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CNN Fixations: An unraveling approach to

visualize the discriminative image regions
Konda Reddy Mopuri*, Utsav Garg*, R. Venkatesh Babu, Senior Member, IEEE

Abstract—Deep convolutional neural networks (CNN) have
revolutionized the computer vision research and have seen
unprecedented adoption for multiple tasks such as classification,
detection, caption generation, etc. However, they offer little
transparency into their inner workings and are often treated as
black boxes that deliver excellent performance. In this work, we
aim at alleviating this opaqueness of CNNs by providing visual
explanations for the network’s predictions. Our approach can
analyze a variety of CNN based models trained for computer
vision applications such as object recognition and caption gener-
ation. Unlike existing methods, we achieve this via unraveling the
forward pass operation. The proposed method exploits feature
dependencies across the layer hierarchy and uncovers the dis-
criminative image locations that guide the network’s predictions.
We name these locations CNN-Fixations, loosely analogous to
human eye fixations. Our approach is a generic method that
requires no architectural changes, additional training or gradient
computation and computes the important image locations (CNN
Fixations). We demonstrate through a variety of applications that
our approach is able to localize the discriminative image locations
across different network architectures, diverse vision tasks and
data modalities.

Index Terms—Explainable AI, CNN visualization, visual ex-
planations, label localization, weakly supervised localization

I. INTRODUCTION

C
Onvolutional Neural Networks (CNN) have demon-

strated outstanding performance for a multitude of com-

puter vision tasks ranging from recognition and detection to

image captioning. CNNs are complex models to design and

train. They are non-linear systems that almost always have

numerous local minima and are often sensitive to the training

parameter settings and initial state. With time, these networks

have evolved to have better architectures along with improved

regularizers to train them. For example, in case of recognition,

from AlexNet [15] in 2012 with 8 layers and 60M parameters,

they advanced to ResNets [10] in 2015 with hundreds of layers

and 1.7M parameters. Though this has resulted in a monotonic

increase in performance on many vision tasks (e.g. recognition

on ILSVRC [23], semantic segmentation on PASCAL [8]), the

model complexity has increased as well.

In spite of such impressive performance, CNNs continue

to be complex machine learning models which offer limited

transparency. Current models shed little light on explaining

why and how they achieve higher performance and as a
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Fig. 1: CNN fixations computed for a pair of sample images

from ILSVRC validation set. Left column: input images. Mid-

dle column: corresponding CNN fixations (locations shown in

red) overlaid on the image. Right column: The localization

map computed form the CNN fixations via Gaussian blurring.

result are treated as black boxes. Therefore, it is important to

understand what these networks learn in order to gain insights

into their representations. One way to understand CNNs is

to look at the important image regions that influence their

predictions. In cases where the predictions are inaccurate,

they should be able to offer visual explanations (as shown in

Fig.8) in terms of the regions responsible for misguiding the

CNN. Visualization can play an essential role in understanding

CNNs and in devising new design principles (e.g., architecture

selection shown in [35]). With the availability of rich tools

for visual exploration of architectures during training and

testing, one can reduce the gap between theory and practice by

verifying the expected behaviours and exposing the unexpected

behaviours that can lead to new insights. Towards this, many

recent works (e.g. [25], [27], [29], [36], [37]) have been

proposed to visualize CNNs’ predictions. The common goal

of these works is to supplement the label predicted by the

classifier (CNN) with the discriminative image regions (as

shown in Fig. 4 and Fig. 6). These maps act as visual

explanations for the predicted label and make us understand

the class specific patterns learned by the models. Most of

these methods utilize the gradient information to visualize the

discriminative regions in the input that led to the predicted

inference. Some (e.g. [37]) are restricted to work for specific

network architectures and output low resolution visualization

maps that are interpolated to the original input size.

On the other hand, we propose a visualization approach that

exploits the learned feature dependencies between consecutive
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layers of a CNN using the forward pass operations. That

is, in a given layer, for a chosen neuron activation, we can

determine the set of positively correlated activations from

the previous layer that act as evidence. We perform this

process iteratively from the softmax layer till the input layer

to determine the discriminative image pixels that support

the predicted inference (label). In other words, our approach

locates the image regions that were responsible for the CNN’s

prediction. We name them CNN fixations, loosely analogous

to the human eye fixations. By giving away these regions,

our method makes the CNNs more expressive and transparent

by offering the needed visual explanations. We highlight (as

shown in Fig. 1) the discriminative regions by tracing back

the corresponding label activation via strong neuron activation

paths onto the image plane. Note that we can visualize not

only the label activations present in the softmax layer but

also any neuron in the model’s architecture. Our method

offers a high resolution, pixel level localizations. Despite the

simplicity of our approach, it could reliably localize objects

in case networks trained for recognition task across different

input modalities (such as images and sketches) and uncover

objects responsible for the predicted caption in case of caption

generators (e.g. [32]).

The major contributions of this paper can be listed as

follows:

• A simple yet powerful method that exploits feature de-

pendencies between a pair of consecutive layers in a

CNN to obtain discriminative pixel locations that guide

its prediction.

• We demonstrate using the proposed approach that CNNs

trained for various vision tasks (e.g. recognition, caption-

ing) can reliably localize the objects with little additional

computations compared to the gradient based methods.

• We show that the approach generalizes across different

generations of network architectures and across different

data modalities. Furthermore, we demonstrate the effec-

tiveness of our method through a multitude of applica-

tions.

Rest of this paper is organized as follows: section II presents

and discusses existing works that are relevant to the proposed

method, section III presents the proposed approach in detail,

section IV demonstrates the effectiveness of our approach em-

pirically on multiple tasks, modalities and deep architectures,

and finally section V presents the conclusions.

II. RELATED WORK

Our approach draws similarities to recent visualization

works. A number of attempts (e.g. [3], [22], [25], [27], [29],

[35]–[37]) have been made in recent time to visualize the

classifier decisions and deep learned features.

Most of these works are gradient based approaches that

find out the image regions which can improve the predicted

score for a chosen category. Simonyan et al. [27] measure

sensitivity of the classification score for a given class with

respect to a small change in pixel values. They compute partial

derivative of the score in the pixel space and visualize them

as saliency maps. They also show that this is closely related

to visualizing using deconvolutions by Zeiler et al [35]. The

deconvolution [35] approach visualizes the features (visual

concepts) learned by the neurons across different layers.

Guided backprop [29] approach modifies the gradients to

improve the visualizations qualitatively.

Zhou et al. [37] showed that class specific activation maps

can be obtained by combining the feature maps before the

GAP (Global Average Pooling) layer according to the weights

connecting the GAP layer to the class activation in the classi-

fication layer. However, their method is architecture specific,

restricted to networks with GAP layer. Selvaraju et al. [25]

address this issue by making it a more generic approach

utilizing gradient information. Despite this, [25] still computes

low resolution maps (e.g. 13×13). Majority of these methods

compute partial derivatives of the class scores with respect to

image pixels or intermediate feature maps for localizing the

image regions.

Another set of works (e.g. [3], [6], [22], [38]) take a

different approach and assign a relevance score for each

feature with respect to a class. The underlying idea is to

estimate how the prediction changes if a feature is absent.

Large difference in prediction indicates that the feature is

important for prediction and small changes do not affect the

decision. In [6], authors find out the probabilistic contribution

of each image patch to the confidence of a classifier and

then they incorporate the neighborhood information to improve

their weakly supervised saliency prediction. Zhang et al. [36]

compute top down attention maps at different layers in the

neural networks via a probabilistic winner takes all framework.

They compute marginal winning probabilities for neurons at

each layer by exploring feature expectancies. At each layer,

the attention map is computed as the sum of these probabilities

across the feature maps.

Unlike these existing works, the proposed approach finds

the responsible pixel locations by simply unraveling the un-

derlying forward pass operations. Starting from the neuron of

interest (e.g. the predicted category label), we rely only on the

basic convolution operation to figure out the visual evidence

offered by the CNNs. Most of the existing works (e.g. [29],

[35]) realize the discriminative regions via reconstructing the

chosen activation. Whereas, our method obtains a binary out-

put at every layer via identifying the relevant neurons. At each

layer we can obtain a heat map by simple Gaussian blurring

of the binary output. Note that the proposed CNN-fixations

method has no hyper-parameters or heuristics in the entire

process of back tracking the evidence from the softmax layer

onto the input image. Fundamentally, our approach exploits

the excitatory nature of neurons, which is, being positively

correlated and to fire for a specific stimulus (input) from the

preceding layer. Though the proposed approach is simple and

intuitive in nature, it yields accurate and high resolution visual-

izations. Unlike majority of the existing works, the proposed

method does not require to perform gradient computations,

prediction differences, winning probabilities for neurons. Also,

the proposed approach poses no architectural constraints and

just requires a single forward pass and backtracking operations

for the selected neurons that act as the evidence.
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Fig. 2: Evidence localization shown between a pair of fc
layers. Note that in layer l − 1, operation is shown for one

discriminative location in Xl. The dark blue color in layers

l − 1 and l indicates locations with C < 0.
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Fig. 3: Evidence localization between a pair of convolution

layers l and l− 1. A
Xl[i]
l−1 is the receptive field corresponding

to Xl[i]. Note that W
Xl[i]
l is not shown, however the channel

(feature) with maximum contribution (shown in light blue) is

determined based on A
Xl[i]
l−1 ⊙W

Xl[i]
l .

III. PROPOSED APPROACH

In this section, we describe the underlying operations in

the proposed approach to determine the discriminative image

locations that guide the CNN to its prediction. Note that the

objective is to provide visual explanations for the predictions

(e.g. labels or captions) in terms of the important pixels in the

input image (as shown in Fig. 1 and 6).

Typical deep network architectures have basic building

blocks in the form of fully connected, convolution, skip

connections and pooling layers or LSTM units in case of

captioning networks. In this section we explain our approach

for tracing the visual evidence for the prediction across these

building blocks onto the image. The following notation is used

to explain our approach: we start with a neural network with

N layers, thus, the layer indices l range from 1, 2, . . . N . At

layer l, we denote the activations as Al and weights connecting

this layer from previous layer as Wl. Also, nk
l represents kth

neuron at layer l. Xl is the vector of discriminative locations

in the feature maps at layer l and m is its cardinality. Note that

the proposed approach is typically performed during inference

(testing) to provide the visual explanations for the network’s

prediction.

A. Fully Connected

A typical CNN for recognition contains a fully connected

(fc) layer as the final layer with as many neurons as the

number of categories to recognize. During inference, after a

forward pass of an image through the CNN, we start with XN

being a vector with one element in the final fc layer, which is

the predicted label (shown as green activation in Fig. 2). Note

that this can be any chosen activation (neuron) in any layer of

the network, our visualization method imposes no restrictions

and can localize all the neurons in the architecture.

In case of stacked fc layers, the set Xl−1 for an fc layer

(l−1) will be a vector of indices belonging to important neu-

rons [n
Xl−1[1]
l−1 . . . n

Xl−1[m]
l−1 ] chosen by the succeeding (higher)

layer l. This set is the list of all neurons in Al−1 that contribute

to the elements in Xl (in higher layer). That is, for each

of the important (discriminative) features determined in the

higher layer (Xl), we find the evidence in the current layer

(Al−1). Thus the proposed approach finds out the evidence

by exploiting the feature dependencies between layer l and

l − 1 learned during the training process. We consider all the

neurons in Al−1 that aid positively (excite) for the task in layer

l as its evidence. Algorithm 1 explains the process of tracing

the evidence from a fully connected layer onto the preceding

layer.

In case the layer is preceded by a spatial layer (convolution

or pooling), we flatten the 3D activations Al−1 to get a vector

for finding the discriminative neurons, finally we convert the

indices back to 3D. Therefore, for spatial layers, Xl−1 is

a list with each entry being three dimensional, namely, {
feature (or channel), x, and y}. Figure 2 shows how we

determine the evidence in the preceding layer for important

neurons of an fc layer.

Typically during the evidence tracing, after reaching the first

fc layer, a series of conv/pool layers will be encountered.

The next subsection describes the process of evidence tracing

through a series of convolution layers.

Algorithm 1: Discriminative Localization at fc layers.

input: Xl, incoming discriminative locations from higher

layer : { Xl[1], . . . , Xl[m] }
Wl, weights of higher layer l
Al−1, activations at current layer l − 1

output: Xl−1, outgoing discriminative locations from the

current layer

1 Xl−1 = φ
2 for i=1:m do

3 W
Xl[i]
l ← weights of neuron n

Xl[i]
l

4 C ← Al−1 ⊙W
Xl[i]
l // Hadamard product

5 Xl−1 ← append ( Xl−1, args(C > 0) )

6 end

B. Convolution

As discussed in the previous subsection, upon reaching a

spatial layer, Xl will be a set of 3D indices specifying the lo-

cation of each discriminative neuron. This subsection explains
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how the proposed approach handles the backtracking between

spatial layers. Note that a typical pooling layer will have a

2D receptive field and a convolution layer will have a 3D
receptive field to operate on the previous layer’s output. For

each important location in Xl, we extract the corresponding

receptive field activation A
Xl[i]
l−1 in layer l−1 (shown as green

cuboid in Fig. 3). Hadamard product (A
Xl[i]
l−1 ⊙W

Xl[i]
l ) is com-

puted between this receptive activations and the filter weights

of the neuron n
Xl[i]
l . We then find out the feature (channel)

in Al−1 that contributes highest (shown in light blue color in

Fig. 3) by adding the individual activations from that channel

in the hadamard product. That is because, the sum of these

terms in the hadamard product gives the contribution of the

corresponding feature to excite the discriminative activation in

the succeeding layer.

Algorithm 2 explains this process for convolution layers. In

the algorithm, kl−1 denotes the kernel size of the convolution

filters, Al−1
Xl[i] are the receptive activations in the previous

layer, and hence is a 3D spatial blob. Therefore, when the

Hadamard product is computed with the weights (W
Xl[i]
l ) of

the neuron, the result is also a spatial blob of the same size.

We sum the output across x and y directions to locate the

most discriminative feature map “ch” (shown in light blue

color in Fig. 3). During this transition, spatial location of the

activation can also get affected. That means, (x, y) location in

the succeeding layer is traced onto the strongest contributing

activation of channel “ch” in the current layer. Instead, we

can also trace back to the same location within the most

contributing channel “ch”. However, we empirically found that

this is not significantly different from the former alternative.

Therefore, in all our experiments, for computational efficiency,

we follow the latter alternative of tracking onto the same

location as in the succeeding layer. Note that the procedures

we follow for evidence tracking across fc (Algo. 1) and conv
(Algo. 2) layers are fundamentally similar, except that conv
layers operate over 3D input blobs, whereas fc layers have

a 1D input blob (after vectorizing). Algorithm 2 explains the

process considering the localized input blobs (receptive activa-

tions) and the convolution kernels to the exact implementation

details.

In case of pooling layers, we extract the 2D receptive

neurons in the previous layer and find the location with the

highest activation. This is because most of the architectures

typically use max-pooling to sub-sample the feature maps. The

activation in the succeeding layer is the maximum activation

present in the corresponding receptive field in the current layer.

Thus, when we backtrack an activation across a sub-sampling

layer, we locate the maximum activation in its receptive field.

Thus for a CNN trained for recognition, the proposed

approach starts from the predicted label in the final layer and

iteratively backtracks through the fc layers and then through

the convolution layers onto the image. CNN Fixations (red

dots shown in middle column of Fig. 1) are the final dis-

criminative locations determined on the image. Note that the

fixations are 3D coordinates since the input image generally

contains three channels (R, G and B). However, we consider

the union of spatial coordinates (x and y) of the fixations

Algorithm 2: Discriminative Localization at Convolution

layers

input: Xl, incoming discriminative locations from higher

layer : Xl[1] . . . Xl[m]
Wl, weights at layer l
Al−1, activations at layer l − 1

output: Xl−1, outgoing discriminative locations in the

current layer

1 S(.): a function that sums a tensor along xy axes

2 Xl−1 = φ
3 for i=1:m do

4 W
Xl[i]
l ← weights for neuron n

Xl[i]
l

5 A
Xl[i]
l−1 ← receptive activations for neuron n

Xl[i]
l

6 C ← S(A
Xl[i]
l−1 ⊙W

Xl[i]
l ) // Per channel contributions

7 ch← argmax(C)// Discriminative channel

8 (Px, Py)← argmax(A
Xl[i]
l−1 (:, :, ch))⊙W

Xl[i]
l (:, :

, ch)) // Discriminative location in channel ‘ch’

9 Xl−1 ← append (Xl−1, ch.k
2
l−1 + Px.kl−1 + Py)

10 end

11 Xl−1 ← unique(Xl−1)

neglecting the channel.

C. Advanced architectures: Inception, Skip connections and

Densely connected convolutions

Inception modules have shown (e.g. Szegedy et al. [30]) to

learn better representations by extracting multi-level features

from the input. They typically comprise of multiple branches

which extract features at different scales and concatenate them

along the channels at the end. The concatenation of feature

maps will have a single spatial resolution but increased depth

through multiple scales. Therefore, each channel in ‘Concat’ is

contributed by exactly one of these branches. Let us consider

an inception layer with activation Al with B input branches

getting concatenated. That means, Al is concatenation of B
outputs obtained via convolving the previous activations Al−1

with a set of B different weights {Wlb} where b ∈ {1, . . . B}.
For each of the important activations Xl in the inception layer,

there is exactly one input branch connecting it to the previous

activations Al−1. Since we know the number of channels

resulted by each of the input branches, we can identify the

corresponding input branch for Xl from the channel on which

it lies. Once we determine the corresponding input branch, it

is equivalent to performing evidence tracing via a conv layer.

Hence, we perform the same operations as we perform for a

conv layer (discussed in section III-B and Algorithm 2) after

determining which branch caused the given activation.

He et al. [10] presented a residual learning framework to

train very deep neural networks. They introduced the concept

of residual blocks (or ResBlocks) to learn residual function

with respect to the input. A typical ResBlock contains a

skip path and a residual (delta) path. The delta path (Dl−1)
generally consists of multiple convolutional layers and the skip

path is an identity connection with no transformation. Ending

of the ResBlock performs element wise sum of the incoming
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skip (Al−1) and delta branches (Dl−1). Note that this is unlike

the inception block where each activation is a contribution

of a single transformation. Therefore, for each discriminative

location in Xl, we find the branch (either skip or delta) that

has a higher contributing activation and trace the evidence

through that route. If for a given location Xl[i], the skip path

contributes more to the summation, it is traced directly onto

Al−1 through the identity transformation. On the other hand,

if the delta path contributes more than the skip connection, we

trace through the multiple conv layers of the delta path as we

explained in section III-B. We perform this process iteratively

across all the ResBlocks in the architecture to determine the

visual explanations.

Huang et al. introduced Dense Convolutional Networks

(DenseNet [12]) that connects each layer to every other layer

in a feed-forward fashion. For each layer, feature maps of

all the earlier layers are used as input and its own feature

maps are used as input to later layers. In other words, dense

connections can be considered as a combination of skip

connections and inception modules. At a given layer (l) in

the architecture, a skip path from the previous layer’s output

(Al−1) gets concatenated to the activations (feature maps)

computed at this layer (Al). Note that in case of ResNets, the

skip and and delta paths gets added. Therefore, for a given

discriminative activation in the current layer, the backtracking

has two options: either it belongs to the current feature maps

computed at this layer or it is transferred from the previous

layer. If it belongs to current set of feature maps, we can

backtrack using the conv component (section. III-B) of the

proposed approach. Else, if it belongs to the feature maps

copied from the previous layers, we simply transfer (copy)

the discriminative location onto the previous layer, since it is

an identity transformation from previous layer to current layer.

This process of evidence tracing is performed iteratively till the

input layer to obtain the CNN-Fixations. Thus, our method is

a generic approach and it can visualize all CNN architectures

ranging from the first generation AlexNet [15] to the recent

DenseNets [12].

D. LSTM Units

In this subsection we discuss our approach to backtrack

through an LSTM [11] unit used in caption generation net-

works (e.g. [32]). The initial input to the LSTM unit is random

state and the image embedding I encoded by a CNN. In

the following time steps image embedding is replaced by

embedding for the word predicted in the previous time step.

An LSTM unit is guided by the following equations [32]:

it = σ(Wixxt +Wimmt−1) (1)

ft = σ(Wfxxt +Wfmmt−1) (2)

ot = σ(Woxxt +Wommt−1) (3)

ct = ft ⊙ ct−1 + it ⊙ h(Wcxxt +Wcmmt−1) (4)

mt = ot ⊙ ct (5)

Here, i, f and o are the input, forget and output gates

respectively of the LSTM and σ and h are the sigmoid and

hyperbolic-tan non-linearities. mt is the state of the LSTM

which is passed along with the input to the next time step. At

each time step, a softmax layer is learned over mt to output

a probability density over a set of dictionary words.

Our approach takes the maximum element in m at the last

unrolling and then tracks back the discriminative locations

through the four gates individually and then accumulates

them as locations on mt−1. Tracking back through these

gates involves operations similar to the ones discussed in

case of fully connected layers III-A. We iteratively perform

backtracking through the time steps till we finally reach

the image embedding I . Once we reach I , we perform the

operations discussed in sections III-A and III-B to obtain the

discriminative locations on the image.

IV. APPLICATIONS

This section demonstrates the effectiveness of the proposed

approach across multiple vision tasks and modalities through

a variety of applications.

The proposed approach is both network and framework

agnostic. It requires no training or modification to the network

to get the discriminative locations. The algorithm needs to ex-

tract the weights and activations from the network to perform

the operations discussed in the sections above. Therefore any

network can be visualized with any deep learning framework.

For the majority of our experiments we used the Python

binding of Caffe [13] to access the weights and activations,

and we used Tensorflow [1] in case of captioning networks

as the models for Show and Tell [32] are provided in that

framework. After finding the important pixels in the image,

we perform outlier removal before we compute the heat map.

We consider a location to be an outlier, if it is not supported

by sufficient neighboring fixations. Specifically, if a fixation

has less than certain percentage of total fixations within a

given circle around it, we neglect it. Codes for the project are

publicly available at https://github.com/val-iisc/cnn-fixations.

Additional qualitative results for some applications are avail-

able at http://val.cds.iisc.ac.in/cnn-fixations/.

A. Weakly Supervised Object Localization

We now empirically demonstrate that the proposed CNN

fixations approach is capable of efficiently localizing the object

recognized by the CNN. Object recognition or classification

is the task of predicting an object label for a given image.

However, object detection involves not only predicting the

object label but also localizing it in the given image with a

bounding box. The conventional approach has been to train

CNN models separately for the two tasks. Although some

works (e.g. [21], [33]) share features between both tasks, de-

tection models (e.g. [21], [26], [33]) typically require training

data with human annotations of the object bounding boxes. In

this section, we demonstrate that the CNN models trained to

perform object recognition are also capable of localization.

For our approach, after the forward pass, we backtrack the

label on to the image. Unlike other methods our approach

finds the important locations (as shown in Figure 1) instead

of a heatmap, therefore we perform outlier removal as follows:
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Input Image Backprop [27] CAM [37] cMWP [36] Grad-CAM [25] Proposed

Fig. 4: Comparison of the localization maps for sample images from ILSVRC validation set across different methods for

VGG-16 [28] architecture without any thresholding of maps. For our method, we blur the discriminative image locations using

a Gaussian to get the map.

Input Image Pool1 Pool2 Pool3 Pool4 Pool5

Fig. 5: CNN-Fixations at intermediate layers of VGG-16 [28] network. Note that the fixations at deeper layers are also displayed

on the original resolution image via interpolating.

TABLE I: Error rates for Weakly Supervised Localization

of different visualization approaches on ILSVRC valida-

tion set. The numbers show error rate, which is 100 −
Accuracy of localization (lower the better). (*) denotes mod-

ified architecture, bold face is the best performance in the

column and underline denotes the second best performance in

the column. Note that the numbers are computed for the top-1

recognition prediction.

Method AlexNet VGG-16 GoogLeNet ResNet-101 DenseNet-121

Backprop 65.17 61.12 61.31 57.97 67.49
CAM 67.19* 57.20* 60.09 48.34 55.37

cMWP 72.31 64.18 69.25 65.94 64.97
Grad-CAM 71.16 56.51 74.26 64.84 75.29

Ours 65.70 55.22 57.53 54.31 56.72

we consider a location to be an outlier if the location is

not sufficiently supported by neighboring fixation locations.

Particularly, if any of the CNN Fixations has less than a

certain percentage of the fixations present in a given circle

around it, we consider it as an outlier and remove it. These

two parameters, percentage of points and radius of the circle

were found over a held out set, and we found 5% of points and

radius equal to 9−11% of the image diagonal to perform well

depending on the architecture. After removing the outliers, we

use the best fitting bounding box for the remaining locations

as the predicted location for the object.

We perform localization experiments on the ILSVRC [23]

validation set of 50, 000 images with each image having

one or multiple objects of a single class. Ground truth con-

sists of object category and the bounding box coordinates

for each instance of the objects. Similar to the existing

visualization methods (e.g. [25], [36], [37]), our evalua-

tion metric is accuracy of localization, which requires to

get the prediction correct and obtain a minimum of 0.5
Intersection over Union (IoU) between the predicted and

ground-truth bounding boxes. Table I shows the error rates

(100−Accuracy of localization) for corresponding visualiza-

tion methods across multiple network architectures such as

AlexNet [15], VGG [28], GoogLeNet [30], ResNet [10] and

DenseNet [12]. Note that the error rates are computed for the

top− 1 recognition prediction. In order to obtain a bounding

box from a map, each approach uses a different threshold.

For CAM [37] and Grad-CAM [25] we used the threshold

provided in the respective papers, for Backprop (for ResNet

and DenseNet, other values from CAM) and cMWP [36] we

found the best performing thresholds on the same held out

set. The values marked with ∗ for CAM are for a modified

architecture where all fc layers were replaced with a GAP

layer and the model was retrained with the full ILSVRC

training set (1.2M images). Therefore, these numbers are not

comparable. This is a limitation for CAM as it works only for

networks with GAP layer and in modifying the architecture

as explained above it loses recognition performance by 8.5%
and 2.2% for AlexNet and VGG respectively.

Figure 4 shows the comparison of maps between different

approaches. The Table I shows that the proposed approach

performs consistently well across a contrasting range of archi-

tectures, unlike other methods which perform well on selected

architectures. Also, in Figure 5 we present visualization at

various layers in the architecture of VGG-16 [28]. Specifically,



7

Input Grad-CAM Ours Input Grad-CAM Ours

A woman is riding a 
horse in a field.

A man is holding a 
dog in a field.

A man riding a horse 
in a field of grass.

A man and a dog are 
standing in a field.

A snowboarder is doing a 
trick on a mountain,

A young man riding a 
surfboard on a wave in 

the ocean.

A snowboarder is doing a 
trick in the air.

A woman riding a 
surfboard on a wave in 

the ocean.

Fig. 6: Discriminative localization obtained by the proposed approach for captions predicted by the Show and Tell [32] model

on sample images from MS COCO [16] dataset. Grad-CAM’s illustrations are for Neuraltalk [14] model. Note that the objects

predicted in the captions are better highlighted for our method.

we show the evidence at all the five pool layers. Note that

the fixations are computed on the feature maps which are of

lower resolution compared to the input image. Therefore it

is required to interpolate the location of fixations in order to

show them on the input image. Observe that the localization

improves as the resolution of the feature map increases, i.e.,

towards the input layer, fixations become more dense and

accurate.

B. Grounding Captions

In this subsection, we show that our method can provide

visual explanations for image captioning models. Caption

generators predict a human readable sentence that describes

contents of a given image. We present qualitative results for

getting localization for the whole caption predicted by the

Show and Tell [32] architecture.

The architecture has a CNN followed by an LSTM unit,

which sequentially generates the caption word by word. The

LSTM portion of the network is backtracked as discussed

in section III-D following which we backtrack the CNN as

discussed in sections III-A and III-B.

Figure 6 shows the results where all the important objects

that were predicted in the caption have been localized on the

image. This shows that the proposed approach can effectively

localize discriminative locations even for caption generators

(i.e, grounding the caption). Our approach generalizes to deep

neural networks trained for tasks other than object recognition.

Note that some of the existing approaches discussed in the

previous sections do not support localization for captions in

their current version. For example, CAM [37] requires a GAP

layer in the model and Ex-BP [36] grounds the tags predicted

by a classification model instead of working with a caption

generator.

C. Saliency

We now demonstrate the effectiveness of the proposed

approach for predicting weakly-supervised saliency. The ob-

jective of this task is similar to that of Cholakkal et al. [6],

where we perform weakly supervised saliency prediction using

the models trained for object recognition. The ability of the

proposed approach to provide visual explanations via back

tracking the evidence onto the image is exploited for salient

object detection.

Following [6], we perform the experiments on the Graz-

2 [17] dataset. Graz-2 dataset consists of three classes namely

bike, car and person. Each class has 150 images for training

and same number for testing. We fine-tuned VGG-16 archi-

tecture for recognizing these 3 classes by replacing the final

layer with 3 units. We evaluated all approaches discussed in

section IV-A in addition to [6]. In order to obtain the saliency

map from the fixations, we perform simple Gaussian blurring

on the obtained CNN fixations. All the maps were thresholded

based on the best thresholds we found on the train set for each

approach. The evaluation is based on pixel-wise precision at

equal error rate (EER) with the ground truth maps.

Table II presents the precision rates per class for the Graz-

2 dataset. Note that CAM [37] was excluded as it does not

work with the vanilla VGG [28] network. This application

highlights that the approaches which obtain maps at a low

resolution and up-sample them to image size perform badly

in this case due to the pixel level evaluation. However, our

approach outperforms other methods to localize salient image

regions by a huge margin.

TABLE II: Performance of different visualization methods for

predicting saliency on Graz-2 dataset. Numbers denote the

Pixel-wise precision at EER.

Method Bike Car Person Mean

Backprop 39.51 28.50 42.64 36.88
cMWP 61.84 46.82 44.02 50.89

Grad-CAM 65.70 6.58 7.98 60.09
WS-SC [6] 7.5 56.48 57.56 0.52

Ours 71.21 62.15 61.27 64.88
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Input Sketch BackProp [27] cMWP [36] Grad-CAM [25] Ours

Fig. 7: Comparison of localization maps with different methods for a sketch classifier [24].

D. Localization across modalities

We demonstrate that the proposed approach visualizes clas-

sifiers learned on other modalities as well. We perform the

proposed CNN Fixations approach to show visualizations for

a sketch classifier from [24]. Sketches are a very different data

modality compared to images. They are very sparse depictions

of objects with only edges. CNNs trained to perform recogni-

tion on images are fine-tuned [24], [34] to perform recognition

on sketches. We have considered AlexNet [15] fine-tuned over

160 categories of sketches from Eitz dataset [7] to visualize

the predictions.

Figure 7 shows the localization maps for different ap-

proaches. We can clearly observe that the proposed approach

highlights all the edges present in the sketches. This shows that

our approach effectively localizes the sketches much better

than the compared methods, showing it generalizes across

different data modalities.

Suit Loafer Binoculars Macaque

Quilt /

Comfortor

Labrador

Retriever

Window

Screen

Flower

Pot

Fig. 8: Explaining the wrong recognition results obtained by

VGG [28]. Each pair of images along the rows show the

image and its corresponding fixation map. Ground truth label

is shown in green and the predicted is shown in red. Fixations

clearly provide the explanations corresponding to the predicted

labels.

E. Explanations for erroneous predictions by CNNs

CNNs are complex machine learning models offering very

little transparency to analyse their inferences. For example,

in cases where they wrongly predict the object category, it

is required to diagnose them in order to understand what

went wrong. If they can offer a proper explanation for their

predictions, it is possible to improve various aspects of training

and performance. The proposed CNN-fixations can act as a

tool to help analyse the training process of CNN models.

We demonstrate this by analysing the misclassified instances
for object recognition. In Figure 8 we show sample images

from ILSVRC validation images that are wrongly classified

by VGG [28]. Each image is associated with the density map

computed by our approach. Below each image-and-map pair,

the ground truth and predicted labels are displayed in green

and red respectively. Multiple objects are present in each of

these images. The CNN recognizes the objects that are not

labeled but are present in the images. The computed maps

for the predicted labels accurately locate those objects such

as loafer, macaque, etc. and offer visual explanations for the

CNNs behaviour. It is evident that these images are labeled

ambiguously and the proposed method can help improve the

annotation quality of the data.

F. Presence of Adversarial noise

Many recent works (e.g. [9], [18], [19]) have demonstrated

the susceptibility of convolutional neural networks to Adver-

sarial samples. These are images that have been perturbed with

structured quasi-imperceptible noise towards the objective of

fooling the classifier. Figure 9 shows two samples of such im-

ages that have been perturbed using the DeepFool method [18]

for the VGG-16 network. The figure clearly shows that even

though the label is changed by the added perturbation, the

proposed approach is still able to correctly localize the object

regions in both cases. Note that the explanations provided

by the gradient based methods (e.g. [25]) get affected by

the adversarial perturbation. This shows that our approach is

robust to images perturbed with adversarial noise to locate the

object present in the image.

G. Generic Object Proposal

In this subsection we demonstrate that CNNs trained for

object recognition can also act as generic object detectors.

Existing algorithms for this task (e.g. [2], [5], [31], [39])

typically provide hundreds of class agnostic proposals, and

their performance is evaluated by the average precision and

recall measures. While most of them perform very well for

large number of proposals, it is more useful to get better

metrics at lower number of proposals. Investigating the perfor-

mances for thousands of proposals is not appropriate since a

typical image rarely contains more than a handful of objects.

Recent approaches (e.g. [33]) attempt for achieving better
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Fig. 9: Visual explanations for sample adversarial images

provided by multiple methods. First and third rows show the

evidence for the clean samples for which the predicted label is

shown in green. Second and fourth rows show the same for the

corresponding DeepFool [18] adversaries for which the label

is shown in red.

performances at smaller number of proposals. In this section,

we take this notion to extreme and investigate the performance

of these approaches for single best proposal. This is because,

the proposed method can provide visual explanation for the

predicted label and while doing so it can locate the object

region using a single proposal. Therefore it is fair to compare

our proposal with the best proposal of multiple region proposal

algorithms.

Using the proposed approach, we generate object proposals

for unseen object categories. We evaluated the models trained

over ILSVRC dataset on the PASCAL VOC-2007 [8] test

images. Note that the target categories are different from that

of the training dataset and the models are trained for object

recognition. We pass each image in the test set through the

CNN and obtain a bounding box (for the predicted label) as

explained in IV-A. This proposal is compared with the ground

truth bounding box of the image and if the IoU is more than

0.5, it is considered a true positive. We then measure the

performance in terms of the mean average recall and precision

per class as done in the PASCAL benchmark [8] and [4].

Table III shows the performance of the proposed approach

for single proposal and compares it against well known object

proposal approaches and other CNN based visualization meth-

ods discussed above. For STL [4] the numbers were obtained

from their paper and for other CNN based approaches we used

GoogLeNet [30] as the underlying CNN. The objective of this

experiment is to demonstrate the ability of CNNs as generic

TABLE III: The performance of different methods for Generic

Object Proposal generation on the PASCAL VOC-2007 test

set. Note that the methods are divided into CNN based and

non-CNN based also the proposed method outperforms all the

methods along with backprop [27] method. All the CNN based

works except [20] use the GoogLeNet [30] and [15] uses a

ResNet [10] architecture to compute the metrics. In spite of

working with the best CNN, [20] performs on par with our

approach (denoted with ∗).

Type Method mRecall mPrecision

Non-CNN

Selective Search 0.10 0.14
EdgeBoxes 0.18 0.26
MCG 0.17 0.25
BING 0.18 0.25

CNN

Backprop 0.32 0.36
CAM 0.30 0.33
cMWP 0.23 0.26
Grad-CAM 0.18 0.21
STL-WL 0.23 0.31
Deep Mask [20] 0.29* 0.38*

Ours 0.32 0.36

object detectors via localizing evidence for the prediction.

The proposed approach outperforms all the non-CNN based

methods by large margin and performs better than all the CNN

based methods except the Backprop [27] and DeepMask [20]

methods, which perform equally. Note that [20], in spite of

using a strong net (ResNet) and training procedure to predict

a class agnostic segmentation, performs comparable to our

method.

V. CONCLUSION

We propose an unfolding approach to trace the evidence

for a given neuron activation, in the preceding layers. Based

on this, a novel visualization technique, CNN-fixations is

presented to highlight the image locations that are responsible

for the predicted label. High resolution and discriminative

localization maps are computed from these locations. The pro-

posed approach is computationally very efficient which unlike

other existing approaches doesn’t require to compute either the

gradients or the prediction differences. Our method effectively

exploits the feature dependencies that evolve out of the end-

to-end training process. As a result only a single forward pass

is sufficient to provide a faithful visual explanation for the

predicted label.

We also demonstrate that our approach enables interesting

set of applications. Furthermore, in cases of erroneous pre-

dictions, the proposed approach offers visual explanations to

make the CNN models more transparent and help improve the

training process and annotation procedure.
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