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Abstract—It is well known that carefully crafted imperceptible
perturbations can cause state-of-the-art deep learning classifica-
tion models to misclassify. Understanding and analyzing these
adversarial perturbations play a crucial role in the design of ro-
bust convolutional neural networks. However, their mechanics are
not well understood. In this work, we attempt to understand the
mechanics by systematically answering the following question:
do imperceptible adversarial perturbations focus on changing
the regions of the image that are important for classification?
In other words, are imperceptible adversarial perturbations se-
mantically explainable? Most current methods use lp distance to
generate and characterize the imperceptibility of the adversarial
perturbations. However, since lp distances only measure the pixel
to pixel distances and do not consider the structure in the image,
these methods do not provide a satisfactory answer to the above
question. To address this issue, we propose a novel framework
for generating adversarial perturbations by explicitly incorpo-
rating a “perceptual quality ball” constraint in our formulation.
Specifically, we pose the adversarial example generation problem
as a tractable convex optimization problem, with constraints
taken from a mathematically amenable variant of the popular
SSIM index. We use the MobileNetV2 network trained on the
ImageNet dataset for our experiments. By comparing the SSIM
maps generated by our method with class activation maps,
we show that the perceptually guided perturbations introduce
changes specifically in the regions that contribute to classification
decisions i.e., these perturbations are semantically explainable.

Index Terms—SSIM, Adversarial perturbations, Explainabil-
ity.

I. INTRODUCTION

THE fields of Artificial Intelligence (AI) and Machine

Learning (ML) have seen tremendous growth and de-

velopment in the last decade that is expected to have a major

impact on humankind in the foreseeable future. This growth

can largely be attributed to advances in deep learning, which

in turn can be attributed to the availability of large data sets

and efficient hardware. These advances allow us to accurately

train highly complex deep learning models which are used in a

myriad of application areas, including computer vision, speech

and audio processing, natural language processing, medical

imaging, and finance, to name a few.

In theory, neural networks can represent/approximate any

real-valued function (or at least a wide variety of functions)

when appropriate weights and architecture are chosen ac-

cording to the Universal Approximation Theorem [1]. With

sufficient data and the right choice of architecture, one can

achieve state-of-the-art results on a variety of machine learning

problems using deep neural networks.

Analyzing the robustness of deep learning models to adver-

sarial inputs has received significant attention over the past

few years. A majority of these works can be classified into

four broad areas: 1) generating adversarial examples/crafting

adversarial perturbations, 2) defending against such ‘attacks’

[2], [3], 3) evaluation and certification [4], [5], and 4) inter-

pretability of adversarial examples/perturbations [6]. However,

we still lack a clear understanding of the key underlying

factors for the existence of this phenomenon. Because of

this, it is challenging to design defence mechanisms that

work for all kinds of adversarial attacks/perturbations. The

adversarial example generation problem is highly non-convex,

and heuristic or other approximation techniques are required

to solve it.

In their seminal work, Szegedy et al. introduced adversarial

examples in [7] that are crafted by solving an optimization.

Later, faster adversarial perturbation methods with closed-form

solution (direct expression to generate perturbations) were

proposed by using the norm bounded constraints; examples

include FGSM (l∞ bounded perturbations) [8], FGM (l2
bounded perturbations) [9], and PGD (l∞ and l2 bounded

perturbations). Several attack and defense algorithms have

since been proposed, and many of these methods are summa-

rized in [2], [3]. Most existing defences are not completely

robust: adversarial attacks/perturbations can be specifically

engineered to target the said defense technique. This has led

to a self-sustaining cycle - with attacks leading to defenses,

and defenses paving the way for new attacks. Despite the

many results in this area, a complete understanding of the

adversarial perturbation landscape is still lacking. Some pro-

posed hypotheses for explaining adversarial perturbations in-

clude high dimensional spaces [8], data in-completion, model

capacity [2], and the presence of highly predictive but non-

robust features (spurious correlations) [6]. The authors in [10]

proposed that the distribution shift between training and test

data set, combined with the high dimensional continuous data

space, as the key reasons for adversarial examples.

Along these lines, our interest is not to create another attack

but rather to understand the adversarial landscape, primarily

with respect to perceptual similarity. Our investigation aims to

systematically explore the semantic significance of the regions

affected by adversarial perturbations. In particular, we try to

answer the following question: do imperceptible adversarial

perturbations focus on changing the regions of the image that

are important for classification? In other words, are imper-

ceptible adversarial perturbations semantically explainable?

In most of the adversarial example attacks, lp distance

metrics are used for crafting the adversarial perturbations.

However, it is well-known that lp distance metrics are not

good at measuring perceptual similarity between two images
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[11], and that these metrics are neither necessary nor sufficient

for perceptual similarity [12]. For example, a mean shift in

the image results in a high lp distance, but perceptually,

the mean shifted image remains close to the original image.

For the perturbations to be imperceptible, the original and

modified image must be similar in some metric that respects

structural (perceptual) similarity. Thus to answer the question

above, we use the Structural Similarity (SSIM) index [11] to

generate the adversarial perturbations instead of lp distance

metrics. The SSIM index is a popular measure to evaluate the

perceptual similarity/quality of images. It is a full-reference

image quality metric that measures the quality of a distorted

image with respect to the ground-truth pristine image. Com-

pared to traditional lp distance metrics, the SSIM index is

known to correlate better with the human perception of image

quality/distortion. The following are the main contributions of

this work:

1) In order to address the question posed earlier, we pro-

pose a perceptually guided adversarial example gener-

ation technique by leveraging the useful mathematical

properties of the SSIM index. The SSIM metric is

analyzed in depth in order to construct a novel convex

formulation (which we call perceptually guided adver-

sarial perturbation (PGAP)) to generate the adversarial

perturbations. We also provide a closed-form approxi-

mation (called Faster PGAP (FPGAP)) to the proposed

convex problem.

2) We then try to systematically investigate (both qual-

itatively and quantitatively) adversarial examples and

their relationship to semantically significant regions of

the image. We do this by comparing the perturbations

generated using the SSIM index with class activation

maps generated using GradCAM++ [13]. We quantify

this comparison using IOU-based metrics and precision;

and observe that compared to other norm-bounded ap-

proaches, our method gives about a factor of 2-3 higher

precision scores (Fig 5).

3) We thus conclusively answer the question posed in

the introduction. Adversarial perturbations generated by

incorporating an SSIM ball constraint (instead of the lp
ball constraint as in other works) seem to be changing

only the regions of the image significant for classifica-

tion, at least to a degree much higher than other norm-

bounded attack methods.

4) In order to validate our adversarial example generation

method, we also establish that our method gives a much

higher fooling rate at a given average SSIM compared

to other similar methods.

We find it very intriguing that a perceptually-aware formula-

tion makes the adversarial example generation semantically-

aware.

II. RELATED WORK

The SSIM index has been considered previously in the

adversarial perturbation setting, and we briefly summarize two

relevant methods next. In [14], the authors proposed stronger

attacks by combining different types of attacks (adding ad-

versarial noise, rotating, translating, or performing spatial

transformations on images) and used the SSIM index to

quantify the strength of the adversarial attack. In [15], the

authors introduced a new measure called Perceptual Adversar-

ial Similarity Score (PASS) using the SSIM index to quantify

the adversarial examples and use the PASS in the process of

generating adversarial examples.

Our contribution differs significantly from both of these

methods, which we outline below. By imposing constraints

from a mathematically amenable variant of the SSIM index

[16] (and exploiting useful properties like quasi convexity),

and by taking a suitable approximation of the loss function,

we pose the adversarial example generation problem as a

quadratically constrained quadratic program (QCQP). We also

provide a closed-form solution to the approximation of the

QCQP that allows for faster implementation. In fact, none

of the existing adversarial example techniques that use image

quality metrics provide a closed-form solution to (1). We not

only give a convex formulation (9), but also provide a closed-

form approximation (10). Thus our method is in line with other

norm bounded techniques (PGD, FGSM, etc.), which employ

a closed-form solution to generate adversarial perturbations.

The perturbations we generate are not necessarily additive,

nor are they obtained by a parameterized rotation or spatial

transformation; we propose a model-free technique to gen-

erate adversarial examples that are structurally and thereby

perceptually similar to the original image.

While this manuscript was in development, we also became

aware of another line of work [17] that uses SSIM to generate

adversarial examples. However, our work differs in the fol-

lowing key aspects: First, our goal, as opposed to the work in

[17], is to investigate the question posed in the introduction,

and not simply to generate another attack. As such, we have a

detailed and systematic analysis of the regions of perturbations

as compared to the regions identified by GradCAM++, which

are not present in [17]. Secondly, we provide a tractable convex

formulation of the adversarial example generation problem.

We use the analysis from [16] primarily to achieve this goal.

Thirdly, in addition to the convex formulation, we also provide

a fast approximation to the convex formulation (FPGAP),

which brings our technique (computationally and structurally)

in line with existing norm-bounded methods. This is in contrast

to the gradient-descent-based Lagrangian optimization used

in [17] (as a consequence, our method also does not need

any additional hyper parameters). This fast approximation also

allows us to perform experiments on datasets like ImageNet,

which would not be possible with the initial formulation.

Indeed such experiments are not done in [17]. Finally, we

also provide a systematic analysis of the comparative impact

of the hyper-parameters involved in our algorithm (ǫ1 and ǫ2
in (8)).

A. Organization

The paper is organized as follows: in section III we briefly

discuss the standard norm bounded adversarial example gen-

eration methods and formulate an optimization problem (2).

In section III-A, we explain the SSIM index along with

its mathematically amenable variant and discuss some of its
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properties which will be used to generate adversarial examples

using SSIM constraints. In section IV, we use ideas from III-A

to modify (2) to formulate an optimization problem (9) to

generate adversarial examples using SSIM index. We also pro-

pose an approximate solution (10) to this optimization problem

which enables the faster generation of adversarial examples.

In section V, we analyze the norm bounded methods along

with the proposed method qualitatively and quantitatively

and present some additional results on the perceptual quality

of adversarial examples generated by different methods. We

conclude the paper with some closing remarks in section VI.

III. PROBLEM SETUP

Suppose D represents the data set with entries (xi, yi),
where xi represents the ith data point and yi represents the

corresponding label. Let f denote the machine learning model

and its prediction ŷ (i.e., ŷi = f(xi)). In the supervised

learning framework we try to minimize the loss function L
with respect to given data set D and find the best suited model

parameters w.

min
w

∑

i

L(w, xi, yi).

An adversarial example xadv is similar (in some metric) to a

data point x in the data set D, such that the machine learning

models misclassifies the input (i.e., f(xadv) 6= f(x)). Finding

an adversarial example at a given data point x with label y
can be formulated as an optimization problem based on loss

function: In this formulation, we find xadv close to a given

data point x, which maximizes the loss function

argmax
xadv

L(w, xadv, y) s.t. d(x, xadv) ≤ ǫ. (1)

Here ǫ is the allowed level of perturbation. We refer to

xadv as adversarial example and x − xadv as adversarial

perturbation.

Note that the feasibility region of the optimization problem

above (1) varies based on the value of ǫ. The formulation in

(1) is similar to the inner maximization problem from [18].

The distance metric d(x, xadv) is typically an lp distance

d(x, xadv) = ||x− xadv||p where ||a||p =

(

∑

i

|ai|p
)

1

p

.

Typically, a linear approximation of the loss function around

the data point x is used:

L(w, xadv, y) ≈ L(w, x, y) + (xadv − x)T∇xL(w, x, y).

So to find xadv we maximize the second term above. Note

that since

argmax
xadv

L(w, xadv, y) ≈ argmax
xadv

(xadv)
T∇xL(w, x, y),

we can just maximize the inner product between xadv and

∇xL(w, x, y). Also note that the gradients ∇xL(w, x, y) can

be readily extracted from the model.

Important distance metrics used in the literature are l∞,

which measures the maximum absolute change in the pixel

values [8], [19], [20]; l2 which measures the Euclidean dis-

tance of change in the pixel values [20], [9]; l1 measures the

total absolute change in the pixel values [21], and l0 measures

the number of pixels that differ [20], [22], [23].

As discussed earlier, lp distance metrics are not good at

measuring perceptual similarity between two images. If we

consider

d(x, xadv) =
√

1− SSIM(x, xadv),

then the optimization problem for generating adversarial ex-

ample becomes:

argmax
xadv

(xadv)
T∇xL(w, x, y)

s.t. SSIM(x, xadv) ≥ 1− ǫ2
(2)

However, the metric d(x, xadv) =
√
1− SSIM defined

above is non-convex, and so the above problem can become

intractable. So we use a variant of the SSIM index [16] to

generate imperceptible adversarial perturbations. We review

these ideas next. Readers familiar with the SSIM index can

skip to Section IV.

A. Structural Similarity (SSIM) Index

The SSIM index between the two image patches X and

Y is computed using a combination of three distortion mea-

surement components: luminance (l), contrast (c), and struc-

ture/correlation (s), that are defined as follows.

l =
2µXµY + c1
µ2
x + µ2

Y + c1
, c =

sXsY + c2
s2X + s2Y + c2

s =
sX,Y + c3
sXsY + c3

,

where µX , µY represent the mean of X and Y respectively,

s2X , s2Y represent the variances of X and Y respectively, and

sX,Y represents the co-variance between the X and Y . Here,

c1, c2 and c3 are small numerical constants that ensure numer-

ical stability when the denominators are close to zero. We can

also say that these constants aim to characterize the saturation

effects of the visual system at low luminance and contrast

regions. The first two terms l and c measure nonstructural

distortion, while the last term s measures structural distortion

(or absence of correlation) between the two images. The

structural similarity or SSIM between the images X and Y is

defined as the product of the luminance, contrast and structure

terms defined above, i.e., SSIM(X,Y ) = l.c.s.

An SSIM quality map is constructed by computing the

SSIM index between pairs of corresponding local patches in

the two images, and the overall SSIM index is computed by

averaging the patch level values in the SSIM map.

While the SSIM index is indeed a better method compared

to MSE for measuring perceptual similarity between two

images, it does not satisfy the triangle inequality and thus

is not a distance metric, limiting its use in convex problem

formulations. However, the SSIM index can be converted to a

normalized root mean square error (NRMSE) measure, which

is a valid distance metric [16]. The square of such a metric

is not convex but is locally convex, and quasi-convex [16],

thereby making the SSIM index a feasible target for optimiza-

tion. We use these insights for our problem formulation. Next,

we briefly review these ideas, develop the notation.
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(a) (b)

Fig. 1. Image on the left: x-axis and y- axis correspond to ǫ1 and ǫ2 respectively, at each highlighted point on the grid has label with first co-ordinate as
model prediction and second co-ordinate as ssim value. Image on the right: corresponding images with ǫ1 and ǫ2 mentioned on top of them.

In the standard form of the SSIM index, we set the numer-

ical constants c3 = c2/2, resulting in the SSIM having only

two terms

SSIM(X,Y ) = S1(X,Y ) S2(X,Y ), (3)

where S1 = l and

S2 = c.s = (2sX,Y + c2) /
(

s2X + s2Y + c2
)

.

It can be seen that
√
1− SSIM is not a metric but

√
1− S1

and
√
1− S2 are normalized metrics [16]. Now we set d1 =√

1− S1 and d2 =
√
1− S2, and the vector d = [d1, d2]. It

can be seen that d is a vector of normalized metrics obtained

from the root mean square error [16].

The SSIM index can be approximated with the vector of

metrics d(X,Y ) as

||d(X,Y )||2 =
√

(d1)2 + (d2)2 =
√

2− S1 − S2. (4)

We note that

√
1− SSIM =

√

1− S1S2 =
√

d2
1
+ d2

2
− d2

1
d2
2
. (5)

We observe that ||d(X,Y )||2 serves as a lower order ap-

proximation of
√
1− SSIM. We can also write

S1 = 1− NMSE(µX , µY , c1)

S2 = 1− NMSE(X − µX , Y − µY , c2),
(6)

where NMSE is the normalized mean squared error given by

NMSE(X,Y, c) =
||X − Y ||2

||X||2 + ||Y ||2 + c
. (7)

We use these ideas to modify problem (2).

IV. ADVERSARIAL EXAMPLE GENERATION USING SSIM

The structural similarly index can be written as a product

of two terms i.e., SSIM = S1.S2 where S1 captures the

luminance similarity, and S2 captures the structure and contrast

similarity. From [16] (summarized in Section III-A above) we

know that S1 and S2 have appealing convexity properties.

(a) (b)

Fig. 2. Image on the left: original test image with label y = 4 and model
prediction ŷ = 4. Image on the right: adversarial example generated by
solving (8) (ǫ1 = 0.05 and ǫ2 = 0.11) with perceptual quality 0.95 (SSIM).

Going back to the problem formulation of (2), we see that the

condition on SSIM(x, xadv) in equation (2) can be replaced

by conditions on S1(x, xadv) and S2(x, xadv), as discussed

in (3). By choosing ǫ1 and ǫ2 suitably, we may rewrite the

optimization problem from (2) as

argmax
xadv

(xadv)
T∇xL(w, x, y)

s.t. S1(x, xadv) ≥ 1− ǫ2
1

S2(x, xadv) ≥ 1− ǫ2
2

(8)

We analyse the constraints of (8) in more detail in Appendix

A. The first constraint S1(x, xadv) ≥ 1 − ǫ2
1

is a linear

constraint (this forces xadv to lie in an intersection of two

half-spaces). The second constraint in (8) S2(x, xadv) ≥ 1−ǫ2
2

is a quadratic constraint (this forces xadv to be in a high

dimensional sphere). Based on the constraints (12), (13), and

the objective, the optimization problem in (8) is convex; in

particular it is a Quadratically Constrained Quadratic Program

(QCQP).

Conceptually, Constraint 1 corresponds to non-structural

perceptual features (luminance), and Constraint 2 corresponds

to structural/perceptual features in the image. The parameters

ǫ1 and ǫ2 fix the allowed tolerances in these features and

decide the feasibility region of the optimization problem.
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To understand the relative impact of ǫ1 and ǫ2, we take

an image with label y = 4 from the MNIST digits test data

set and generate adversarial examples for different values of

ǫ1 and ǫ2. For this exercise, we use a CNN model, which

has around 99% accuracy on the test data. In Figure 1, the

image on the left shows the model prediction of optimization

problem output and its SSIM index with respect to origi-

nal image, as a function of ǫ1 and ǫ2. On the right, the

corresponding output images are shown. From Figure 1 one

important observation that can be made is that the impact of

ǫ2 (Constraint 2) is more on the solution (model prediction

and perceptual quality of optimization output) compared to the

ǫ1 (Constraint 1). This observation can also be validated by

calculating the corresponding optimal dual variables. For the

above example in Figure 2, the dual variable corresponding

to Constraint 2 is around 145 times larger compared to the

dual variable of Constraint 1. Since ǫ2 has significantly higher

impact compared to ǫ1, the algorithm can be simplified by

taking ǫ1 = 0, effectively removing the Constraint 1 above.

This modification results in solving the following optimization

problem:

argmax
xadv

(xadv)
T∇xL(w, x, y)

s.t. µxadv
= µx

S2(x, xadv) ≥ 1− ǫ2
2

(9)

A. Proposed Method – Perceptually Guided Adversarial Per-

turbation (PGAP)

In practice, solving (9) may not lead to an adversarial exam-

ple. This is because the formulation of (8) assumed a linear

approximation to the loss function, which may be accurate.

Along the lines of [18], we propose an iterative technique

that repeatedly solves (9). We first fix an ǫ2 and solve (9).

Note that at this point the obtained solution xadv may not

be adversarial (i.e., we may not have f(xadv) 6= f(x)). We

recalculate the gradients at the obtained xadv and solve (9)

using the updated gradient. This process is repeated until an

adversarial example is found (see Algorithm 1 for a summary).

The iterative approach helps in overcoming the limitations

imposed by the linear approximation to the loss function.

One drawback of the proposed method (Algorithm 1) is

that the QCQP is slow to solve on large datasets (for e.g.,

ImageNet). Hence next, we present next a faster algorithm

that uses an efficient approximation of the solution to (9).

B. Approximate Solution – Faster PGAP

We formulate an equivalent optimization problem from (9)

by relaxing Constraint 1 and substituting it in Constraint 2,

and converting it into a minimization problem. The solution

to this problem is given by:

xadv = 1(µx) + k22 + (
√

k21)

( ∇xL(w, x, y)
||∇xL(w, x, y)||

)

, (10)

where k21, k22 are defined in (13) and 1 in 1(µx) is all ones

of size xadv; thus providing a closed form solution to (14).

We refer the reader to Appendix B for the intermediate steps.

Algorithm 1 Adversarial example generation

PGAP(x,model, label, ǫ2, iterNum)

i = 0
While i ≤ iterNum do

xadv ← argmax
xadv

(xadv)
T∇xL(w, x, y)

s.t. µxadv
= µx, S2(xadv, x) ≥ 1− ǫ2

2

yadv ← model.predict(xadv)
If label 6= yadv

return xadv

else

x = xadv

return xadv

Algorithm 2 presents the steps of FPGAP (a fast approx-

imate variant of PGAP) by incorporating the closed-form

solution above in the iterations.

Algorithm 2 Faster adversarial example generation

FPGAP(x,model, label, ǫ2, iterNum)

i = 0
While i ≤ iterNum do

xadv ← 1(µx) + k22 + (
√

k21)

( ∇xL(w, x, y)
||∇xL(w, x, y)||

)

yadv ← model.predict(xadv)
If label 6= yadv

return xadv

else

x = xadv

return xadv

C. Some remarks

We would like to point out that the structure of the presented

approximate (10) solution is very similar to adversarial exam-

ples generated by FGM [9] attack, which generates l2 norm

bounded additive perturbations. The expression for adversarial

examples given by FGM is

xadv = x+ ǫ

( ∇xL(w, x, y)
||∇xL(w, x, y)||

)

. (11)

Both the formulations (10) and (11) use normalized gra-

dient ∇xL(w, x, y)/||∇xL(w, x, y)||. However the significant

difference in the performance of the proposed attack is due to

the presence of the terms k21 and k22 which are derived from

the structure term in the SSIM index. It is very intriguing that

such a simple change results in a huge improvement in the

precision scores (Section V-B) and fooling rate (Section V-C).

An alternate approach to find adversarial examples with

high SSIM could be to subtract a differentiable version of

SSIM from the loss function, similar to other such approaches

in literature [24]. Note that the existing norm bounded ap-

proaches impose a norm ball constraint on the perturbation.

This allows for the intermediate formulation (as in equation

1) to be interpreted as a dual norm, hence enabling a closed-

form solution. This would not be possible if the norm is
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PGAP (0.99) SSIM map channel 1 SSIM map channel 2 SSIM map channel 3 GradCAM++ map original

FPGAP (0.99)

FGSM (0.44)

FGM l2 (0.82)

PGD (0.99)

PGD l2 (0.99)

(a) (b) (c) (d) (e)

Fig. 3. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.

added directly to the loss function instead. Our formulation

follows a similar philosophy, where we impose a perceptual

similarity constraint instead of subtracting the SSIM from

the loss function. Specifically, the mathematically amenable

variant of SSIM allows us to derive a closed-form solution

in this perceptually guided setting as well. As in the lp norm

case, adding the SSIM index directly to the loss term does not

admit a closed-form solution. In addition, the resulting non-

convex formulation may also lead to increased complexity and

convergence-related issues.

V. RESULTS AND DISCUSSION

As discussed earlier, our key goal is to analyze the image

regions which the adversarial perturbations affect the most. In

particular, our interest is more on understanding the impact

of adversarial perturbations on the structurally (perceptually)

important regions of the image. We first start with a qualitative

analysis with some illustrative examples and then quantify our

observations using some well-known metrics.

1) Model used: We use the MobileNetV2 [25] architecture

with pre-trained weights, which has 72% top-1 accuracy

on the ImageNet validation set [26] for quantitative and

qualitative analysis. All the algorithms (PGAP, FPGAP,

and the competing methods) are applied to this model

to generate adversarial perturbations, one for each image

in the ImageNet validation set.

2) Methods being compared: We compare our methods

(PGAP, FPGAP) with other popular norm-bounded

techniques-FGSM (l∞ bounded perturbations) [8], FGM

(l2 bounded perturbations) [9], and PGD (l∞ and l2
bounded perturbations) [18].

3) Techniques used: For each of the methods (FPGAP,

FGSM, etc.), we generate the SSIM maps between the

adversarial examples and original images. As discussed

in section III-A, SSIM maps [11] provides a visualiza-
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(a) (b)

Fig. 4. Adversarial examples generated using multiple methods with similar fooling rate on images from the MNIST (left panel) and CIFAR-10 (right panel)
datasets. From top to bottom each row corresponds to test images, FGSM, FGM l2, PGD, PGD l2, PGAP and FPGAP respectively.

tion of the distortions in the test image with respect

to the reference image. Lighter regions in these maps

correspond to lower distortion, while darker regions

correspond to higher distortion levels.

In order to obtain the semantically important regions of

an image, we use Class Activation Maps. In particular,

we use GradCAM++ [13]. The heat maps generated

by GradCAM++ provide spatial regions that are most

important for classification.

4) Hyper-parameter tuning: Considering that each of the

involved algorithms has different hyperparameters, we

propose the following setup to compare them on an even

ground. Consider the following Fooling Rate (FR) score:

1

N

N
∑

i=1

✶ (pre-attack label(i) 6= post-attack label(i)) ,

where N is the number of images in the dataset. For a

fair comparison, we select the parameters for different

methods such that the Fooling Rate is ≈ 1.

A. Qualitative Analysis

We first provide some illustrative examples that compare the

SSIM maps generated by all the methods with GradCAM++

heat maps. For instance, consider Figure 3, we see that

locations of the distortion in the proposed methods (PGAP,

FPGAP) agree very well with the GradCAM++ maps. In

particular, the number of distortions generated outside the

GradCAM++ regions of interest is very few. This, in turn pro-

vides evidence that our method does indeed perturb the regions

in the image important for classification decisions. We can also

observe (from the much the lighter maps corresponding to the

proposed methods) that the proposed methods introduce far

lesser perceptual distortions (or are more localized) compared

to other methods.

Similar observation can be made from Figure 4 that illus-

trates performance on the MNIST and CIFAR-10 datasets. On

MNIST data, the proposed method introduces perturbations

in and around the digit present in the image, whereas the

perturbations added by the other methods are distributed across

the image. On the natural images in the CIFAR-10 dataset,

our method is able to carefully identify regions important for

classification decisions and introduces perturbations only in

such regions.

B. Quantitative Analysis

In this section, we systematically quantify the observations

made in the previous section. For this, we consider the

following maps

• Noise map corresponding the adversarial examples: For

each image i in the dataset, we generate a binary image

Ni given by

Ni = {(1− SSIM map(i)) > noise threshold} ,

we evaluate each of the algorithms being compared at

various values of noise threshold.

• Noise map corresponding to GradCAM++: For each

image i in the dataset, we generate the binary image Gi

given by

Gi = {GradCAM++ output(i)) > 0.75} .

The binary image Ni gives the regions affected by the adver-

sarial perturbations, and the binary image Gi gives the regions

that are important for classification. We would like to note here
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Fig. 5. Quantitative evaluation of adversarial perturbations using IOU based metrics (Avg precision, Avg number of pixels, Avg recall, Avg IOU outside) on
ImageNet dataset.

that the GradCAM++ scale is normalized to lie between 0

and 1, with regions contributing to the classification decision

taking on higher values. We empirically fixed the threshold

on GradCAM++ to 0.75 to extract these important regions for

classification (for example, the regions that are highlighted red

in GradCAM++ in Figure 3).

By considering the entries in Gi to be the ground truth,

we can use traditional metrics such as precision and IOU

(intersection over union). We first compute the True Positives

(TPi), this is the number of positive pixels in Ni that are also

positive in Gi, and the number of false positives (FPi), which

is the number of pixels positive in Ni but not in Gi. Similarly,

we compute the true negatives (TNi) and the false negatives

(FNi).

TPi = sum(Ni ∧Gi) FPi = sum(Ni ∧ ¬Gi)

FNi = sum(¬Ni ∧Gi) TNi = sum(¬Ni ∧ ¬Gi).

Based on these, we evaluate the algorithms on the following

metrics

1) Precision: the ratio of number of pixels perturbed in

the important regions to the total number of perturbed

pixels.

Precision =
1

N

∑

i

TPi/(TPi + FPi),

where N is the total number of images in the dataset.

High values of this metric implies that the perturbations

are precise in targeting the regions that are sensitive for

classification.

2) Number of pixels perturbed: This is the fraction of the

number of positives in Ni, averaged over the dataset.

3) Recall (=
∑

i TPi/N(TPi + FNi) gives the ratio of

number of pixels perturbed in the important regions to

the total number of pixels in the important regions. Note

that this metric may not be relevant enough for our

setup: as an example, consider a trivial case where the

perturbation perturbs all the pixels; in this case, the recall

will be high, even though the perturbation is completely

agnostic to the structure of the image. Nevertheless, we

include this metric for completion.

4) Intersection over union (IOU) Similar to other such

metrics for image segmentation we can use

IOU =
1

N

∑

i

TPi

FPi + TPi + FNi

=
1

N

∑

i

IOU(Ni, Gi).

This is also the ratio of the intersection of the regions of

Ni and Gi to their union. This metric has similar issues

to recall, discussed above. To over come this, we define

Intersection over union outside (IOU outside). Consider

the following:

IOU outside =
1

N

∑

i

FPi/(TPi + FPi + TNi)

=
1

N

∑

i

IOU(Ni,¬Gi).

This gives us the amount of perturbation the adversarial

example generation method introduces in the regions

that are not important for classification (i.e. outside Gi)

averaged on entire data set. Ideally, if a perturbation

only targets the important regions (Gi), the value of IOU

outside should be very small.

For each of the algorithms being compared, these scores are

calculated for many different values of noise threshold
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TABLE I
QUANTITATIVE EVALUATION OF ADVERSARIAL PERTURBATIONS USING IOU BASED METRICS ON IMAGENET DATASET AT NOISE THRESHOLD = 0.11.

Attack (ǫ) Precision Number of pixels perturbed Recall IOU outside

FGSM (0.5) 0.1613 0.9817 0.9759 0.8263

FGM l2 (100) 0.1982 0.6682 0.7750 0.5594

PGD (0.03) 0.1329 0.3217 0.2503 0.3128

PGD l2 (5.0) 0.1672 0.3017 0.2585 0.2880

FPGAP (0.005) 0.3577 0.0454 0.0837 0.0369

MNIST CIFAR-10 ImageNet

Fig. 6. Perceptual quality Average SSIM (top row) and Average PSNR (bottom row) versus Fooling Rate (FR) comparison of multiple adversarial perturbations
on MNIST, CIFAR-10 and ImageNet datasets.

TABLE II
FOOLING RATE COMPARISON OF DIFFERENT ATTACKS ON DIFFERENT DATASETS AT A FIXED QUALITY

A) MNIST DATASET (AVERAGE SSIM ≈ 0.85), B) CIFAR-10 DATASET (AVERAGE SSIM ≈ 0.998), AND C) IMAGENET DATASET (AVERAGE SSIM ≈

0.998). PROPOSED METHODS ARE IN ITALICS.

Attack FGSM FGM l2 PGD PGD l2 FPGAP

Fooling Rate – MNIST 0.0556 0.3004 0.066 0.1891 0.9953

Fooling Rate – CIFAR-10 0.5892 0.5681 0.7612 0.8472 1.0

Fooling Rate – ImageNet 0.82696 0.79008 0.92332 0.97614 1.0

and the resulting plots are shown in Fig 5. For reference, Table

I lists the scores at a particular noise threshold.

These experiments clearly validate the qualitative observa-

tions made earlier in section V-A. Our method (FPGAP) beats

other existing norm bounded methods by a factor of ≈ 2 on

the precision scores. The number of pixels perturbed by our

method is also lower compared with the other methods. For

FPGAP, the recall scores are low; this observation is in line

with our earlier observations that FPGAP introduces a smaller

number of perturbations (as compared to the FGSM, which

introduces perturbations all over the image).

C. Additional Results

In addition to the quantitative and qualitative analysis pre-

sented earlier, in this section, we analyze the perceptual quality

of the adversarial examples generated by different methods.

For each of the algorithms considered, we compute the struc-

tural similarity (SSIM) and PSNR between the adversarial

examples and original images, averaged over the dataset. We

plot the obtained Average SSIM and Average PSNR values vs

FR (as defined in Section V-A) in Figure 6.

From Figure 6, it is clear that the approximation method

FPGAP (Algorithm 2) does a fairly good job in approximating

PGAP (Algorithm 1) on MNIST and CIFAR-10 datasets. Note

that on the ImageNet dataset, we only report the results

of FPGAP and ignore PGAP since it is computationally

expensive to solve the QCQP iteratively.

From Figure 6, we can see that the adversarial perturbations

generated by the proposed method lead to a much higher FR

(than norm bounded approaches) in the high-SSIM regime;

thus, our technique is able to generate adversarial examples

with minimal impact on the image quality across all the three

datasets. For illustration, we consider a parameter configu-

ration that leads to roughly the same Average SSIM for all

the techniques (see Table II). It is evident that the proposed

method clearly achieves high FR within the given perceptual



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE III
FOOLING RATE COMPARISON OF DIFFERENT ATTACKS ON DIFFERENT DATASETS AT A FIXED QUALITY

A) MNIST DATASET (AVERAGE PSNR ≈ 25), B) CIFAR-10 DATASET (AVERAGE PSNR ≈ 57), AND C) IMAGENET DATASET (AVERAGE PSNR ≈ 65).
PROPOSED METHODS ARE IN ITALICS.

Attack FGSM FGM l2 PGD PGD l2 FPGAP

Fooling Rate – MNIST 0.1592 0.3004 0.2982 0.4867 0.9953

Fooling Rate – CIFAR-10 0.2102 0.3099 0.4157 0.3376 1.0

Fooling Rate – ImageNet 0.4822 0.66434 0.4942 0.74458 0.99998

quality range. We also corroborate this using FR comparison

at the same Average PSNR (see Table III).

D. Remarks

For some data points, we observed that the QCQP was

not solved accurately (the cvxpy logs showed a much higher

duality gap), resulting in anomalous adversarial examples with

a much lower SSIM. This, in turn, underestimates the true

average SSIM of PGAP, leading to higher fooling rates at

lower (estimated) SSIM. This underestimation can be observed

in Figure 6 (first column), where we see that the FR achieved

by FPGAP is higher than the FR achieved by PGAP for the

same average SSIM. This shortcoming is overcome by our

Faster PGAP (FPGAP) solution.

As mentioned earlier, we find it very intriguing that incor-

porating an SSIM constraint (which enforces perceptual simi-

larity) also makes the perturbations semantically meaningful.

One potential hypothesis is that the constraints derived from

the SSIM index restrict the space of perturbations, and together

with the guidance provided by the gradients calculated from

the network, enable us to find the semantically important

regions while inducing minimal perturbations in those regions.

VI. CONCLUSION

In this work, we investigated adversarial examples and

their relationship to semantically significant regions of the

image. Also, as a byproduct of trying to answer this question,

we proposed a perceptually guided technique to generate

adversarial examples that are structurally similar to the original

image. By leveraging useful mathematical properties of the

SSIM index, we presented a convex formulation to find

adversarial examples. To the best of our knowledge, this is

the first convex formulation that explicitly incorporates the

SSIM index into the adversarial framework. In addition, we

also provide a (fast) closed form approximation that enables

solving the proposed convex formulation on large datasets.

In fact, none of the existing adversarial example techniques

that use image quality metrics have a closed-form solution.

This is in stark contrast to other norm bounded techniques

(PGD, FGSM, etc.), which employ a closed-form solution to

generate adversarial perturbations.Our formulation also does

not assume any model on the adversarial perturbations. We an-

alyzed the adversarial perturbations generated by the proposed

technique on images from the ImageNet validation set using

SSIM maps and GradCAM++. By comparing the precision and

IOU scores, we observed that, unlike standard techniques, the

proposed technique is semantically-aware, i.e., it specifically

targets the regions of the image that are important for clas-

sification. The proposed method also generates high-quality

adversarial examples while achieving a Fooling Rate similar

to comparable techniques.

APPENDIX

A. Constraints Analysis

We analyse the constraints of (8) in more detail in this

section.

1) Constraint 1: The first constraint S1(x, xadv) ≥ 1 −
ǫ2
1

is a linear constraint (this forces xadv to lie in an

intersection of two half-spaces). We can see this using

(6) and (7):

||µxadv
− η1µx||2 ≤ ||µx||22(η1)2 + c1

(

ǫ2
1
η1
)

,

or equivalently

N(−
√

k11 + k12) ≤ 1Txadv ≤ (
√

k11 + k12)N, (12)

where

k11 = (η1)
2||µx||22 + c1

(

ǫ2
1
η1
)

,

k12 = η1µx, and η1 = 1/(1− ǫ2
1
).

2) Constraint 2: The second constraint in (8) S2(x, xadv) ≥
1− ǫ2

2
is a quadratic constraint (this forces xadv to be in

a high dimensional sphere). We can see this using (6):

||(xadv − 1µxadv
)− η2(x− 1µx)||2

≤ ||x− 1µx||22(η2)2 + c2(ǫ
2

2
η2),

or equivalently

||(xadv − 1µxadv
)− k22|| ≤

√

k21; (13)

where

k21 = ||x− 1µx||22(η2)2 + c2(η2ǫ
2

2
),

k22 = η2(x− 1µx) and η2 = 1/(1− ǫ2
2
).

Based on the constraints (12), (13), and the objective, the

optimization problem in (8) is convex; in particular it is a

Quadratically Constrained Quadratic Program (QCQP).

B. Problem Approximation

We formulate an equivalent optimization problem (14) from

(9), by relaxing the first constraint and substituting it in the

second. While this solution is an approximation to PGAP on

account of relaxing one of the constraints, it has the advantage

of having a closed form solution.

Consider the following approximation to (9).
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argmin
xadv

− (xadv)
T∇xL(w, x, y)

s.t. ||(xadv − 1(µx))− k22||2 ≤ k21
(14)

We first define the Lagrangian [27] of the above problem:

L = −(xadv)
T∇xL(w, x, y)

+ λ(||(xadv − 1(µx))− k22||2 − k21)
(15)

We first take gradient of Lagrangian L and equate it to zero:

∇xadv
L = 0. This leads us to

∇xL(w, x, y) = 2λ((xadv − 1(µx))− k22). (16)

Since the objective in (14) is linear, from geometrical

intuition the maximum/minimum occurs only on the boundary

of the sphere (specified by the constraint):

||(xadv − 1(µx))− k22||2 = k21,

which can be rewritten using (16) as

∇xL(w, x, y)T∇xL(w, x, y) = 4λ2k21 (17)

Using the value of λ from (17) in (16) we get:

xadv = 1(µx) + k22 + (
√

k21)

( ∇xL(w, x, y)
||∇xL(w, x, y)||

)

,

where k21, k22 are defined in (13) and 1 in 1(µx) is all ones

of size xadv; thus providing a closed form solution to (14).

C. Supplementary material

In this work, we try to understand the landscape of ad-

versarial perturbations through the perceptual quality lens. To

achieve this goal, we rely on the perceptual quality metric

SSIM index. We generate adversarial perturbations by maxi-

mizing the linear approximation of the loss function subject

to the constraints derived from the mathematically amenable

variant of the SSIM index. We use Carlini-Wagner (CW)

loss function (with confidence parameter k =50) [20] for

generating adversarial examples. We analyze the perturbations

generated by proposed method qualitatively and quantitatively

and show the efficacy in terms of localization to semantically

important regions compared to the norm-bounded adversarial

perturbations.

Tools used: Tensorflow [28], Cvxpy [29], Foolbox [30], tf-

keras-vis [31].

D. Qualitative Analysis

To understand and analyze the impact of adversarial per-

turbations on the spatial regions of images, we use SSIM

maps. Compared to the standard lp norm bounded pertur-

bations, the proposed approach generates perturbations that

are perceptually-aware (structure-aware) and able to find the

regions that are important for classification. We provide cor-

roborative evidence of the same using GradCAM++ output.

1) SSIM Map: SSIM maps contain local SSIM index

values at pixel level calculated using pixels in the local

neighbourhood of 8×8 block or Gaussian window of size

11×11 centered at the pixel. The global SSIM index value

is calculated by using/pooling these local SSIM index values.

Typically these maps are defined for grayscale images or one

colour plane of colour images, here we present the SSIM

maps of three channels (R, G, and B). These maps help us to

visualize the distortion locally at a pixel level. In this work, we

use these maps to locate the image regions that are affected

by adversarial perturbations. For example, in Figure 10 the

dark pixels in the second column of images are the locations

where adversarial perturbations are introduced in the channel

one (Red), and columns three and four corresponds to channels

two and three (Green and Blue).

2) Supporting Results: To further illustrate efficacy of our

method we present several examples (Figures: 10, 11, 12, 13,

14, 15 and 16) of the proposed method along with other norm

bounded perturbations in the following:

We observed that the iterative methods (PGD, PGD l2,

PGAP, FPGAP) are doing well compared to the basic (non-

iterative) methods (FGSM and FGM). In iterative approaches,

by updating the image at each iteration, non-linearity is

introduced in crafting the adversarial perturbations, which

could be the reason for better performance. To understand

these iterative methods further, we analyse the impact of

adversarial perturbations on spatial regions of images using

absolute difference maps.

3) Understanding Iterative Methods: We use random test

images from MNIST and CIFAR-10 test datasets for this

analysis. To understand and analyze the impact of adversarial

perturbations on the spatial regions of images, we use absolute

difference maps. These maps are generated by taking the ab-

solute difference of adversarial images with respect to original

image.These maps will help us in locating the perturbations

introduced in different parts of the image. Following is the

setup we use for this analysis:

1) Fix number of iterations for all the methods (for exam-

ple: 10, 30 etc).

2) Find the smallest ǫ to generate the adversarial example

(for random test images at fixed number of iterations

specified in step 1).

3) Compute the absolute difference map, PSNR and SSIM

with respect to original image.

Figures 19, 20, 21 and 22 are generated using random test

images from the MNIST test images (at different iterations:

10, 30, 50 and 70 respectively). We make the following

observations from these figures:

1) From the absolute difference maps we can say that

the proposed method introduces perturbations only at

important regions of the image (around the digit present

in the image) in all iteration settings.

2) Since the proposed method is able to identify the struc-

tural regions and adding perturbations only in those

regions the required amount of perturbation is small

compared to other methods which adds perturbations all

over the image. We believe that this could be the reason
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for high PSNR and SSIM index values of adversarial

images generated by proposed method compared to the

other methods (PGD and PGD l2).

3) As the number of iterations increase the performance

of PGD and PGD l2 is improving. In particular, as

we increase the number of iterations the perturbations

introduced by PGD l2 are more localized around the

digit area.

4) The proposed method seems to achieve higher PSNR

and SSIM index values in fewer iterations compared to

other methods.

Similar observations can be made on the CIFAR-10 test

images (Figures 23, 24, 25 and 26).

E. Additional Results

We compare our method with FGSM (l∞ bounded pertur-

bations) [8], FGM (l2 bounded perturbations) [9], and PGD

(l∞ and l2 bounded perturbations) [18]. Note that for iterative

methods the number of iterations used are 50. Each of the

techniques under consideration has a parameter ǫ that controls

the fooling rate: for norm bounded perturbations this is the

largest allowed norm of the perturbation. For the proposed

method, the parameter is ǫ2 ((9) in the main draft) which

bounds the structural distortion in the generated adversarial

example. We generate adversarial examples at different pa-

rameter values on MNIST, CIFAR-10 and ImageNet datasets

for all these techniques. We can see the relation between the

parameter ǫ and the Fooling Rate for these methods in Figures

7, 8 and 9.

However, the parameter ǫ has different role/significance (and

different range of values) for each method. This makes it

difficult to compare the success of different methods with

respect to ǫ. Hence we take a different route, and compare the

imperceptibility and the Fooling Rate of the attack. To measure

the imperceptibility we use image quality metric SSIM and

PSNR. We compute Average SSIM and Average PSNR over

the dataset at different parameter values (presented in Figures

7, 8 and 9) for each method. Then we compare these with the

Fooling Rate (Figure 6 in the main draft).
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Fig. 7. ǫ versus Fooling Rate (FR) comparison of multiple adversarial perturbations on MNIST.

Fig. 8. ǫ versus Fooling Rate (FR) comparison of multiple adversarial perturbations on CIFAR-10.

Fig. 9. ǫ versus Fooling Rate (FR) comparison of multiple adversarial perturbations on ImageNet.
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(a) (b) (c) (d) (e)

Fig. 10. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

PGAP (1.00) SSIM map channel 1 SSIM map channel 2 SSIM map channel 3 GradCAM++ map original

FPGAP (1.00)

FGSM (0.94)

FGM l2 (1.00)
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PGD l2 (1.00)

(a) (b) (c) (d) (e)

Fig. 11. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.
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(a) (b) (c) (d) (e)

Fig. 12. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.
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(a) (b) (c) (d) (e)

Fig. 13. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

PGAP (1.00) SSIM map channel 1 SSIM map channel 2 SSIM map channel 3 GradCAM++ map original
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(a) (b) (c) (d) (e)

Fig. 14. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.
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(a) (b) (c) (d) (e)

Fig. 15. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.
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Fig. 16. SSIM maps comparison of adversarial examples generated. (a): Adversarial perturbations with different methods and SSIM index value (rounded off
to two decimal places), (b),(c) and (d): SSIM maps of RGB channels respectively, (e): GradCAM++ output of original image.
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FGSM FGM l2 PGD

PGD l2 PGAP FPGAP

Fig. 17. Adversarial examples generated using multiple methods with similar fooling rate on MNIST dataset.

Conference on Machine Learning, 2017. [Online]. Available: http:
//arxiv.org/abs/1707.04131

[31] Y. Kubota and contributors, “tf-keras-vis,” https://github.com/keisen/
tf-keras-vis, 2019.
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FGSM FGM l2 PGD

PGD l2 PGAP FPGAP

Fig. 18. Adversarial examples generated using multiple methods with similar fooling rate on CIFAR-10 dataset.
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(a) (b)

Fig. 19. Image on the left: Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number
of iterations (10). Numbers on top of each image are ǫ and prediction of adversarial image respectively. Image on the right: Absolute difference maps with
respect to original image. Numbers on top of each map are PSNR and SSIM.

(a) (b)

Fig. 20. Image on the left: Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number
of iterations (30). Numbers on top of each image are ǫ and prediction of adversarial image respectively. Image on the right: Absolute difference maps with
respect to original image. Numbers on top of each map are PSNR and SSIM.
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(a) (b)

Fig. 21. Image on the left: Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number
of iterations (50). Numbers on top of each image are ǫ and prediction of adversarial image respectively. Image on the right: Absolute difference maps with
respect to original image. Numbers on top of each map are PSNR and SSIM.

(a) (b)

Fig. 22. Image on the left: Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number
of iterations (70). Numbers on top of each image are ǫ and prediction of adversarial image respectively. Image on the right: Absolute difference maps with
respect to original image. Numbers on top of each map are PSNR and SSIM.
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(a) Adversarial examples (b) Absolute difference map of R channel

(c) Absolute difference map of G channel (d) Absolute difference map of B channel

Fig. 23. (a): Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number of iterations (10).
Numbers on top of each image are ǫ and prediction of adversarial image respectively. (b): Absolute difference maps of channel R with respect to original
image, Numbers on top of each map are PSNR and SSIM. (c): Absolute difference maps of channel G with respect to original image. (d): Absolute difference
maps of channel B with respect to original image
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(a) Adversarial examples (b) Absolute difference map of R channel

(c) Absolute difference map of G channel (d) Absolute difference map of B channel

Fig. 24. (a): Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number of iterations (30).
Numbers on top of each image are ǫ and prediction of adversarial image respectively. (b): Absolute difference maps of channel R with respect to original
image, Numbers on top of each map are PSNR and SSIM. (c): Absolute difference maps of channel G with respect to original image. (d): Absolute difference
maps of channel B with respect to original image
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(a) Adversarial examples (b) Absolute difference map of R channel

(c) Absolute difference map of G channel (d) Absolute difference map of B channel

Fig. 25. (a): Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number of iterations (50).
Numbers on top of each image are ǫ and prediction of adversarial image respectively. (b): Absolute difference maps of channel R with respect to original
image, Numbers on top of each map are PSNR and SSIM. (c): Absolute difference maps of channel G with respect to original image. (d): Absolute difference
maps of channel B with respect to original image
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(a) Adversarial examples (b) Absolute difference map of R channel

(c) Absolute difference map of G channel (d) Absolute difference map of B channel

Fig. 26. (a): Adversarial examples generated by multiple methods: from top to bottom PGD, PGD l2, PGAP and FPGAP at fixed number of iterations (70).
Numbers on top of each image are ǫ and prediction of adversarial image respectively. (b): Absolute difference maps of channel R with respect to original
image, Numbers on top of each map are PSNR and SSIM. (c): Absolute difference maps of channel G with respect to original image. (d): Absolute difference
maps of channel B with respect to original image


	I Introduction
	II Related work
	II-A Organization

	III Problem Setup
	III-A Structural Similarity (SSIM) Index

	IV Adversarial example generation using SSIM
	IV-A Proposed Method – Perceptually Guided Adversarial Perturbation (PGAP)
	IV-B Approximate Solution – Faster PGAP
	IV-C Some remarks

	V Results and Discussion
	V-A Qualitative Analysis
	V-B Quantitative Analysis
	V-C Additional Results
	V-D Remarks

	VI Conclusion
	Appendix
	A Constraints Analysis
	B Problem Approximation
	C Supplementary material
	D Qualitative Analysis
	D1 SSIM Map
	D2 Supporting Results
	D3 Understanding Iterative Methods

	E Additional Results

	References

