be single/multiple embedded functional

pores within a CFCS. CFCSs with multiple pores can facilitate

diverse tailored fluid flow characteristics in response to a single

remote actuation. Note that the effect of fluid flow is not incorpo-

rated while optimizing the CFCSs since in the intended applications

flow rates and pressure differences are small. The design of other

compliant structures where fluid–structure interaction becomes

relevant forms an additional challenge beyond the scope of this

work. In this paper, we focus on planar CFCSs, in view of the appli-

cation demands and the available manufacturing options. How-

ever, in principle the concept can be readily extended to a

general 3D TO setting.

In summary, the new contributions of the current work are:

� the concept and synthesis approach for Compliant Fluidic Con-

trol Structures which can find application in, e.g., biomedicine/-

drug delivery as tunable devices to facilitate precise transport of

nutrients and/or drugs,

� formulation of a TO-based synthesis approach using thickness

design variables [28] while considering geometrical and mate-

rial nonlinearities under plane-stress conditions,

� an objective based on hydraulic diameter is conceptualized and

minimized to achieved the desired modes (enlargement/con-

traction) of the functional pores,

� use of the Arruda-Boyce material definition [11,12] to model

nonlinear mechanical behaviour of PDMS in the TO setting,

� demonstration of the approach by synthesizing various CFCSs

having single and/or multiple functional pores for achieving a

variety of fluid flow control scenario,

� a flexible, low cost fabrication technique using PDMS material

for the optimized CFCS continua,

� comparison of the performances of the fabricated CFCFs with

their respective numerical models.

The remainder of the paper is organized as follows. Section 2

presents the concept and methodology involving problem defini-

tion and formulation, fabrication technique and experimental

setup, PDMS material modeling and the numerical technique.

The objective formulation and sensitivity analysis is given in Sec-

tion 3. Section 4 presents the numerical results and performance

comparison for numerical models and respective experimental

counterparts. Lastly, conclusions are drawn in Section 5.

2. Concept and methodology

This section describes problem definition and formulation, fab-

rication technique and experimental setup, material modeling for

PDMS and the employed numerical technique.

2.1. Problem definition and formulation

Regarding the geometrical features, a planar CFCS is different

from a planar CM. The former has actual material throughout its

(optimized) design domain Bopt with different topographical fea-

tures (different thickness at different locations) with embedded

functional pores as shown in Fig. 1a, however, the latter has uni-

form thickness wherever the actual material is designated into

P. Kumar et al. / Computers and Structures 216 (2019) 26–39 27



the connected finite regions (branches) via the synthesis approach

(Fig. 1b). In other words, in a planar setting, a CFCS is a monolithic

flexible continuum with functional pore(s) having different topo-

graphical features and a CM, in general, is constituted via a partic-

ular topology consisting of slender flexible branches. Note that the

shape and distribution of the thicker regions in a planar CFCS can

also be seen to constitute a topology. Both perform their tasks

using the motion obtained from the (large) deformation in their

respective structures. The regions associated to different topo-

graphical features of a CFCS will undergo different deformation

characteristics in response to external stimuli and thus, help

achieving the desired tasks of the functional pores. Evidently, for

a CFCS, specific deformation behaviour of the boundary defining

the pores is desired, however in case of a CM, generally, interest

lies in the deformation characteristics of a single output point.

To generate the different topographical features available in the

geometrical construction of CFCSs via TO, an alternative design

parameterization involving thickness is proposed, which is termed

thickness design variable f, herein. In the discrete (FE) setting, a

thickness design variable fe 2 0; 1½ � is designated to each element.

These variables do not govern the material states [13] of the ele-

ment, but instead determine its out-of-plane thickness during opti-

mization. The lower and upper limits of achievable (desired)

thickness are represented via tmin and tmax, respectively. Then for

a CFCS design, finite regions/elements with fe ¼ 0 will have thick-

ness tmin and those with fe ¼ 1 indicate thickness tmax (Fig. 1).

Herein, the ratio tmin

tmax
is chosen in perspective of the applied fabrica-

tion technique which limits the tmin to 0.5 mm. Note, using an FE

setting for a planar geometry(ies), i.e., in a plane-stress case, one

can define internal forces and hence, material and geometrical

stiffness matrices, as a function of thickness [28,27] (see Appendix

C). Indeed, this proposed discretization helps to formulate the

problem as a variable sheet thickness problem [28], and lead us

to define thickness design variable fe for each element as a natural

design variable. In addition, from the application point of view,

new holes should not be introduced during optimization. There-

fore, the approach can been seen as topography optimization

instead of topology optimization.

When using gradient based optimization, sensitivities of the

objective and constraints with respect to the design variables are

required. In that regard, the thickness of each element is varied

continuously as a function of the design variable fe as:

te feð Þ ¼ tmin þ fpe tmax � tminð Þ; fe 2 0; 1½ � ð1Þ

where p is the penalization factor which steers the optimization

towards either tmin or tmax. One notices, the formulation (Eq. (1))

is similar to the classical SIMP formulation [13,29] of TO. It is not

required to relax the lower limit of the design variables during

the optimization procedure since when fe equals to zero then te
and thus, elemental stiffness matrices (Eq. (1) and Appendix C)

remain nonzero [27]. Therefore, numerical instability does not arise,

if fe is not relaxed while tmin is set to a finite value in view of the

fabrication technique. In addition, throughout the optimization pro-

cess elements with fe ¼ 0 maintain proper stiffnesses and thus,

demand no special treatments for large deformation TO [23].

The general CFCS optimization problem is formulated as

min
f

f 0 fð Þ

such that R u; fð Þ ¼ 0

V fð Þ � V�
6 0

ð2Þ

where f 0 fð Þ (Section 3) is the objective to be minimized, f is the

design vector consisting of all design variables

feje¼1; 2; 3; ...;Nelem
; R u; fð Þ is the residual force vector stemming from

the mechanical equilibrium equations introduced below (Eq. (18)),

and the current and permitted volume are represented via

V fð Þ and V�, respectively. Further, u is the displacement vector

and Nelem is the total number of FEs used to parametrize the design

domain B0. Herein, a constraint on resource volume is imposed so

that the required functionalities of CFCSs can be achieved using

the material within the given limits. However, if not desired, vol-

ume constraints can be relaxed and hence, the optimizer can select

the required material to be used automatically.

We implement the density filter [16,30] to ensure a minimum

length scale of the structural features for manufacturing conve-

nience. The release step of the PDMS molding process used for

Fig. 1. Geometrical construction of a CFCS and a compliant mechanism with fixed boundary conditions, input loads Fin and respective output locations are depicted. A planar

CFCS (Fig. 1a) has varying thickness (minimum tmin and maximum tmax) and it is filled with the actual material in its entire design domain Bout . The parameter f defines the

thickness at the different locations for the CFCS. f ¼ 0 indicates the region having thickness tmin , and the regions with f ¼ 1 possess thickness tmax. Two embedded functional

pores p1 and p2 can be enlarged and/or contracted in response to external force Fin and thus, regulate the desired transport of nutrient and/or drugs. The entire body Bout of

the CFCS is flexible. In case of compliant mechanisms (Fig. 1b), material is relocated in specific manner with uniform thickness t throughout the optimized layout (in gray)

which is constituted of flexible branches biji¼1; 2; 3;���; 8.

28 P. Kumar et al. / Computers and Structures 216 (2019) 26–39



the fabricated samples, as described below (Section 2.2), does not

allow very small features. In view of the filter, the physical variable
~fe is evaluated from the original design variable fe as

fe
�
¼ 1

X

k2Ne
wek

X

k2Ne

wekfk ð3Þ

where Ne ¼ k; jjxc
k � xc

ejj 6 rmin

� �
. Herein, xc

k and xc
e denote the cen-

ter coordinates of the k
th

and eth elements respectively, and rmin is

the user defined filter radius. Further, wek represents weight func-

tion which is defined as

wek ¼ max 0; rmin � jjxc
k � xc

ejj
� �

: ð4Þ

We use MMA [31], a gradient-based optimizer, to perform the

TO.

2.2. Fabrication technique and experimental setup

A replica molding process [32] is used to fabricate the opti-

mized CFCSs wherein first, the structures are translated into

respective mold designs. PDMS is then cast in the mold to obtain

the final prototypes. The following steps are adopted in the fabrica-

tion process:

1. The optimized design is translated into a CAD model to design a

corresponding mold. Defeaturing is applied where necessary to

prevent small structures to remain stuck in the mold during

release.

2. The mold is fabricated via a stereolithographic 3D printing pro-

cess (Envisiontec Micro Plus Hires), layer thickness 25 lm, by

using the HTM 140 polymer (Fig. 2a).

3. The mold is then cleaned for two minutes using IPA in an ultra-

sound bath, dried and placed under UV light (Photopol light,

Dentalfarm) for another two minutes.

4. PDMS (1:10) is then mixed and degassed for thirty minutes to

remove air bubbles.

5. PDMS is then casted into the mold and the excess is removed

with a flat glass coverslip.

6. Thereafter, PDMS is cured for one hour at 70 �C and subse-

quently removed from the mold obtaining the final prototype

of the CFCS (Fig. 2b).

Fig. 2c depicts the experimental setup. Two clamping jaws can

be tightened to keep the membrane in place. Slipping of the PDMS

membrane (CFCS) is avoided using two protrusions that increase

the friction. An adjustable screw facilitates for applying a desired

stretching deformation to the membrane using the marked scale.

Note that in view of the experimental setup and manufacturing

limitations, we consider the design domain of size

L1 � L2 ¼ 10� 16ð Þmm2 with embedded pores of size

0:5� 0:5 mm2 to generate CFCSs using TO.

2.3. Material modeling for PDMS

In this section, we briefly review kinematics of deformation for

the sake of completeness and to introduce necessary terminology.

Thereafter, the material model proposed by Arruda and Boyce

[11,12] which is used herein to model the behavior of PDMS, is

presented.

2.3.1. Kinematics of deformation

Typically, the deformation gradient F is used to described finite

deformation of a body B0 (Fig. 3). It relates physical quantities

before deformation to the corresponding quantities after/during

deformation, i.e.,

F ¼ @x

@X
¼ r0uþ I ¼

F11 F12 F13

F21 F22 F23

F31 F32 F33

2

6
4

3

7
5 in matrix notationð Þ ð5Þ

where X 2 B0 is the reference configuration state of a material point

P0, say. x 2 B and u ¼ x� X are the corresponding spatial configura-

tion state and the displacement, respectively. Further, I is the iden-

tity tensor and r0u represents the gradient of u with respect to the

reference configuration X.

In terms of the deformation gradient F , one defines the left and

right Cauchy-Green deformation tensors B and C as

B ¼ FF
T
; C ¼ F

T
F: ð6Þ

As per the polar decomposition theorem [12], F can be written

using the right stretch tensor U or the left stretch tensor

V ¼ RUR
T

� �

and a rotation tensor R as, F ¼ RU ¼ VR. Let the

eigenvalues (principal stretches) and eigenvectors (principal direc-

tions) of the right stretch tensor U be kiji¼1; 2; 3 and Y i, respectively.

Then using the spectral decomposition theorem and noting the fact

that the right Cauchy-Green deformation tensors C have the same

principal vectors as tensor U, one can write

C ¼
X3

i¼1

KiY i 	 Y i ð7Þ

where Ki ¼ k2i are the principal stretches of C. The same decompo-

sition theorem can be applied to the tensors V and B [12]. The prin-

cipal invariants of tensors C and B are defined as [12]

J 1C ¼ trC ¼ trB ¼ J 1B

J 2C ¼ 1
2

trCð Þ2 � trC2
h i

¼ 1
2

trBð Þ2 � trB2
h i

¼ J 2B

J 3C ¼ detC ¼ detB ¼ J 3B ¼ det Fð Þ2:
ð8Þ

Using det F ¼ J (say), i.e., square root of third principal invariant
ffiffiffiffiffiffiffiffiffi
J 3C

p
, the relationship between the deformed elemental volume

dv in terms of corresponding reference volume dV can be written

as

dv ¼ JdV : ð9Þ

Deformation can be separated into dilatation (volumetric) and

distortional (isochoric) forms. The latter does not imply any change

in volume, i.e., det �F ¼ 1 and thus, �F ¼ J
�1
3 F (Fig. 3). In this view and

using Eq. (6), distortional parts of the right and left Cauchy-Green

tensors can be represented as

�C ¼ �F
T �F ¼ J�

2
3C; �B ¼ �F�F

T ¼ J�
2
3B: ð10Þ

Likewise, one can also find the distortional parts of the principal

invariants mentioned in Eq. (8).

2.3.2. Material model

Typically, PDMS is widely used to fabricate microfluidic devices

for various applications, in particular when deformability is impor-

tant. However, many researches show that its isotropic material

properties depend on various factors, e.g., thickness of the fabri-

cated device [33], curing temperature [34], ratio of mixing of

pre-polymer base and cross-linking agents [35], etc. Furthermore,

it has been established that PDMS exhibits nonlinear characteris-

tics, and it can be closely related to rubber-like material behaviour

[10].

In literature, many realistic and reliable material descriptions/

models are available to describe rubber-like materials [12], which

can also be realized in context of FE analysis. In general, such

descriptions are represented in terms of a strain energy function

W which can be further defined in terms of the left or right

Cauchy-Green deformation tensor (Eq. (6)), or the principal
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stretches of the deformation tensors (Eq. (7)), or the invariants of

deformation tensors (Eq. (8)). Typically, invariants-based models

are comparatively easier to implement and computationally less

expensive in the FE setting than material definitions which utilize

eigenvalues of the deformation tensors. This is because the latter

involves numerically expensive operations as well as co-ordinate

system transformations [36]. A rubber-like material exhibits differ-

ent responses for dilation and distortional deformations [12]. Con-

sequently, the strain energy function can be decomposed

additively as

W ¼ Wdil Jð Þ þWdis
�J 1B; �J 2B; �J 3Bð Þ ð11Þ

wherein Wdil Jð Þ is defined by the stored energy due to a volume

change J; Wdis describes the elastic energy of the deviatoric defor-

mation and �J 1B; �J 2B; �J 3B are the distortional principal invariants

of B. Further, Wdil Jð Þ, a strictly convex function, which reaches its

unique minimum at J ¼ 1, is taken as [37]

Wdil Jð Þ ¼
K

2

J2 � 1

2
� ln J

" #

ð12Þ

where K is the linear bulk modulus, which is also referred as the

penalty parameter in context of incompressible materials wherein

such materials are modeled as slightly compressible [12]. We use

the Arruda-Boyce [11,12] material definition for the deviatoric part

of the strain energy Wdis
�J 1B; �J 2B; �J 3Bð Þ, which is defined for

rubber-like materials as

Wdis ¼ a1 �J 1B � 3ð Þ þ a2 �J
2
1B � 9

� �
þ a3 �J

3
1B � 27

� �
ð13Þ

wherein �J 1B ¼ J�
2
3J 1B; a1 ¼ G

2
; a2 ¼ a1

1
10n

and a3 ¼ a1
11

525n2
with

G ¼ G
1þ 3

5nþ
99

175n2

. Further, G is the linear shear modulus and n is the

number of segments in the chain of the material molecular network

structure. Note that Wdil Jð Þ ¼ 0 and Wdis ¼ 0 hold iff J ¼ 1 and �B ¼ I,

respectively. In this paper, the value of shear modulus G and bulk

modulus K are taken as 0:68 MPa and 3:42 MPa for PDMS, respec-

tively [38]. The strain energy function W for the employed material

model with the approximated Arruda-Boyce material model (Eq.

(13)) and dilatation term (Eq. (12)) can be written as:

W¼ a1 �J 1B�3ð Þþa2 �J
2
1B�9

� �
þa3 �J

3
1B�27

� �
þK

2

J2�1

2
� ln J

" #

:

ð14Þ

Note, the strain energy of the Arruda-Boyce material model (Eq.

(13)) is derived from the inverse Langevin function using a Taylor

expansion [11]. It is imperative to use more Taylor series terms for

better representation of the Arruda-Boyce material behavior. As

per [27], we use the first three terms from the approximation in

our FE formulation, realizing that this introduces an approximation

to the ideal Arruda-Boyce material model. Nevertheless, it is found

that the employed material model (Eq. (14)) yields an adequate

match of PDMS behavior for the CFCSs (Section 4.2), suited for

use in our design optimization studies. Readers are suggested to

refer Ref. [39] for a detailed description and evaluation of inverse

Langevin function.

Following the fundamentals of non-linear continuum

mechanics [12], the Cauchy stress tensor r and material tangent

tensor C (see Appendix A) can be determined for the considered

strain energy function W (Eq. (14)). The latter is deemed necessary

when using iterative/incremental solution techniques, e.g, New-

ton–Raphson, to solve the nonlinear problems in computational

finite elasticity while the first is needed to evaluate the internal

energy of the continua.

2.4. Numerical implementation

Numerical implementation of the topology optimization prob-

lem is relatively straightforward wherein one follows the standard

procedures established in TO [13] while considering the nonlinear

finite element analysis to cater to large deformation of the CFCSs.

For a general discussion on nonlinear finite element analysis in

detailed the readers are referred to the Refs. [27,40].

To solve non-linear mechanical equilibrium equations stem-

ming from large deformation, we use the Newton–Raphson (N-R)

iterative technique in conjunction with the updated Lagrangian

based nonlinear finite element formulation while considering a

plane-stress condition matching the planar configuration and

Fig. 2. (a) 3D-printed mold, (b) A Compliant Fluidic Control Structure (CFCS) fabricated by a PDMS molding process, and (c) An equipment used to perform the experiment,

Key: L1 ¼ 10 mm and L2 ¼ 16 mm.

Fig. 3. A schematic diagram for dilatation and distortional deformation. �F is the

deformation gradient for isochoric deformation, i.e., det �F ¼ 1 and hence, �F ¼ J
�1
3 F.
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loading conditions of the considered CFCSs. For the sake of com-

pleteness, we summarize the formulation here in general terms.

To compute the state variable, i.e., displacement field u 2 uu of

the mechanical equilibrium equations, one solves the following

weak form [27]
Z

B

rv : rdv

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

internal virtual work

�
Z

@tB

v � tda�
Z

B

v � qbdv
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

-external virtual work

¼ 0 8v 2 u
v

ð15Þ

wherein, a body B is in the current configuration with known

volumetric body load b, traction t on @tB 2 @B, and prescribed

displacement boundary condition on @uB 2 @B. Note that

@B ¼ @tB [ @uB and @tB \ @uB ¼£. Further, r; dv and da are the

Cauchy stress tensor, infinitesimal volume and area, respectively.

uu and u
v
represent the kinematically admissible displacement

and its variation fields, respectively. rv is the gradient of v with

respect to x 2 B.

Let X
0
e and Xe be elements in the reference B0 and spatial B

configurations, respectively. In the discrete setting, within each

element Xe, the displacement field ue 2 Xe and its variation

ve 2 Xe are approximated using the standard FE interpolation1 as

ue 
 u
h
e ¼ Nueð16aÞ

ve 
 v
h
e ¼ Nveð16bÞ

where N ¼ N1I; N2I; . . . ; Nne I½ � are the shape functions and

uT
e ¼ uT

1; u
T
2; . . . ; u

T
ne


 �
. Further, ne is the number of nodes in an ele-

ment Xe (X
0
e ), I is the identity matrix in R

2 and u1; u2; . . . ; une are

the displacements of nodes 1; 2; . . . ; ne of the element Xe, respec-

tively. Likewise, using the shape functions N, the geometric fields

xe 2 Xe and Xe 2 X0
e can be approximated. In view of Eqs. (16a)

and (16b), the weak form (Eq. (15)) can be written as

v
T f int u; fð Þ � fext½ � ¼ 0; v 2 u

v
ð17Þ

where f int u; fð Þ and fext are internal and external forces, respectively

[27]. v is the global vector stemming from the kinematically admis-

sible virtual displacements of all the finite element nodes. Eq. (17)

provides the nonlinear mechanical equilibrium equation with resid-

ual force R u; fð Þ as

R u; fð Þ ¼ f int u; fð Þ � fext ¼ 0 ð18Þ

which is solved using the Newton–Raphson method at constant f in

the following manner

Kg urð ÞDurþ1 ¼ �R ur ; fð Þ ð19aÞ

urþ1 ¼ ur þ Durþ1; ð19bÞ

where ur and urþ1 are the nodal displacements at iterations r and

r þ 1, respectively. Durþ1 is the correction in nodal displacements

ur . The global tangent stiffness matrix Kg is obtained via summation

of internal Kg
int and external Kg

ext global stiffnesses as

Kg ¼ Kg
int þ Kg

ext: ð20Þ

Herein, Kg
ext ¼ 0 as we consider cases where fext is constant. K

g
int

is obtained by assembling element stiffness matrices Ke
int ¼

@feint
@u

(Appendix C). Internal element forces f
e
int are evaluated as

f
e
int ¼

R

�e
BT
ULrdv , where BUL is the strain–displacement matrix

[41] as per the updated Lagrangian formulation and r is the Cau-

chy stress tensor (Appendix A).

The plane-stress conditions, i.e., stresses in the direction normal

to the plane of deformation r3iji¼1; 2; 3 ¼ 0, need to be imposed since

the designed CFCSs are planar. It is also required to account for the

change in dimension pertaining to normal to the plane of deforma-

tion. This is done by representing the deformation gradient as

F ¼
F11 F12 0

F21 F22 0

0 0 F33

2

6
4

3

7
5 ð21Þ

wherein F33 is obtained from material constitution by following the

local iteration form approach [26,27] wherein r3iji¼1; 2; 3 ¼ 0 are

enforced. In the spatial configuration, the current volume is evalu-

ated as

J ¼ det F ¼ F11F22 � F12F21ð ÞF33 ð22Þ

and the current thickness t is calculated as

t ¼ HF33 ð23Þ

where H is the thickness in the reference configuration.

3. Objective formulation and sensitivity analysis

As aforementioned, the output responses of the synthesized

CFCSs can be characterized via either enlarging or contracting or

various combinations of both enlarging and/or contracting of the

functional pores. These pores with known initial positions, shapes

and sizes, are the integral part of the CFCSs, and they are prede-

fined within the given design domain B0. Particularly, embedded

pores of a CFCS can eventually attain either of the two states with

respect to their initial configurations: (i) enlarged state and (ii)

contracted state, when external loads are applied. Herein, hydrau-

lic diameter Di [42] is employed to indicate the state of the i
th
func-

tional pore and its effect on the flow resistance, i.e., an increment

and a reduction in Di imply that the i
th
pore gets enlarged and con-

tracted, respectively (Fig. 4). The hydraulic diameter Di is defined

as

Di ¼
4Ai

Pi

; ð24Þ

with Ai and Pi are the cross-sectional area and perimeter of the pore,

respectively. Therefore, it is natural to use hydraulic diameter to

define the objective function f 0 herein. The objective function is

defined as

f 0 ¼
Xnfp

i¼1

D�
i � Di

� �2 ð25Þ

where D�
i is the targeted/desired hydraulic diameter of the i

th
func-

tional pore and nfp is the total number of pores in the CFCS. In the

discrete setting, a pore is defined by nodes situated on its boundary.

Say, the i
th

pore is defined by k ¼ 1; 2; 3; . . . ;nbn boundary nodes.

These nodes are arranged in clockwise with respect to either x�
or y�coordinates and stacked into array NBN with their respective

nodal coordinates. The arrangement is done in this manner so that

the area of the pore can be evaluated appropriately. The updated

positions xn of the nodes are determined using the reference nodal

positions Xn and the global displacements vector u obtained via FE

solution. Therefore, the nodal coordinates xnpi of the boundary

nodes of the pores are extracted.

These steps are followed to evaluate the area of the pore:

1. The coordinates of the center of the pore are determined.

2. The pore is divided into nbn triangles by considering the center

point as one of their vertices.

1 FE interpolated quantities are indicated via superscript h. Note, to write the

discrete variables and (associated) field variables the normal font and italic font are

used, respectively.
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3. The area Ai of the pore is determined by finding and summing

the areas of nbn triangles.

The perimeter Pi of the pore is found by summation of the

lengths of each constituting side of the pore. Thereafter, using Eq.

(24), the respective hydraulic diameter is evaluated and hence,

the objective (Eq. (25)) is determined.

We use the adjoint variable method [43] which requires the solu-

tion of Lagrange multipliers associated with the mechanical equi-

librium equations, to evaluate the sensitivities with respect to

the design variables. In general, the adjoint variable method is suit-

able where the number of design variables exceeds that of state-

dependent responses [44]. The augmented performance function

U u; fð Þ is defined using the objective function (Eq. (25)) and

mechanical equilibrium equation (Eq. (18)) as:

U u; fð Þ ¼ f 0 uð Þ þ K
TR u; fð Þ ð26Þ

To evaluate the sensitivities, Eq. (26) is differentiated with

respect to the design variables, which yields

dU u; fð Þ
df

¼ @f 0 uð Þ
@u

�
�
�
�
f

þK
T @R u; fð Þ

@u

�
�
�
�
f

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 1

@u

@f
þ @f 0 uð Þ

@f

�
�
�
�
u

þ K
T @R u; fð Þ

@f

�
�
�
�
u

ð27Þ

where K is the Lagrange multiplier vector and one evaluates the

quantity @a
@b

� ��
�
�
c
as a partial derivative of a with respect to b keeping

variable c constant. K is chosen such that Term 1 vanishes [13].

Therefore, in view of Eq. (20), Term 1 becomes2

K
T ¼ � @f 0 uð Þ

@u

�
�
�
f


 �

K�1
g

¼ 8
Xnfp

ifp¼1

D�
i � Di

� � PiAi;u�AiPi;u

P2
i


 �
 �

K�1
g

ð28Þ

where Kg is defined in Eq. (20) and the terms Ai;u and Pi;u indicate

derivatives of the area Ai and perimeter Pi of the pore with respect

to displacement vector u. By combining Eqs. (27) and (28), the

objective sensitivity is found as:

df0 uð Þ
df

¼ K
T @R u; fð Þ

@f

�
�
�
�
u

: ð29Þ

The term @R u; fð Þ
@f

�
�
�
u
is determined from Eq. (18) using the expres-

sion for f int (see Appendix C).

4. Results and discussion

This section presents the results of the proposed CFCS design

optimization approach, to control pores in a PDMS sheet in

response to external stretching deformation. Gradual enlarging

and/or contracting of embedded functional pores provides regu-

lated fluid flow which is here defined in terms of their hydraulic

diameters.

4.1. Numerical examples

To show the versatility of the presented approach, four opti-

mized CFCFs are presented with various desired output character-

istics (Table 1) using the different design specifications (Fig. 5).

Prototypes of CFCS I and CFCS II have been fabricated using PDMS

material and their measured performances are also compared with

respective numerical models.

4.1.1. Design specifications

The design specifications for CFCS I (Fig. 5a), CFCS II (Fig. 5a),

CFCS III (Fig. 5b) and CFCS IV (Fig. 5c) are shown in Fig. 5. The

length and width of the design domains are set to be L1 ¼ 10 mm

and L2 ¼ 16 mm, respectively. This is relatively large compared to

the targeted microfluidic applications, but for ease of manufactur-

ing and testing (Section 2.2) this dimension was chosen. For each

design domain, the left edge is fixed. The right edge of each design

domain is used to apply uniform stretching D in the positive hori-

zontal direction while keeping its displacements in vertical direc-

tion unaltered. CFCS I and CFCS II have one predefined embedded

Fig. 4. The initial and deformed configurations of a CFCS containing two functional pores p1 and p2 (output locations) with fixed boundary conditions are depicted. As the

actuating force Fin acts, it is desired that pores p1 and p2 eventually are enlarged and contracted, respectively. For contracting and enlarging, the boundary of the pores should

move towards and apart from each other and thereby, reducing and increasing the respective hydraulic diameters. In FE setting, say a pore is constituted via k ¼ 1; 2; . . . ; nbn

nodes. To achieve the respective states (solid lines in Fig. b) in response to the external loading, we prescribe different hydraulic diameter targets D�
i to the pores and

extremize the objective f 0 (Eq. (25)).

2 For readability, we use Kg as Kg wherever it is required and vice versa.
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pore p1 of size a� b ¼ 0:5� 0:5 mm2 in the center of their design

domains (Fig. 5a). The size of the pore is chosen considering the

manufacturing limits of the used fabricating technique (Sec-

tion 2.2). Two functional pores p1 and p2, each having size of

a� bmm2 (Table 1) exist within the design domain of CFCS III

(Fig. 5b). Likewise, the design domain of CFCS IV (Fig. 5c) contains

five functional pores piji¼1; 2; 3; 4; 5 each having the same dimension

a� bmm2 (Table 1).

4.1.2. Optimized CFCS continua

The design domains (Fig. 5) are first discretized using

Nelx� Nely ¼ 80� 128ð Þ quadratic finite elements using bilinear

shape functions. Nelx and Nely are the number of quadratic

elements in horizontal and vertical directions, respectively. The

elements which lie within the functional pore(s) (Table 1) are sub-

sequently removed. Thereafter, the element connectivity matrix

and nodal numbers with corresponding coordinates are updated

and are further used in the nonlinear FE analysis. To solve Eq.

(18), we use up to 10 Newton–Raphson iterations. For the opti-

mization, 50 iterations of MMA are performed. The target hydraulic

diameters D� are set to 0 mm and 2 mm for contracting and enlarg-

ing, respectively. Following the limitations of the fabrication tech-

nique, the ratio tmax

tmin
is set to 4 : 1, wherein tmax and tmin are taken as

2 mm and 0.5 mm, respectively. The penalty parameter p is set to 1

(Eq. (1)). The density filter radius rmin is set to 2min L1
Nelx

;
L2
Nely

� �

mm.

The maximum volume limit is set to 60% for each problem, how-

ever one can also relax this constraint and permit the optimizer

to select the required amount of material.

The final solutions of the four CFCS continua for the different

desired pore functionalities (Table 1) are depicted in the first

column of Fig. 6. Regions in black and cyan suggested by the opti-

mization within the continua indicate maximum tmax and mini-

mum tmin thicknesses. For the objective (Eq. (25)) used herein

with the considered design cases (Table 1), the penalty parameter

p ¼ 1 gives close to binary tmax and tmin thicknesses for the opti-

mized CFCSs (Fig. 6). However, some elements with gray color

can still be observed (Fig. 6), which indicates intermediate thick-

nesses for the regions associating such elements. This is a conse-

quence of the application of density filtering, but does not

prevent interpretation of the designs in the post-processing. To

obtain the final design of CFCS I (Fig. 6a), CFCS II (Fig. 6d), CFCS

III (Fig. 6g) and CFCS IV (Fig. 6i) continua, the optimizer uses

52:1%, 33:5%, 45:3% and 44:3% of maximum volume, respectively.

The smooth convergence histories for CFCSs are depicted in

Fig. 12 (Appendix B). The second column of Fig. 6 shows the

deformed configurations of the CFCSs (to scale) when a stretching

displacement of 10 mm is applied in the positive horizontal direc-

tion, resulting in a global strain of 100%. The variations of hydraulic

diameter(s) with respect to the input displacement for the corre-

sponding functional pore(s) of CFCSs are depicted in the third col-

umn of Fig. 6. Note that one can also regard input loads as design

variables [45] which is not considered herein. For the applications

targeted in this study a prescribed displacement is considered

more relevant.

The functional pores of CFCS I and CFCS II are designed for

different output responses (Table 1). In response to external

stretching, the function pore of CFCS I gradually enlarges, i.e., its

corresponding hydraulic diameter increases (Fig. 6c) and thus,

permits higher fluid/nutrient/drug transport. In contrast, the

embedded functional pore of the CFCS II eventually contracts

(Fig. 6f) and thereby reduces fluid/nutrient/drug transport with

the actuation. CFCS III contains two functional pores which behave

differently as specified (Table 1) in response to the external

stretching (Fig. 6). The pore p1 contracts eventually whereas pore

p2 enlarges (Fig. 6).

For the optimized CFCS IV structure, it is desired that pores p1,

p3, and p5 contract while pores p2 and p4 must be enlarged as the

continuum deforms in response to an external stretching. How-

ever, it is noticed (Fig. 6l) that the hydraulic diameters of the pores

p2 and p4 increase, which is desired. Further, the hydraulic diame-

ters of pores p1 and p5 gained slightly whereas a minor reduction in

the hydraulic diameter of pore p3 can be observed. Therefore, a

discrepancy can be noted in the behaviour of pores p1 and p5. In

addition, the local topographical features around those pores are

not same as those obtained for CFCS II. The cardinal reason could

be the way objective f 0 is formulated wherein sum of squared dif-

ferences between actual hydraulic diameters and their respective

targets involves equal weights for enlarging and contracting output

Table 1

The desired function(s) of various functional pores of the CFCSs.

Design

cases

Considered

pores

Desired function

(s)

Center position of the

pore(s)

CFCS I p1 Enlarging (L12 ; L2
2 )

CFCS II p1 Contracting (L12 ; L2
2 )

CFCS III p1 Contracting (L12 ; L2
4 )

p2 Enlarging (L12 ; 3L24 )

CFCS IV p1 Contracting (L14 ; L2
4 )

p2 Enlarging (3L14 ; L24 )

p3 Contracting (L12 ; L2
2 )

p4 Enlarging (L14 ; 3L24 )

p5 Contracting (3L14 ; 3L2
4 )

Fig. 5. Design specifications for CFCS I (Fig. a), CFCS II (Fig. a), CFCS III (Fig. b) and CFCS IV (Fig. c) are shown. Key: L1 ¼ 10 mm, L2 ¼ 16 mm, a ¼ 0:5 mm, b ¼ 0:5 mm and

D ¼ 10 mm is the specified displacement.
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responses. In addition, a central pore of a flexible flat sheet made of

PDMS gradually enlarges (Fig. 7a) as the structure deforms, which

implies that to contract a pore, proper topographical features are

essential. Further, the optimizer has comparatively less design area

available between two juxtaposed embedded pores of CFCS IV to

relocate material in the required fashions to facilitate the desired

Fig. 6. The undeformed, deformed and hydraulic diameter (HD) plots versus the external response (stretch) for all optimized CFCSs. Regions containing maximum thickness

tmax and minimum thickness tmin are indicated by black and cyan color. Number in red in first and second columns indicate(s) the pore identification number. Key:

tmax ¼ 2 mm and tmin ¼ 0:5 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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contraction of the pores. Note also that, in comparison to this flat

sheet, CFCS I reaches twice the final hydraulic diameter and the

pore of CFCS II contracts an approximately four times lower value,

which illustrates the benefit of the optimized topography. An

immediate treatment could be to increase the weights associated

with the contracting pore(s) while evaluating the objective f 0. CFCS

IV is resolved by extremizing the weighted (modified) objective f
m
o

f
m
0 ¼

Xnfp

i¼1

wi D
�
i � Di

� �2 ð30Þ

with weights wiji¼1; 2; ...; 5 for pores piji¼1; 2;...; 5; wherein

w1 ¼ w3 ¼ w5 ¼ 5 and w2 ¼ w4 ¼ 1 are set.

For this case, a plot for hydraulic diameters of the different

pores is depicted in Fig. 7b. One can notice, (gradual) hydraulic

diameters of the pores p1, p3, and p5 decrease as the structure is

being actuated. However, no significant reduction is observed com-

pared to the previous CFCS IV case (Fig. 6k). The hydraulic diame-

ters of pores p2 and p4 are increasing, however their maximum

values are less compared to that observed in the previously

designed CFCS IV (Figs. 6k and 7b). Further, with weights

w1 ¼ w3 ¼ w5 ¼ 1; w2 ¼ w4 ¼ 0 (extreme values of the weights),

the contraction and enlargement of the pores are depicted via vari-

ation in their corresponding hydraulic diameters with respect to

stretching in Fig. 7c. One notices that the hydraulic diameters of

the pores p1, p3 and p5 decrease from their initial states but not

considerably, i.e., the pores contract but not significantly. Near

maximum stretching, the hydraulic diameters of these pores are

found to gradually increase again. On the other hand, pores p2

and p4 consistently enlarge under stretching. For this asymmetry,

apart from the aforementioned reasons related to the natural ten-

dency (Fig. 7a) of pore(s) within a PDMS sheet under stretching and

availability of less design area between pores of CFCS IV (Fig. 5c)

for the optimizer to relocate material to achieve the desired func-

tionality, the following could also be a reason. In the current opti-

mization process for the considered CFCSs, targets have only been

imposed on the end equilibrium state at maximum stretching,

instead of prescribing the entire deformation curve. Therefore, it

is certainly possible that an enlarging trend (positive slope, match-

ing the natural tendency under stretching) is seen in the (almost)

fully stretched states.

4.2. Prototypes of CFCSs and their performances

CFCS I and CFCS II are fabricated using PDMS (1:10) and the

technique presented in Section 2.2. The dimensions of the mold

designs for fabricating the structures are shown in Fig. 8. The final

prototypes for these continua are depicted in Fig. 9. Some simplifi-

cations of fine structural features of the designs have been applied

to facilitate release from the molds. The device depicted in Fig. 2c is

used to apply the stretching displacement. Images of the CFCS at

different deformation states have been taken with a Keyence Dig-

ital Microscope VHX-6000. These images are then analyzed with

the software ImageJ to obtain the area and perimeter of the pore

and thus, the corresponding hydraulic diameter (Eq. (24)) is evalu-

ated. A close view of the different states of functional pores of the

CFCS I and CFCS II in undeformed and deformed configurations is

depicted via Fig. 10. In case where the pore is contracting, it can

Fig. 7. (a) A plot for hydraulic diameter of a central pore for a 0:5 mm thick flat membrane with respect to stretching. Variation of hydraulic diameters with respect to the

stretch for the different functional pores of CFCS IV obtained using weighted objective, (b) with weights w1 ¼ w3 ¼ w5 ¼ 5 and w2 ¼ w4 ¼ 1 (c) with weights

w1 ¼ w3 ¼ w5 ¼ 1 and w2 ¼ w4 ¼ 0.

Fig. 8. (a) Mold for CFCS I, (b) Mold for CFCS II. All dimensions are in mm.
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be noticed (Fig. 10b) that boundary of the pores eventually comes

into contact and thus, demanding a treatment for self contact [46]

behaviour in the synthesis approach. This is an additional chal-

lenge which is left for future work.

One notices (Fig. 11a) that hydraulic diameters of the pore

obtained from experimental and numerical results are in good

agreement with each other for CFCS I. For the contracting pore of

CFCS II, a minor deviation can be observed initially, however the

trend is almost similar. Given the inaccuracies that may have

occurred in manufacturing and testing, the correlation between

experimental and numerical results is encouraging.

5. Conclusions

The concept and synthesis approach for planar Compliant

Fluidic Control Structures which are monolithic flexible continua

with a number of functional pores, is presented. It can be seen that

the presented approach can successfully generate such structures

for various desired responses for their functional pores. In millime-

ter range, these structures are planar, in general. Therefore, while

using geometrical and material nonlinearity within the synthesis

approach plane-stress conditions are imposed. The considered

planar CFCSs consist of different topographical features and to

Fig. 9. Prototypes for CFCS I and CFCS II, fabricated using PDMS.

Fig. 10. (a) depicts the configurations of pore of CFCS I at undeformed and deformed states. (b) shows the initial and final state of the configurations of CFCS II pore at

undeformed and deformed states.

Fig. 11. Experimental and numerical hydraulic diameters for the pores of CFCS I (a) and CFCS II (b) at different instances of stretching.
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determine those, an optimization problem is formulated in terms

of thickness design variables. The structures are subjected to large

deformations, with strains up to 100%. Nevertheless no numerical

instabilities have been observed.

To evaluate the regulated fluid flow control, hydraulic diame-

ters of the pores are used. An objective is formed using target val-

ues for the hydraulic diameter of each pore, corresponding to the

desired enlarging or contracting behavior. Structures controlling

multiple pores simultaneously can be generated. The optimized

CFCS designs have been fabricated using PDMS material. The

experimental and numerical results are in good agreement indicat-

ing that the Arruda-Boyce material definition can effectively repre-

sent the constitutive behavior of PDMS for this situation. In future,

the work can be directed towards 3D TO, and other manufacturing

techniques, e.g., additive manufacturing, can be employed to fabri-

cate the optimized 3D CFCSs. In case of contracting a pore, the

boundary defining it eventually comes into contact. The effect of

such contact constraints also forms a future challenge.

Appendix A. The Cauchy stress tensor and elastic tensor

In view of Eqs. (11)–(13), we have

W¼ a1 �J 1B�3ð Þþa2 �J
2
1B�9

� �
þa3 �J

3
1B�27

� �
þK

2

J2�1

2
� ln J

" #

:

ð31Þ

From the fundamentals of continuum mechanics [12], we know

that

@J 1B

@B
¼ I;

@J

@B
¼ 1

2
JB�1

; r ¼ 2

J

@W

@B
B; C ¼ 4

J
B
@
2W

@B
2
B: ð32Þ

Since, �J 1B ¼ J�
2
3J 1B. Therefore, using Eq. (32) and applying the

chain rules of differentiation, one can have

@ �J 1B

@B
¼ J�

2
3 I � 1

3
B
�1
J 1B

� �

ð33Þ

and

@
2 �J 1B

@B
2

¼ J�
2
3
1

9
B
�1	B

�1
J 1Bþ

1

3
B
�1 � I �B�1

J 1B�
1

3
B
�1	 I�1

3
I	B

�1

� �

ð34Þ

where I is a fourth order symmetric tensor. Now, in view of Eqs.

(31)–(34), using the chain rules of differentiation, one can find the

Cauchy stress tensor as

r ¼ 2J�
5
3 a1 þ 2a2 �J 1B þ 3a3

�J
2
1B

� �
B� 1

3
J 1BI

� �

þ K

2J
J2 � 1

� �

I ð35Þ

and the material tangent tensor as

C ¼ 4

J
a1 þ 2a2 �J 1B þ 3a3 �J

2
1B

� �
T1 þ

4

J
2a2 þ 6a3 �J 1Bð ÞT2

þ K I 	 I � I½ �J þ K

J
I ð36Þ

where

T1 ¼ J�
2
3
1

9
J 1BI 	 I þ 1

3
J 1BI�

1

3
B	 I � 1

3
I 	 B

� �

ð37Þ

and

T2 ¼ J�
4
3 B	 B� 1

3
J 1BB	 I � 1

3
J 1BI 	 Bþ 1

9
J

2
1BI 	 I

� �

: ð38Þ

Appendix B. Convergence history plot

Fig. 12 depicts the convergence history plot for CFCSs.

Appendix C. Internal force and stiffness matrix

The elemental internal force vector acting on an element Xe can

be calculated as

f
e
int ¼

Z

�e

BT
ULrdv; Ba

UL ¼ B1
UL B

2
UL � � � Bn

UL

h i

ð39Þ

where

Fig. 12. Convergence histories of CFCSs. f int is value of the objective at the first optimization iteration.
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B
a
UL ¼

Na;1 0

0 Na;2

Na;2 Na;1

2

6
4

3

7
5;

@N

@x
¼

Na;1

Na;2

� �

ð40Þ

and n is the number of nodes in an element Xe.

One evaluates elemental stiffness matrix Ke
int as

Ke
int ¼ Ke

mat þ Ke
geo ð41Þ

where Ke
mat and Ke

geo are contribution from material and geometri-

cal nonlinearities, respectively. These can be evaluated as

Ke
mat ¼

Z

�
e

BT
ULCBULdv ð42Þ

where C is the material tangent/elastic modulus (see Appendix A)

and

Ke
geo ¼

K11
geo K12

geo � � � K1n
geo

K21
geo K22

geo � � � K2n
geo

.

.

.
.
.
.

.
.

.
.
.
.

Kn1
geo Kn2

geo � � � Knn
geo

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; Kab
geo ¼ I

Z

�
e

Na;irijNb;jdv ð43Þ

In the expression of Kab
geo; i and j are dummy summation indices

and I is the identity matrix in R
d.

To perform numerical integration, one transforms the integrals

from the elemental Xe to Gaussian range n 2 �1 1½ �, e.g.,
Z

�
e

f xð Þdv ¼
Z

�

f nð Þdet j nð Þd�

¼ te feð Þ
Z

n1 ; n2

f nð Þdet j nð Þdn1dn2

¼ te feð Þ
Xngp

gp¼1

f ngp
� �

det j ngp
� �

wgp ð44Þ

where det j nð Þ is determinant of the Jacobian for the coordinate sys-

tem considered, wqp is the weight factor at integration point qph

indicates the range of parent coordinates for the dimension of prob-

lem considered and te feð Þ is the thickness (Eq. (1)) of the planar

membrane. Now, in view of Eq. (44), one evaluates f
e
int;K

e
mat and

Kab
geo as

f
e
int ¼ te feð Þ

Xngp

gp¼1

BT
UL ngp
� �

r ngp
� �

det j ngp
� �

wgp ð45Þ

Ke
mat ¼ te feð Þ

Xngp

gp¼1

BT
UL ngp
� �

C ngp
� �

BUL ngp
� �

det j ngp
� �

wgp ð46Þ

Kab
geo ¼ te feð Þ

Xngp

gp¼1

Na;i ngp
� �

rij ngp
� �

Nb;j ngp
� �

det j ngp
� �

wgp ð47Þ
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